
INTRODUCTION TO THE ELECTRONIC
CORRELATION PROBLEM

PAUL E.S. WORMER

Institute of Theoretical Chemistry, University of Nijmegen,

Toernooiveld, 6525 ED Nijmegen, The Netherlands

Contents

1 Introduction 2

2 Rayleigh-Schrödinger perturbation theory 4

3 Møller-Plesset perturbation theory 7

4 Diagrammatic perturbation theory 9

5 Unlinked clusters 14

6 Convergence of MP perturbation theory 17

7 Second quantization 18

8 Coupled cluster Ansatz 21

9 Coupled cluster equations 26

9.1 Exact CC equations . . . . . . . . . . . . . . . . . . . . . . . . 26

9.2 The CCD equations . . . . . . . . . . . . . . . . . . . . . . . . 30

9.3 CC theory versus MP theory . . . . . . . . . . . . . . . . . . . 32

9.4 CCSD(T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A Hartree-Fock, Slater-Condon, Brillouin 34

B Exponential structure of the wavefunction 37

C Bibliography 40

1



1 Introduction

These are notes for a six hour lecture series on the electronic correlation

problem, given by the author at a Dutch national winterschool in 1999. The

main purpose of this course was to give some theoretical background on the

Møller-Plesset and coupled cluster methods. Both computational methods

are available in many quantum chemical “black box” programs. The audi-

ence consisted of graduate students, mostly with an undergraduate chemistry

education and doing research in theoretical chemistry.

A basic knowledge of quantum mechanics and quantum chemistry is pre-

supposed. In particular a knowledge of Slater determinants, Slater-Condon

rules and Hartree-Fock theory is a prerequisite of understanding the following

notes. In Appendix A this theory is reviewed briefly.

Because of time limitations hardly any proofs are given, the theory is

sketchily outlined. No attempt is made to integrate out the spin, the theory

is formulated in terms of spin-orbitals only.

From the outset we make the following approximations:

• The clamped nuclei approximation. This is the removal of the nuclear

kinetic energy terms from the Hamiltonian and the assumption that

the wavefunction depends only on the electronic coordinates. Since

the nuclear potential energy terms are not removed from the energy

operator, the electronic wavefunction depends parametrically on the

nuclear coordinates.

• No spin or relativistic interactions. For the lighter elements these are

small and can, if necessary, be included via perturbation theory. For

the heavier elements they are important.

Under these approximations the N -electron Hamiltonian becomes in atomic

units (me = 1, e = 1, ~ = 1)

H =
N∑

i=1

u(i) +
∑

i>j

1

rij
and u(i) ≡ −1

2
∇2
i +

∑

α

Zα
Rαi

. (1)

Here rij is the distance between electron i and j and Rαi between nucleus α

with charge Zα at position ~Rα and electron i. Since the position vectors ~Rα

are taken to be constant, inclusion of the internuclear repulsions does not

affect the eigenfunctions of the Hamiltonian in (1). It will give a constant

shift in its eigenvalues.
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Further we will restrict these lectures to closed-shell, ground state, spin-

singlet molecules. We assume that for these systems the solution of the

Hartree-Fock (HF) problem is available. As is well-known the HF equations

follow from variation of the expectation value

EHF ≡ 〈Φ0 |H |Φ0 〉 (2)

where Φ0 is a normalized Slater determinant (antisymmetrized product) con-

taining the N lowest energy molecular spin-orbitals ψi, i = 1 . . . , N . These

so-called occupied orbitals are solutions of the HF equations and will be des-

ignated by i, j, k, . . .. The solutions of the HF equations with energies higher

than εN (the highest energy of the occupied orbitals) are the so-called virtual

spin-orbitals and will be designated by a, b, c, . . ..

We follow P.-O. Löwdin and define the electronic correlation energy ∆E0

as the difference between EHF and the lowest eigenvalue E0 of the Hamilto-

nian (1)

∆E0 = E0 − EHF. (3)

In other words, the electronic correlation problem is the problem of finding

the lowest eigenvalue of the many-electron Schrödinger equation starting from

the exact solutions of the corresponding HF equation.

Much work has been done on this problem. In the nineteen seventies and

early eighties the configuration interaction (CI) method was developed to the

extent that hundreds of thousands of configuration state functions (CSFs)

can now be handled. Recall here that a CSF is a linear combination of Slater

determinants that is an eigenfunction of the total spin operator S2. Since S2

commutes with H, the H-matrix will consist of blocks of different total spin

quantum number S when CSFs are used.

It has been known in many-body physics since the nineteen fifties that

most truncated CI methods are not size extensive. That is, if we compute

M identical molecules with the interaction between the molecules switched

off in the total M molecule Hamiltonian, we do not get M times the energy

of one molecule computed with the same truncated CI method. We will

see that this is due to the appearance of unlinked clusters in the CI energy.

Goldstone’s linked cluster theorem (1957) states that in an exact theory all

unlinked clusters cancel each other. Although it was generally known that

most CI methods yield non extensive energies, it was often ignored during

the days that they were developed.
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However, when it became clear that unlinked clusters do indeed give

large unphysical contributions to CI energies, chemists turned to formalisms

that are size extensive, notably Møller-Plesset (MP) perturbation theory and

coupled cluster (CC) theory. These two methods, and variants thereof, are

the most often applied today, at least for molecules near their equilibrium

ground state. For molecules in excited non-singlet states and for dissociation

processes the MP and CC approaches are generally not applicable, but CI is.

We will give a short introduction to MP and coupled cluster theory. Since

the concepts and language of perturbation theory are applied frequently in

CC theory, we will start with the former formalism.

2 Rayleigh-Schrödinger perturbation theory

Rayleigh-Schrödinger perturbation theory (RSPT) can be fruitfully applied

when we can partition our Hamiltonian H as follows:

H = H(0) + V, (4)

such that

1. We can compute the exact eigenvalues and eigenvectors of H (0). [Usu-

ally this requirement is too strong and we have to make do with (good)

approximations of the eigenvalues and eigenvectors].

2. The spectrum of H is not too different from that of H (0). In other

words the energy effects due to V are rather modest. That is why V is

called a perturbation.

We consider H(λ) ≡ H (0) + λV and its lowest energy eigenstate

H(λ)Ψ0(λ) = E0(λ)Ψ0(λ), (5)

which goes over into the problem to be solved when we choose λ = 1. We

expand the exact solutions of H(λ):

Ψ0(λ) =
∞∑

n=0

λnΦ
(n)
0 and E0(λ) =

∞∑

n=0

λnE
(n)
0 . (6)

Inserting these expansions into Eq. (5) and putting λ equal to zero, we get

the unperturbed problem

H(0) |Φ(0)
0 〉 = E

(0)
0 |Φ(0)

0 〉, (7)
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which we assume to be solved. Our goal is now to get expressions for the

perturbation corrections E
(n)
0 and Φ

(n)
0 . We introduce the intermediate nor-

malization condition:

〈Φ(0)
0 |Φ(n)

0 〉 = 0 for n > 0, and require 〈Φ(0)
0 |Φ(0)

0 〉 = 1 (8)

so that 〈Φ(0)
0 |Ψ0(λ) 〉 = 1. The exact lowest eigenvalue E0(λ) of H(λ) satis-

fies then the equation

E0(λ)− E
(0)
0 = λ〈Φ(0)

0 |V |Ψ0(λ) 〉. (9)

Upon expanding both sides of this equation, we find the asymmetric energy

expression for the nth-order energy

E
(n)
0 = 〈Φ(0)

0 |V |Φ(n−1)
0 〉 n > 0. (10)

We see that, if we know the (n − 1)th order contribution to Ψ0(λ), we can

compute the nth order contribution to E0(λ). In particular, the first-order

energy is the expectation value E
(1)
0 = 〈V 〉, where we have introduced the

short hand notation 〈Q 〉 = 〈Φ(0)
0 |Q |Φ(0)

0 〉 for any operator Q.

The nth-order perturbation equation is obtained by expanding Ψ0(λ) on

both sides of the exact Schrödinger equation [Eq. (5)] and E0(λ) on the right

hand side of this equation, followed by equating the terms on both sides that

multiply λn. From the intermediate normalization condition follows that Φ
(n)
0

can be obtained by solving the nth-order equation (which is linear) on the

orthogonal complement of Φ
(0)
0 . Using a basis of eigenfunctions of H (0) for

this space, we introduce the reduced resolvent:

R ≡
∑

i>0

|Φ(0)
i 〉〈Φ(0)

i |
E

(0)
0 − E

(0)
i

, (11)

which in fact is the inverse of E
(0)
0 − H(0) in this particular representation.

(Or more precisely, it is the inverse of the restriction of E
(0)
0 − H(0) to the

orthogonal complement of Φ
(0)
0 . Since the perturbation equations are linear,

it is not surprising that this inverse enters the theory). We assume that

the eigenvalues and eigenvectors of H (0) are known and hence we know R.

Further we assume that Φ
(0)
0 is non-degenerate.

As stated above, the recursion relation for the nth-order perturbed func-

tion follows by equating terms in λn and dividing both sides by E(0) −H(0),

|Φ(n)
0 〉 = RV |Φ(n−1)

0 〉 −
n∑

k=1

E
(k)
0 R |Φ(n−k)

0 〉. (12)
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The first-order correction to the wavefunction thus becomes

|Φ(1)
0 〉 = RV |Φ(0)

0 〉 hence E
(2)
0 = 〈Φ(0)

0 |V |Φ(1)
0 〉 = 〈V RV 〉. (13)

And

|Φ(2)
0 〉 = RV |Φ(1)

0 〉 − E
(1)
0 R |Φ(1)

0 〉
= RV RV |Φ(0)

0 〉 − 〈V 〉R2V |Φ(0)
0 〉, (14)

so that

E
(3)
0 = 〈Φ(0)

0 |V |Φ(2)
0 〉 = 〈V RV RV 〉 − 〈V 〉〈V R2V 〉. (15)

We can continue this recursion and derive E(4), etc. However, we will not

do this but rather give general expressions for the perturbation energies by

means of the bracketing technique of Brueckner. We will not attempt to prove

why the technique works, but just give the recipe, which is very easy to apply.

We will explain the procedure by the example of the fourth-order energy.

We start with the expectation value of the operator product 〈V RV RV RV 〉.
(The perturbation V on the outside, the resolvents in between, four V ’s

because we illustrate the fourth-order). The recipe then states that we must

insert in all possible ways any number of bra and ket pairs such that they

bracket V ’s and V ’s remain on the outside. A resolvent on the outside gives

zero, since R |Φ(0)
0 〉 = 0 and 〈Φ(0)

0 |R = 0. Thus, one pair can be placed as

follows

〈V R〈V 〉RV RV 〉 = 〈V 〉〈V R2V RV 〉
〈V RV R〈V 〉RV 〉 = 〈V 〉〈V RV R2V 〉
〈V R〈V RV 〉RV 〉 = 〈V R2V 〉〈V RV 〉. (16)

Also two pairs of brackets may be inserted, provided they are properly nested

〈V R〈V 〉R〈V 〉RV 〉 = 〈V R3V 〉〈V 〉〈V 〉. (17)

Each term gets the sign (−1)# where # is the number of pairs and we sum

the signed terms. Summarizing, we find by the bracketing technique the

following perturbation energies through fourth-order:

E
(1)
0 = 〈V 〉

E
(2)
0 = 〈V RV 〉

E
(3)
0 = 〈V RV RV 〉 − 〈V R2V 〉〈V 〉

E
(4)
0 = 〈V RV RV RV 〉 − 〈V 〉〈V R2V RV 〉 − 〈V 〉〈V RV R2V 〉

−〈V R2V 〉〈V RV 〉+ 〈V R3V 〉〈V 〉〈V 〉. (18)
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In fifth-order we find for the first time a bracket within a bracket:

〈V R〈V R〈V 〉RV 〉RV 〉

which obtains a plus sign (two pairs). In higher order it is easy to overlook

certain pairings and therefore the following formula for the number of terms

appearing in nth-order gives a useful check

# =
(2n− 2)!

n!(n− 1)!
. (19)

3 Møller-Plesset perturbation theory

One could describe Møller-Plesset perturbation theory as RSPT with

H(0) ≡ F =
N∑

i=1

f(i) and V ≡ H − F. (20)

Here F , the total Fock operator, is the zeroth order Hamiltonian and the

correlation operator H − F is the perturbation.

Actually, a slightly different partitioning of the exact H is more conve-

nient:

H =

H(0)

︷ ︸︸ ︷

F + 〈H − F 〉 +
V

︷ ︸︸ ︷

H − F − 〈H − F 〉, (21)

which defines H (0) and the correlation operator V , respectively. Using the

perturbation equations (18) we find the Møller-Plesset (MP) energies through

fourth-order

E
(0)
0 = 〈H(0) 〉 = 〈H 〉 = EHF

E
(1)
0 = 0

E
(2)
0 = 〈V RV 〉

E
(3)
0 = 〈V RV RV 〉

E
(4)
0 = 〈V RV RV RV 〉 − 〈V R2V 〉〈V RV 〉. (22)

The fourth-order energy is the first where a renormalization term, namely

〈V R2V 〉〈V RV 〉, appears.
In Appendix A it is shown that the unperturbed (zeroth-order) functions

are Slater determinants built from eigenfunctions of the one-electron Fock

operator f(1), the so-called canonical HF orbitals.
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We drop from here on the subscript 0, since we are only concerned with the

correlation of the ground state, and consider E(2) = 〈V RV 〉. The resolvent

R consists in this case of a sum over singly excited states plus a sum over

doubly excited states . . . . . . plus a sum over N -tuply excited states. By

virtue of Brillouin’s theorem, (see Appendix A), the singly excited states

do not contribute. Since the perturbation V contains at most two-electron

operators, it follows from the Slater-Condon rules that higher than double

excitations do not contribute. Hence

E(2) =
1

4

∑

i,j,a,b

|〈Φ0 |V |Φab
ij 〉|2

εi + εj − εa − εb
, (23)

where we used that the energy of Φ0 is EHF. The energy of Φab
ij is EHF −

εi − εj + εa + εb. The factor 1/4 is due to the overcompleteness of the basis.

Since a linearly independent basis requires i > j and a > b and we do not

apply this condition, we correct by 1/4. Notice also that Φaa
ij = 0 and that

one defines Φab
ii = 0 in a second quantized formalism, so that the diagonal

cases do not enter.

We introduce the shorthand notation

〈pq||rs〉 ≡ 〈ψp(1)ψq(2) | (1− P12)/r12 |ψr(1)ψs(2) 〉.

By the Slater-Condon rules we find for this case of two mismatches between

bra and ket:

〈Φ0 |H |Φab
ij 〉 = 〈ij||ab〉,

〈Φ0 |F |Φab
ij 〉 = 〈Φ0 |Φab

ij 〉 = 0 (24)

and the second-order MP energy becomes

E(2) =
1

4

∑

i,j,a,b

〈ij||ab〉〈ab||ij〉
εi + εj − εa − εb

. (25)

It is possible to express the third- and fourth-order MP energies in Eq. (22)

by the aid of the Slater-Condon rules in terms of two-electron integrals and

orbital energies only. In third-order we will meet matrix elements of the kind

〈Φab
ij |H − F − 〈H − F 〉 |Φa′b′

i′j′ 〉. The Fock operator, being a sum of one-

electron operators, only contributes in the case of less than two mismatches

between bra and ket. These Fock matrix elements cancel exactly against the

corresponding terms arising from the two-electron part of H. In other words,
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we do not find contributions from the Fock operator in the MP energies. This

is true in all orders of MP theory, as long as canonical HF orbitals are used.

This fact is self-evident in the second quantized hole-particle approach to

MP perturbation theory, (see Paldus & Č́ıžek).

4 Diagrammatic perturbation theory

An alternative to the Slater-Condon rules is the use of diagrams. Basically

there are two closely related type of many-body diagrams: Hugenholtz and

Goldstone. Both are inspired by Feynman diagrams, which arise in time-

dependent perturbation theory. The theory starts from a Fermi vacuum state

|Φ0 〉, which simply is the lowest eigenfunction of F (all occupied orbitals

filled). When we promote an electron to a virtual orbital we create a hole

in the Fermi vacuum and a particle in a virtual orbital. Thus, e.g. the

Slater determinant Φab
ij is a 2-hole/2-particle state. One says that the holes

‘run backwards in time’ and the particles ‘run forward’. In the present time-

independent approach this is just a rule of thumb to remember the orientation

of lines in the diagrams.

There are two conventions of drawing Goldstone and Hugenholtz dia-

grams: (i) Time flows from right to left. (ii) Time flows from bottom to top.

We will use the first convention, which is to say that hole lines run from

left to right and particle lines from right to left. We will first restrict the

attention to Hugenholtz diagrams, because they are easiest to draw.

The basic building block is the antisymmetrized two-electron integral:

〈pq||rs〉 −→ (26)

where the orbitals in the bra leave the vertex and the orbitals in the ket enter

the vertex. Here p, q, r, s are arbitrary orbitals. If we make a choice for

occupied and virtual orbitals we must direct the lines either to the right

(holes: i, j, · · · ) or to the left (particles: a, b, · · · ). Thus, a product of two

antisymmetric integrals becomes,

〈ij||ab〉〈ab||ij〉 −→
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The energy denominator is sometimes given by a vertical line. For the case

of an intermediate doubly excited state it is:

(εi + εj − εa − εb)
−1 −→

Combining these ingredients we get for the second-order MP energy, where

the labels of closed lines are summed over:

1

4

∑

i,j,a,b

〈ij||ab〉〈ab||ij〉
εi + εj − εa − εb

−→

It is common not to show the vertical line cutting the lines in between the

vertices that denotes the energy denominator, which is why we do not show

it here.

It remains to explain how we can extract the factor 1/4 from the diagram.

Two lines are equivalent when both start and end at the same vertex and

both go in the same direction. Let k be the number of pairs of equivalent

lines in the diagram. Then we must multiply the diagram with a weight

factor (1/2)k. In the present case we have one equivalent pair of hole lines

and one pair of equivalent particle lines, hence k = 2.

We summarize the graphical rules:

1. For an nth-order energy we write n vertices on a horizontal line. Each

vertex has two ingoing (say r and s) and two out going lines (say p and

q). Such a vertex contributes 〈pq||rs〉.

2. Connect these vertices in all possible ways such that the resulting dia-

gram is linked (see below). A vertex may not be connected with itself.

Each distinct diagram gives a separate algebraic term. The nth order

energy is the sum of these terms.

3. Between each pair of vertices we draw a virtual vertical line. This gives

the denominator factor
∑

holes

εi −
∑

particles

εa (27)
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where the sum runs over all hole and particle lines crossing the virtual

line.

4. Sum over the labels of all hole and particle lines.

5. Multiply by the weight factor 2−k, where k is the number of pairs of

equivalent lines.

6. Multiply by the correct sign (see below).

We will demonstrate the method on the third-order energy. First we draw

all the possible skeleton (i.e. without arrows) diagrams. In this case there is

only one possibility

The above rules exclude the following third-order diagram because it contains

a vertex connected with itself:

This diagram contains
∑

i〈ai||bi〉 = 〈 a | f − u | b 〉. See Eqs. (1) and (83) for

the definitions of u and f . As discussed above this two-electron part of the

Fock operator cancels against some two-electron terms, and that is why our

diagrammatic rules do not allow these diagrams.

Secondly, we insert all arrows in all possible ways. After a moment’s

reflection we see that there are three possibilities: the outside lines can (i)

both run to the left (ii) both run to the right or (iii) run in different directions.
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Algebraically the corresponding third-order MP energies are (up to sign):

E(i) = ±1

8

∑

i,j,k,l,a,b

〈ij||ab〉〈kl||ij〉〈ab||kl〉
(εi + εj − εa − εb)(εk + εl − εa − εb)

E(ii) = ±1

8

∑

a,b,c,d,i,j

〈ij||ab〉〈ab||cd〉〈cd||ij〉
(εi + εj − εa − εb)(εi + εj − εc − εd)

(28)

E(iii) = ±
∑

a,b,c,i,j,k

〈ij||ab〉〈ak||ci〉〈bc||jk〉
(εi + εj − εa − εb)(εj + εk − εb − εc)

.

We now turn to the sign rule. Hugenholtz diagrams do no specify the

overall sign of the contribution of the diagram. This is due to the fact that

the basic diagram (26) may represent 〈pq||rs〉 as well as 〈pq||sr〉, which differ

in sign. In order to fix the sign it is necessary to distinguish the two particles

participating in the interaction. We follow the suggestion of Brandow and

draw one Goldstone representative of each Hugenholtz diagram. That is,

each vertex is replaced as follows

Now, orbital r and p are occupied by one electron, say electron 1, and s

and q by the other (electron 2). Hence the diagram gives unambiguously

〈ψp(1)ψq(2)||ψr(1)ψs(2)〉. The Goldstone diagram on the right hand side is

in fact a Feynman diagram describing the exchange of a photon (dashed line)

between electron 1 and 2. Since we work in a non-relativistic framework,

the interaction is instantaneous, which is why the dashed line is vertical

(remember that the time axis is horizontal).

In order to obtain a Goldstone representative from a Hugenholtz diagram

we replace all nodes as above, while keeping the directions of the lines and the

connectivity intact. Usually more than one possibility exists. For instance

the first third-order diagram above has two representatives:
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Note that the first representative contains two loops. A loop contains oriented

non-dashed (= orbital) lines which, when followed starting at a certain vertex,

bring us back to this vertex. The second diagram has one loop. Let the

number of loops be l. Let the number of hole lines in a certain diagram be

h (both diagrams have h = 4). Then the overall sign is (−1)l+h. So the first

representative has sign +1 and the numerator

〈ij||ab〉〈kl||ij〉〈ab||kl〉

while the second has sign −1 and the numerator

〈ij||ab〉〈kl||ji〉〈ab||kl〉.

Since 〈kl||ji〉 = −〈kl||ij〉 we see that both representatives give indeed the

same result.

The third-order diagram (iii) has eight different representatives, but again

only one is needed, for instance the following one

which has l = 3 and h = 3. Hence this diagram yields the contribution

E(iii) =
∑

a,b,c,i,j,k

〈ij||ab〉〈ak||ic〉〈bc||jk〉
(εi + εj − εa − εb)(εj + εk − εb − εc)

= −
∑

a,b,c,i,j,k

〈ij||ab〉〈ak||ci〉〈bc||jk〉
(εi + εj − εa − εb)(εj + εk − εb − εc)

(29)

Recall that the horizontal axis is a time axis, so that every one of the n

vertices in a MPn diagram has a definite time value, counting from left to

right: t1 > t2 > · · · > tn. Evidently, these time values do not change if we

move the nodes along vertical lines. Inspecting the graphical rules (3)–(6) we

see that the value of a diagram is unaffected by such a deformation. In fact,

quite some left-right motion is also allowed as long as the time ordering of the

nodes is not changed. As soon as we change the time ordering of the nodes we

get a different diagram: a different time version. For example, the diagrams
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(A), (B) and (C) are the same (and only one of them must be included in

the total MP4 energy) whereas diagram (D) is a different time-version and

must be included:

(30)

So, the first graphical rule, which stated that the vertices must be on one

horizontal line, was formulated too strictly.

5 Unlinked clusters

The fourth-order renormalization term [see Eq. (22)] is an example of an

unlinked cluster. Diagrammatically it reads

〈V R2V 〉〈V RV 〉 → (31)

The vertical line indicates the denominator squared, so that algebraically

〈V R2V 〉〈V RV 〉 =
1

16

(
∑

i,j,a,b

|〈ij||ab〉|2
(εi + εj − εa − εb)2

)

×
(
∑

i,j,a,b

|〈ij||ab〉|2
εi + εj − εa − εb

)

. (32)

Note that 〈V R2V 〉 = 〈Φ(1) |Φ(1) 〉 and hence is positive, whereas 〈V RV 〉 is
negative.

We mentioned in the introduction that unlinked clusters break size exten-

sivity. To explain this we assume that we are considering a system consisting

of two non-interacting subsystems A and B. Let the spin-orbitals p′, q′, . . .

be centered on A and p′′, q′′, . . . be on B. By this assumption the differential

overlap of any spin-orbital on A with any one on B is zero, so that two-center
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integrals of e.g. the type 〈p′′q′||r′s′〉 are zero. Hence the second-order energy

becomes

1

4

∑

i′,j′,a′,b′ on A

|〈i′j′||a′b′〉|2
εi′ + εj′ − εa′ − εb′

+
1

4

∑

i′′,j′′,a′′,b′′ on B

|〈i′′j′′||a′′b′′〉|2
εi′′ + εj′′ − εa′′ − εb′′

(33)

which is the sum of the second-order energies of A and B. In other words,

the second-order energy is size extensive. If we now look at Eq. (32), we see

that terms of the kind
(

∑

i′,j′,a′,b′ on A

|〈i′j′||a′b′〉|2
(εi′ + εj′ − εa′ − εb′)2

)

×
(

∑

i′′,j′′,a′′,b′′ on B

|〈i′′j′′||a′′b′′〉|2
εi′′ + εj′′ − εa′′ − εb′′

)

.

(34)

are non-vanishing. Because these terms are all negative they cannot cancel

each other. So, even though A and B do not interact these non-vanishing

bilinear energy terms are present and contribute to the energy of the dimer.

In this connection it is of interest to remark that exactly these terms

pollute the DCI (configuration interaction based on doubly excited states)

energy ED. In order to show this we choose as the energy zero

〈H(0) 〉 = 〈H 〉 = EHF = 0.

We write

ED ≈
〈Φ(0) + Φ(1) |H(0) + V |Φ(0) + Φ(1) 〉

〈Φ(0) + Φ(1) |Φ(0) + Φ(1) 〉 , (35)

or, using that 〈Φ(0) + Φ(1) |Φ(0) + Φ(1) 〉 = 1 + 〈Φ(1) |Φ(1) 〉,

ED = −ED〈Φ(1) |Φ(1) 〉+〈Φ(0) |V |Φ(1) 〉+〈Φ(1) |V |Φ(0) 〉+〈Φ(1) |H(0) |Φ(1) 〉,
(36)

where we omitted the third-order term 〈Φ(1) |V |Φ(1) 〉. Since H(0)R = −1
we find

H(0) |Φ(1) 〉 = H(0)RV |Φ(0) 〉 = −V |Φ(0) 〉

so that

〈Φ(1) |H(0) |Φ(1) 〉 = −〈Φ(1) |V |Φ(0) 〉.

If we replace on the right hand side of Eq. (36) ED by E(2) = 〈Φ(0) |V |Φ(1) 〉
we find for the DCI energy

ED ≈ E(2) − 〈Φ(1) |Φ(1) 〉E(2). (37)
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The second term is represented by the diagram in Eq. (31).

Given a normalized DCI vector C0(Φ
(0) + Φ(1)) it is easy to find an ex-

pression for 〈Φ(1) |Φ(1) 〉. Indeed,

1 = C2
0〈Φ(0) + Φ(1) |Φ(0) + Φ(1) 〉 = C2

0 (1 + 〈Φ(1) |Φ(1) 〉)

so that

〈Φ(1) |Φ(1) 〉 = (1− C2
0 )

C2
0

The term ED(1 − C2
0)/C

2
0 is the Davidson-Siegbahn size-consistency correc-

tion. Note that C0 is the coefficient of the HF ground state in the normalized

DCI vector.

We stated above that only linked clusters have to be considered in MP per-

turbation theory. Indeed, the renormalization terms cancel against the un-

linked clusters that appear in 〈V RV RV RV 〉. It is easily seen that the follow-

ing two diagrams are the only unlinked possibilities appearing in 〈V RV RV RV 〉,
because a third time version, with the upper diagram sticking out to the left

of the lower one, is the same as the first one. (Recall that the nodes may be

moved vertically).

(38)

Schematically we have indicated the denominators. Noticing that all dia-

grams have the same numerator and using for the denominators

1

a

1

(a+ b)

1

b
+

1

a

1

(a+ b)

1

a
=

1

a2b
(39)

we find Eq. (38). The terms on the right hand side of this equation cancel ex-

actly the fourth-order renormalization term. Note further that the diagrams

on the left hand side of Eq. (38) are derived from intermediate quadruply

excited states (the middle vertical line crosses four hole-particle pairs), which

is why in DQCI the ‘Davidson-Siegbahn’ unlinked cluster does not appear.
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So, we have shown for the special case of fourth-order Møller-Plesset

theory that unlinked clusters cancel. This is a general result known as the

linked cluster theorem:

∆E ≡ E − EHF =
∞∑

n=0

〈 {V (RV )n}L 〉 (40)

That is, we sum over all orders and retain in every order only the linked

diagrams. This restriction on the sum is indicated by the subscript L. In

the proof of this theorem one shows that in all orders unlinked clusters and

renormalization terms cancel each other. It follows that MP perturbation

theory is size extensive in all orders. Note that the number of linked Hugen-

holtz diagrams grows quickly as a function of order. From first through sixth

order the numbers of linked diagrams are 0, 1, 3, 39, 840, and 28300.

6 Convergence of MP perturbation theory

D. Cremer and Z. He published some convergence studies [J. Phys. Chem.

100, 6173 (1996)]. They distinguish class A and class B molecules. Class A

consists of BH, NH2, CH3, and CH2. All molecules are considered at different

geometries. The class A molecules are systems with well-separated electron

pairs. Class B consists of Ne, F, F− and hydrogen fluoride again at different

geometries. Class B molecules are systems with electron clustering. Cremer

and He compare the MP results with full CI results in the same basis. Full CI

is based on all possible Slater determinants (ground+singly+ doubly+· · ·+
N -tuply excited) and hence is exact within the given AO basis. Of course,

truncation of the AO basis introduces a serious error. However, within a

given basis full CI can serve as a benchmark.

Cremer and He show that on the average the class A molecules have a

monotonic convergence:

17



Class A

73.2
86.8 91.4 93.4 94.6

0

20

40

60

80

100

MP2 MP3 MP4 MP5 MP6

%
 f

u
ll 

C
I

The class B molecules show a more oscillatory behavior:
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Note that MP6 overshoots the 100% mark, which is not forbidden as pertur-

bation theory is non-variational.

7 Second quantization

In order to discuss the coupled cluster (CC) method we will need the k-

fold excitation operator Ea1a2···ak

i1i2···ik
, which is the operator that replaces in the

unperturbed HF function Φ0 the spin-orbital ψi1 by ψa1
, ψi2 by ψa2

, etc.

Although a first quantized definition of this operator is possible, it is fairly

cumbersome, while in second quantization its definition is most natural. So,

it is convenient to introduce at this point the second quantization formalism.

We define the operator X†
p that creates an electron in spin-orbital ψp and

its hermitian conjugate Xp that annihilates an electron in spin-orbital ψp.
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Antisymmetry imposes the anticommutation relations {A,B} ≡ AB +BA:

{
X†
p, X

†
q

}
= {Xp, Xq} = 0 and

{
Xq, X

†
p

}
=
{
X†
p, Xq

}
= 〈ψp |ψq 〉 = δpq.

(41)

In second quantization the ground state Slater determinant can be written

as

|Φ0 〉 ≡ X†
i1
X†
i2
. . . X†

iN
| 0 〉,

where | 0 〉 is the vacuum state, i.e. Xp | 0 〉 = 0 and X†
p | 0 〉 = |ψp 〉 . We

define

Ep1p2···pk
q1q2···qk

= X†
p1
X†
p2
. . . X†

pk
XqkXqk−1

. . . Xq1 . (42)

for arbitrary orbital labels p1, . . . , pk and q1, . . . , qk. One-electron operators

have in second quantization the form

U =
∑

p,q

〈 p |u | q 〉Ep
q , (43)

while two-electron operators have the form

V =
1

2

∑

p1p2q1q2

〈 p1p2 | v | q1q2 〉Ep1p2
q1q2

=
1

4

∑

p1p2q1q2

〈p1p2||q1q2〉Ep1p2
q1q2

. (44)

One can prove a priori that the one- and two-electron operators have this

form, or one can check a posteriori that these operators have the same matrix

elements in the space of Slater determinants as their first-quantized counter-

parts. We skip both proofs.

The k-fold excitation operator is Ea1a2···ak

i1i2···ik
, i.e. the upper indices are virtual

orbitals and the lower indices are occupied orbitals. Excitation operators

commute and can be factorized, for example,

Ea1a2

i1i2
= Ea1

i1
Ea2

i2
= Ea2

i2
Ea1

i1
. (45)

This follows directly from the anticommutation relations and the fact that

occupied and virtual orbitals are orthogonal, in other words δa1i1 = 0, so that

Ea1a2

i1i2
= X†

a1
X†
a2
Xi2Xi1 = −X†

a1
X†
a2
Xi1Xi2 = X†

a1
Xi1X

†
a2
Xi2 − δa2i1X

†
a1
Xi2

= Ea1

i1
Ea2

i2
. (46)

We show that indeed Ea1a2···ak

i1i2···ik
is an excitation operator and consider

Ea1a2···ak

i1i2···ik
|Φ0 〉 = E

a1a2···ak−1

i1i2···ik−1
Eak

ik
X†
i1
X†
i2
. . . X†

iN
| 0 〉. (47)
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Move Eak

ik
to the right until it hits X†

ik
. Since we commute a pair, no sign is

changed: Eak

ik
X†
i = X†

iE
ak

ik
for i 6= ik. When we hit X†

ik
we leave X†

ak
behind

and use XikX
†
ik
= −X†

ik
Xik +1. The first term vanishes because Xik may be

moved further to the right until it reaches | 0 〉 and Xik | 0 〉 = 0. So we find

X†
ak

at the position where before X†
ik
was. At the same time we removed Eak

ik

from the excitation operator. Then we do the same with E
ak−1

ik−1
and so on.

Note that

Ea1···i···ak

i1···ik
|Φ0 〉 = Ea1···ak

i1···a···ik
|Φ0 〉 = 0 (48)

because on the left hand side an electron is created in an orbital (i) that is

already occupied in Φ0 and in the middle equation an electron is annihilated

in an orbital (a) that is not occupied in Φ0.

We associate X†
p |Φ0 〉 with a free line leaving a diagram and Xq |Φ0 〉 with

a free line entering a diagram and we see that Ea1···ak

i1···ik
|Φ0 〉 is represented by

a diagram with only lines sticking out to the left. Namely, a line sticking out

to the right and leaving the diagram stands for X †
i |Φ0 〉 = 0 and likewise

one entering on the right stands for Xa |Φ0 〉 = 0. A line leaving the diagram

from the left stands for a particle creator X †
a and one entering on the left for

a hole creator (a particle annihilator) Xi, i.e. E
a
i |Φ0 〉 is indeed represented

by two lines sticking out to the left. Note parenthetically that Eab
ii |Φ0 〉 =

Eaa
ij |Φ0 〉 = 0, a fact that we mentioned earlier. Thus, the diagrammatic

rules are extended to wavefunctions: Free lines are associated with creation

and annihilation operators acting on Φ0, while vertices are associated with

antisymmetric integrals in the same way as for energy diagrams.

As a first example we consider the first order contribution Φ(1), which is

expanded in doubly excited Slater determinants

Φ(1) = RV |Φ0 〉 =
1

4

∑

a,b,i,j

Eab
ij |Φ0 〉〈ab||ij〉

∆ab
ij

. (49)

Here ∆ab
ij = εi+ εj − εa− εb. Algebraically, the factor 1/4 is again due to the

overcompleteness of the basis when we do not apply the restrictions a > b

and i > j. Depicted as a Hugenholtz diagram or its Goldstone representative
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(Brandow diagram) the sum is:

1

4

∑

i,j,a,b

Eab
ij |Φ0 〉〈ab||ij〉

∆ab
ij

= , (50)

with Eab
ij = X†

aX
†
bXjXi. Diagrammatically the factor 1/4 is due to the two

pairs of equivalent lines sticking out. Equivalent means that the free lines are

attached to the same Hugenholtz vertex and are of the same type (particle or

hole). As a new diagrammatic rule we find that the free lines sticking out to

the left are crossed by a (usually virtual) vertical line which gives an energy

denominator. The number of hole-particle pairs gives the excitation level.

As another example we consider the singly excited (i, a) component of

the second-order wavefunction

−1

2

Ea
i |Φ0 〉
∆a
i

∑

b,j,k

〈jk||ib〉〈ab||jk〉
∆ab
jk

=

(51)

The factor 1/2 is due to the two equivalent internal hole lines in the Hugen-

holtz diagram and the minus sign to the loop (l = 1) and the two internal

hole lines (h = 2) in the Brandow diagram. There are two imaginary verti-

cal lines giving the energy denominators. The lines leaving the diagram are

associated with

X†
aXi |Φ0 〉 ≡ Ea

i |Φ0 〉.

8 Coupled cluster Ansatz

In this section we will discuss that the exact, fully correlated, wavefunction

Ψ can be written as

Ψ = eT Φ0 ≡
∞∑

n=0

1

n!
T nΦ0

where Φ0 is the Hartree-Fock ground state wavefunction and T is an operator

to be introduced in this section. This manner of writing Ψ is known in the
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literature as the coupled cluster “Ansatz”. Ansatz is a German noun meaning

something like “starting point”.

So far we concentrated mainly on energies, not on wavefunctions, al-

though we gave already two examples of correlated wavefunctions, Eqs. (50)

and (51). We introduced (without proof) the linked cluster theorem for en-

ergies. This theorem is also valid for exact wavefunctions. It reads

|Ψ 〉 =
∞∑

n=0

{(RV )n}L |Φ0 〉, (52)

where the subscript L indicates that the sum is only over linked wavefunction

diagrams. Unfortunately, for a wavefunction diagram the adjective ‘linked’

does not mean the same as the adjective ‘connected’, whereas for an energy

diagram the two are synonymous (as they are in daily life).

Definition:

A wavefunction diagram is unlinked if it contains one or more energy dia-

grams, otherwise it is linked.

(Remember that an energy diagram is closed, with no lines sticking out).

For example, the following wavefunction diagrams are both linked with

the first one being connected and the second consisting of two connected

pieces:

(53)

Both diagrams represent components of Φ(2), the first one along a triply ex-

cited state and the second along a quadruply excited state. The following

doubly excited fourth-order wavefunction diagram contains an energy con-

tribution and hence is an example of an unlinked wavefunction contribution:

(54)
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The linked cluster theorem states that Eq. (54) does not contribute to the

exact wave function, whereas both terms in Eq. (53), the connected and the

disconnected one, do contribute to Ψ.1

We will now turn to the cluster operator T . In order to explain its def-

inition, we consider first the simple case of the full CI wavefunction of a

four-electron closed-shell system. The exact wavefunction in intermediate

normalization (i.e. the coefficient of the HF ground state is equal to unity)

and written in summation convention is

Ψ = Φ0 + ciaE
a
i Φ0 + ci1i2a1a2

Ea1a2

i1i2
Φ0 + ci1i2i3a1a2a3

Ea1a2a3

i1i2i3
Φ0 + ci1i2i3i4a1a2a3a4

Ea1a2a3a4

i1i2i3i4
Φ0

= (1 + C1 + C2 + C3 + C4)Φ0. (55)

Here we introduced the operator Ck ≡ ci1···ik
a1···ak

Ea1···ak

i1···ik
, which contains the CI

coefficients ci1···ik
a1···ak

, which have yet to be obtained from a full CI calculation.

In a similar manner the following linear combination of all k-fold excited

connected contributions to the exact wavefunction is introduced:

Tk ≡
(

1

k!

)2

ti1i2···ik
a1a2···ak

Ea1a2···ak

i1i2···ik
, for k = 1, 2, . . . , N. (56)

The expansion coefficients (‘cluster amplitudes’) ti1i2···ik
a1a2···ak

are the unknowns.

Diagrammatic perturbation theory may be applied to obtain these coeffi-

cients, which are represented by connected diagrams only. For instance the

first few T2 terms are given in Fig. 1 as connected diagrams (schematic, many

different arrow settings are possible, sum over the labels of the free particle-

hole pairs is implied, the open circle with four free lines represents the exact

T2 |Φ0 〉). Thus, the first-order contribution (t(1))ijab to the cluster amplitude

tijab, which multiplies Eab
ij |Φ0 〉:

(t(1))ijab = 〈ab||ij〉/∆ab
ij .

[Note that the weight factor 1/4 cancels against (1/k!)2 in the definition of

tijab].

The first contribution to T1 (which starts at second-order) is given by the

diagram in Eq. (51). Explicitly, the corresponding cluster amplitude is

(
t(2)
)i

a
= −1

2

∑

bjk

〈jk||ib〉〈ab||jk〉
∆a
i∆

ab
jk

+
1

2

∑

jcb

〈aj||cb〉〈cb||ij〉
∆a
i∆

bc
ij

,

1Maybe ‘linkable’ would have been a better adjective for a wavefunction diagram than
‘linked’, since both diagrams in Eq. (53) can still lead to a single connected energy diagram,
whereas the diagram in Eq. (54) is ‘unlinkable’ to a connected energy diagram.
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Figure 1: All perturbation contributions to T2 through third order.

T2 |Φ0 〉 = (57)

where the second term is due to a diagram of the same type as in Eq. (51), but

with the arrows inverted on the fork labeled by a and i. The first contribution

to T3 is also of second-order and is given by the leftmost diagram in Eq. (53).

We see here that perturbation theory gives the cluster amplitudes order by

order. In the next section we will derive non-perturbative equations to obtain

the cluster amplitudes. When we solve these equations iteratively diagrams

of order n in the MP potential are added to the wavefunction in the nth

iteration.

As stated before, the connected diagrams give only part of the exact wave

function. Any linked disconnected diagram consisting of n > 1 pieces will

contribute to Ψ as well. In appendix B we make plausible by considering

all perturbation contributions that the exact wave function of an N -electron

system may be written as an exponential operator acting on the Hartree-Fock

ground state:

|Ψ 〉 = eT |Φ0 〉 (58)

with T = T1+T2+ · · ·TN . That is, the disconnected contributions are simply

powers of the connected contributions T1, T2,. . . , TN .

As an alternative to the perturbation theory approach of appendix B, we

can obtain the exponential Ansatz from full CI. As an example we consider
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again the four-electron closed shell system. It is easy to write out the expo-

nential operator and upon sorting the terms with respect to excitation level

the exact wavefunction becomes Eq. (55), in which the following substitutions

are made:

C1 = T1

C2 = T2 +
1

2
T 2

1

C3 = T3 + T1T2 +
1

6
T 3

1

C4 = T4 + T1T3 +
1

2
T 2

1 T2 +
1

2
T 2

2 +
1

24
T 4

1 . (59)

The terms T1, T2, T3 and T4 are the connected contributions and all the

remaining terms are disconnected (but linked, no energy diagrams multiply

the wavefunction diagrams).

By inverting these equations we can formally show that the exponential

Ansatz is true for the exact wavefunction. Inversion gives

T1 = C1

T2 = C2 −
1

2
C2

1

T3 = C3 − C1C2 +
1

3
C3

1

T4 = C4 − C1C3 + C2
1C2 −

1

2
C2

2 −
1

4
C4

1 . (60)

In these equations the disconnected parts are subtracted from Cn, so that

Tn is a sum of connected pieces only (n = 1, 2, 3, 4). One easily verifies now,

using ln(1 + x) =
∑

n=1
(−1)n−1

n
xn, that

T1 + T2 + T3 + T4 = ln(1 + C1 + C2 + C3 + C4),

since higher than four-fold excitations vanish in a four-electron system. Hence

eT1+T2+T3+T4 |Φ0 〉 = (1 + C1 + C2 + C3 + C4) |Φ0 〉 ≡ |Ψ 〉.

So, the exponential operator acting on the HF ground state wave function

yields indeed the exact (full CI) wavefunction |Ψ 〉. However, it is not rigor-
ously proved in this procedure that Tk |Φ0 〉 is indeed represented by a sum

of connected diagrams only; for the clarification of this we refer to Appendix

B.
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There is an interesting way of looking at the size extensivity of the coupled

cluster Ansatz. Suppose our system consists of two noninteracting systems

A and B (H = HA +HB), each with their own orbitals. The orbitals on A

and B being orthogonal to each other, it is easily seen that the excitation

operators on A and B commute and hence also the cluster operators. We

write T = TA + TB and from [TA, TB] = 0 we conclude that exp(T ) =

exp(TA) exp(TB). (This is not true if TA does not commute with TB!). Since

the Hartree-Fock method is size extensive the HF wavefunction factorizes for

two non-interacting systems: Φ0 = ΦA
0 ⊗ ΦB

0 . Under these conditions the

exact Ψ factorizes: Ψ =
[
exp(TA)Φ

A
0

]
⊗
[
exp(TB)Φ

B
0

]
and the corresponding

energy is accordingly strictly additive.

9 Coupled cluster equations

The cluster operator Tk, Eq. (56), contains coefficients ti1i2···ik
a1a2···ak

, which we have

introduced by their perturbation expansion. However, we can also formulate

(non-linear) equations from which these coefficients can be determined; these

are the coupled cluster equations. These CC equations can be seen as an

algebraic means to sum certain classes of diagrams to infinite order.

9.1 Exact CC equations

We recall from elementary quantum mechanics the following theorem

e−AB eA = A+ [B,A] +
1

2!
[[B,A], A] +

1

3!
[[[B,A], A], A] + · · · (61)

i.e. a Taylor expansion in commutators. Now, introducing HN ≡ H − 〈H 〉
and ∆E ≡ E − 〈H 〉 we may write the exact Schrödinger equation

HNΨ = ∆EΨ =⇒ HNe
TΦ0 = ∆EeTΦ0 =⇒ e−THNe

TΦ0 = ∆EΦ0, (62)

so that it takes the following interesting form:

(

HN + [HN , T ] +
1

2!
[[HN , T ], T ] +

1

3!
[[[HN , T ], T ], T ]

+
1

4!
[[[[HN , T ], T ], T ], T ]

)

Φ0 = ∆EΦ0. (63)

The commutator expansion stops after the fifth term because HN does not

contain higher than two-body interactions.
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In order to explain this truncation after five terms in (63) we work out

in somewhat more detail the commutator [U, T2] where U is the one-electron

operator defined in (43), which we now write in summation convention

U = uqp E
p
q with uqp ≡ 〈 p |u | q 〉.

We will show that in the case of one-particle operators the commutator ex-

pansion stops after three terms. The excitation operators in T2 simply fac-

torize Ea1a2

i1i2
= Ea1

i1
Ea2

i2
. So we meet commutation relations of the type

[Ep
q , E

a
i ] = δaqE

p
i − δpiE

a
q . (64)

From the general rule

[A,BC] = [A,B]C +B[A,C]

we obtain the following expression

[Ep
q , E

a1a2

i1i2
] = δa1

q E
pa2

i1i2
+ δa2

q E
a1p
i1i2
− δpi1E

a1a2

qi2
− δpi2E

a1a2

i1q
. (65)

Hence

[U, T2] = ti1i2a1a2

[

ua1

p E
pa2

i1i2
+ ua2

p E
a1p
i1i2
− uqi1E

a1a2

qi2
− uqi2E

a1a2

i1q

]

(66)

Note that the E’s on the right hand side carry only one label (p or q) arising

from U . In the integrals appearing in U the indices q and p are replaced

by a’s and i’s, respectively, labels which arise from T2. The singly nested

commutation relation connects by one internal (summation) line U with T .

To represent diagrammatically this equation we recall that four lines must

be sticking out to the left when representing Ea1a2

i1i2
|Φ0 〉 and the same holds

for Epa2

i1i2
|Φ0 〉, provided p is a particle (virtual) orbital. (When p is a hole

orbital it contracts to either i1 or i2 to obtain a nonvanishing ket and we are

left with a single excitation operator). An open circle is associated with ti1i2a1a2
;

no energy denominator is implied. The black dot represents uqp. Assuming

that p and q are a particle and hole orbital, respectively, we get the following

diagrammatic representation of Eq. (66):

[U, T2] |Φ0 〉 = (67)

27



The minus signs in the last two terms are contained in the diagrams and

follow from the presence of internal hole lines.

If we now consider the two-fold nested commutator [[U, T2], T2] we meet

as the first term

ti1i2a1a2
ti3i4a3a4

ua1

p

[
Epa2

i1i2
, Ea3a4

i3i4

]
.

The commutator can be easily worked out when we recall that excitation

operators commute

[
Epa2

i1i2
, Ea3a4

i3i4

]
= Ep

i1

[
Ea2

i2
, Ea3a4

i3i4

]
+
[
Ep
i1
, Ea3a4

i3i4

]
Ea2

i2

= −(δpi3E
a3a4

i1i4
+ δpi4E

a3a4

i3i1
)Ea2

i2
. (68)

We see that no labels from U remain and that the surviving operators are

all excitation operators. The same is true for the final operators arising from

the other terms of Eq. (66), so that [[[U, T2], T2], T2] = 0 and the cluster

expansion of a one-electron operator ends after three terms.

The two-fold nested commutator gives a connection of U with two T ’s,

for instance the first term:

ti1i2a1a2
ti3i4a3a4

ua1

i3
Ea3a4a2

i1i4i2
|Φ0 〉 =

Turning now to two-electron operators we note that the operator appear-

ing in the two-electron operator satisfies Epq
rs = Ep

rE
q
s − δqrE

p
s and has four

free labels, p, q, r and s. In each level of nested commutation one of these

labels is replaced by a hole or particle label originating from the T , just as

in the one-electron operator case, so that no labels on the Ep
q ’s arising from

HN remain after working out the fourfold nested commutator. The operator

HN is fully connected by four lines with one or more (up to four) T ’s. Only

excitation operators are found in the four times nested commutator and since

excitation operators commute, it follows that the five times nested commu-

tator must be zero. Also in the lower commutators we find only excitation

operators, as we act on the HF ground state in Eq. (63).
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Since HN is fully connected with the T ’s in Eq. (63) we introduce the

short hand notation:

{HNT
n}C ≡ [· · · [HN , T ], · · · , T ] (n times T ), (69)

so that by projection of Eq. (63) by 〈Φ0 | we get

∆E =
4∑

n=0

1

n!
〈Φ0 | {HNT

n}C |Φ0 〉. (70)

The exact correlation energy ∆E is written here as an expansion of connected

quantities. It is important to observe that this expansion remains valid when

we only include certain terms of T . As the energy expansion is solely in

terms of connected (is the same as linked for energy) diagrams the energy

stays size-extensive upon restriction of T .

For the moment we do not make any approximations and use that 〈Φ0 |T =

0, so that in Eq. (63) only terms with the T ’s on the right of HN are non-

vanishing, hence we can also write

∆E =
4∑

n=0

1

n!
〈HN T

n 〉, (71)

which in contrast to Eq. (70) is not manifestly connected. If we further use

that the ket may be at most doubly excited to get a non-vanishing matrix

element over a two-electron operator, together with the Brillouin theorem

〈HNT1 〉 = tia〈HNE
a
i 〉 = 0 and 〈HN 〉 = 0, we arrive at the following deceiv-

ingly simple looking expression for the exact correlation energy

∆E = 〈HNT2 〉+
1

2
〈HNT

2
1 〉. (72)

The coupled cluster equations for the cluster amplitudes (hidden in T )

are obtained by projection of Eq. (63) onto k-fold excited states,

4∑

n=0

1

n!
〈Φa1···ak

i1···ik
| {HNT

n}C |Φ0 〉 = 0, (73)

where we used that 〈Φa1···ak

i1···ik
|Φ0 〉 ≡ 〈Ea1···ak

i1···ik
Φ0 |Φ0 〉 = 0.
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9.2 The CCD equations

Equations (72) and (73) are the exact coupled cluster equations, which are

equivalent to the exact Schrödinger equation. In order to solve them ap-

proximations must be introduced. The simplest approximation is the CCD

approach [referred to as coupled pair many electron theory (CPMET) by its

inventors Č́ıžek and Paldus]

T ≈ T2 = Eab
ij t

ij
ab

(summation convention!). Projection onto the doubles gives the CCD equa-

tions [take k = 2 in Eq. (73)], where summation over repeated superscripts

and subscripts is again implied (a, b, i, and j are fixed labels):

0 = 〈Φab
ij |HN |Φ0 〉+ 〈Φab

ij | {HNE
a1a2

i1i2
}C |Φ0 〉ti1i2a1a2

+
1

2
〈Φab

ij | {HNE
a1a2

i1i2
Ea3a4

i3i4
}C |Φ0 〉ti1i2a1a2

ti3i4a3a3
. (74)

Note that these equations have the following structure

0 = Ak +
M∑

l=1

Bkl xl +
M∑

l,l′

Ckll′ xlxl′ , with k = 1, . . . ,M,

and where M = n2
noccn

2
vir. We have as many unknowns M (the amplitudes

xl ≡ tijab) as equations and accordingly the t’s can be solved from this set of

coupled quadratic equations. Since we are projecting onto the doubles the

connected diagrams must also have four lines (marked by i, j, a, b) sticking out

to the left. [We must multiply Eq. (74) by |Φab
ij 〉 to enable the diagrammatic

representation].

In order to indicate how diagrams may be used to reduce Eq. (74) to an

equation containing only one- and two-electron integrals, we first consider

the one-electron contributions to the term linear in ti1i2a1a2
. The operator HN

contains a one-electron operator, which we indicated by a small dot, and we

saw before that
∑

a1
〈 p |u | a1 〉tija1b

and
∑

i1
〈 i1 |u | q 〉ti1jab , etc., arise. Con-

traction within the two-electron part of HN is possible, i.e. terms of the type
∑

a1
tija1b

∑

k〈ak||a1k〉 appear. These are the loops in the following diagrams:
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Using canonical HF orbitals, that is, 〈 a |u | a1 〉 +
∑

k〈ak||a1k〉 = εaδaa1
, we

find that these eight diagrams give

(εa − εi + εb − εj)t
ij
ab |Φab

ij 〉 ≡ −∆ab
ij t

ij
ab |Φab

ij 〉. (75)

The fact that no powers in the t’s higher than two appear in the CCD

approximation is most easily seen diagrammatically. The non-HF diagrams

appearing in Eq. (74) are very schematically:

(76)

The first diagram represents simply |Φab
ij 〉〈Φab

ij |HN |Φ0 〉 = |Φab
ij 〉〈ij||ab〉.

In the second diagram HN and T2 are connected by two lines. The last

two diagrams are quadratic in T2. Note now that it is impossible to have a

contribution containing the third power T 3
2 that is connected with HN and

has four free lines.

By bringing Eq. (75) to the left hand side of Eq. (74), dividing both sides

by ∆ab
ij and summing over i, j, a, b, we can rewrite Eq. (74) in a form suitable

for iteration

T2 |Φ0 〉 = R2

[

VN + {VNT2}C +
1

2
{VNT 2

2 }C

]

|Φ0 〉, (77)

where the resolvent R2 on the space of 2-fold excited states (sum over re-

peated indices is implied) is defined for general k

Rk =
Ea1···ak

i1···ik
|Φ0 〉〈Φ0 |Ei1···ik

a1···ak

∆a1···ak

i1···ik

.

This definition is a specialization of the more general reduced resolvent in-

troduced in Eq. (11).

We reiterate that the appearance of the orbital energies is due to the fact

that we used canonical HF orbitals. It can be proved, more rigorously than

is done here, that no other one-electron terms than the orbital energies arise

when canonical SCF orbitals are used. This proof shows that only the two-

electron operator VN ≡ HN − F appears on the right hand side of Eq. (77).
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Note parenthetically that VN = V − 〈F 〉, where V is the Møller-Plesset

operator defined in Eq. (21).

We end here the outline of the fact that it is possible to reduce the N -

electron CCD equations Eq. (74) to orbital equations by the diagrammatic

rules given above. That is, matrix elements as, for example, 〈Φab
ij | {VNT2}C |Φ0 〉

can be expressed in terms of one- and two-electron integrals and cluster am-

plitudes. Orbital equations can be found in the literature for CCD (T ≈ T2),

CCSD (T ≈ T1 + T2) and for CCSDT (T ≈ T1 + T2 + T3).

9.3 CC theory versus MP theory

The fact that coupled cluster theory sums certain Møller-Plesset diagrams to

infinite order can be shown by noting that the CC equations may be solved

iteratively. In each iteration a perturbation order is added. In Appendix

B we went from MP to CC, we will now give a rough sketch of how to go

from CC back to MP. We illustrate this on the CCD equations [Eq. (77)] and

drop the suffix C. It is understood that from now on only connected terms

are considered. The iteration is started by putting T2 on the right hand side

equal to zero, hence

T
(1)
2 |Φ0 〉 = R2VN |Φ0 〉.

This confirms that T2 starts with a first-order (in VN) term. If we insert this

into the coupled cluster energy, Eq. (72), and realize that only VN gives a

contribution, we get

E(2) = 〈VNR2VN 〉 = 〈V R2V 〉,

which is the second-order MP energy, cf. Eq. (22). Insert T
(1)
2 on the right

hand side of Eq. (77) and we get the second-order contribution:

T
(2)
2 |Φ0 〉 = R2VNR2VN |Φ0 〉,

yielding the third-order MP energy. Third-order contributions to T2 arise

from R2VNR2VNR2VN and 1/2R2VN(R2VN)
2. The first term gives simply a

fourth-order energy diagram with intermediate doubles [see Eq. (78)], while

the second term gives the diagram on the right with short denominators on

the part that has the quadruply excited intermediates

(78)
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We can now use the factorization lemma (see Appendix B) in opposite di-

rection and find that the second diagram is the sum of two connected MP

diagrams with doubly and quadruply intermediate excited states. Inclusion

of T2 in the CC approach gives energy diagrams that in the CI approach

would require quadruply excited states. One can continue the iteration and

thus effectively sum the MP series for certain kinds of diagrams.

9.4 CCSD(T)

In the MP4 energy we find diagrams with intermediate triples, these do not

occur in CCD. Neither the MP4 energy diagrams with intermediate singles

appear in CCD, however CCSD will generate the latter. An example of a

fourth-order diagram with intermediate triples, missed out by CCSD, is

(79)

Suppose now that the CCSD equations have been solved exactly, so that

the converged solutions T 1 and T 2 are known, which diagrammatically are

designated by open circles with two and four free lines, respectively. Then

we can approximate T3 by R3VNT 2, i.e.

T3 |Φ0 〉 ≈ (80)

and compute the energies 〈 {T †

2VNT3}C 〉 and 〈 {T
†

1VNT3}C 〉 represented by

diagrams of the type

(81)

where the subdiagram within the dashed boxes represent T3 |Φ0 〉. This is

the CCSD(T) method. The solution of the CCSD equations scales with the

number of orbitals n as n6Niter. Obviously Eq. (80), the computation of the

non-iterative T3, scales as n
7. Therefore the CCSD(T) method is often used

as a cheaper alternative to CCSDT, where the equations (73) for k = 1, 2, 3
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are solved simultaneously and which scales as n8Niter. Since T2 starts in first-

order, the lowest order contribution to the first diagram in Eq. (81) is just

the MP4 diagram of Eq. (79). Since T1 is of second-order the lowest order of

the second diagram in Eq. (81) is the MP5 diagram (Hugenholtz and one of

its Goldstone representatives):

(82)

In other words, CCSD(T) not only accounts for 4th-order diagrams with

intermediate triples, but also contains quite a number of 5th-order contribu-

tions. Since CCSD(T) is not much more expensive than MP4, it explains

why CCSD(T) has become a widely applied correlation method.

A Hartree-Fock, Slater-Condon, Brillouin

We write a normalized N -electron Slater determinant Φ0 with the aid of the

antisymmetrizer A ≡ 1
N !

∑

P∈SN
(−1)pP , where SN is the group containing

all permutations P of N electrons and (−1)p is the parity of P .

Φ0 =
√
N ! A ψi1ψi2 · · ·ψiN ≡ {ψi1ψi2 · · ·ψiN}

Normalized Slater determinants will be designated by curly brackets. The

variation of

EHF ≡ 〈Φ0 |H |Φ0 〉

with the constraint that 〈ψi |ψj 〉 = δij leads to the one-electron eigenvalue

equation (HF equation)

f(1)ψp(1) = εpψp(1)

with

f(1) = u(1) +
N∑

i=1

〈ψi(2) | (1− P12)/r12 |ψi(2) 〉 (83)

The bracket denotes an integral over space and spin coordinates of electron

2. The operator P12 permutes space and spin coordinates of electron 1 and 2.
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The one-electron Fock operator f has in principle an infinite set of eigenvalues

and eigenvectors.

We introduce the notation 〈 p |u | q 〉 for 〈ψp |u |ψq 〉 and 〈pq||rs〉, which
is shorthand for 〈ψp(1)ψq(2) | (1− P12)/r12 |ψr(1)ψs(2) 〉.

The N -electron Fock operator F ≡ ∑N

i=1 f(i) commutes with A, i.e.

AF = FA. Noting that by definition a canonical orbital ψpi
(i) satisfies

f(i)ψpi
(i) = εpi

ψpi
(i), it follows easily that a Slater determinant containing

canonical HF orbitals is an eigenfunction of F . Indeed,

F {ψp1(1) · · ·ψpN
(N)} ≡

√
N ! F Aψp1(1) · · ·ψpN

(N)

=
√
N ! A

N∑

i=1

f(i) ψp1(1) · · ·ψpN
(N)

=
√
N ! A

( N∑

i=1

εpi

)

ψp1(1) · · ·ψpN
(N)

=
( N∑

i=1

εpi

)

{ψp1(1) · · ·ψpN
(N)} (84)

Evidently, the subtraction of the constant

〈H − F 〉 = EHF −
N∑

i=1

εi = −
1

2

N∑

i,j=1

〈ij||ij〉 (85)

shifts the energies by this amount, but leaves the fact intact that Slater

determinants are eigenfunctions of F .

In the main text we will need the Slater-Condon rules. These rules express

matrix elements of one- and two-electron operators with Slater determinants

in bra and ket in terms of one- and two-electron integrals. The orbitals

appearing in bra and ket are orthogonal to each other and normalized. They

are not necessarily canonical HF orbitals. First we apply a so-called line-

up permutation L in the ket to bring orbitals in bra and ket to the same

positions. Example for 5 electrons:

〈ψ1ψ2ψ3ψ4ψ6 |H | (312)ψ3ψ1ψ2ψ4ψ5 〉 = 〈ψ1ψ2ψ3ψ4ψ6 |H |ψ1ψ2ψ3ψ4ψ5 〉

Since AL = (−1)lA, where (−1)l is the parity of L, we get at most a minus

sign from applying the line-up permutation. In the example L = (123), which

has parity +1. Note that the orbitals ψ5 and ψ6 are mismatching in bra and

ket. From here on we assume that the orbitals are lined up and omit the

possible minus sign.
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The Slater-Condon rules distinguish four cases differing in the number of

orbitals that mismatch between bra and ket.

• 0 mismatches

One-particle operator:

〈 {ψp1ψp2 · · ·ψpN
} |

N∑

i=1

u(i) | {ψp1ψp2 · · ·ψpN
} 〉 =

N∑

i=1

〈 pi |u | pi 〉

Two particle operator:

〈 {ψp1ψp2 · · ·ψpN
} | 1

2

N∑

i6=j

1

rij
| {ψp1ψp2 · · ·ψpN

} 〉 = 1

2

N∑

i,j

〈pipj||pipj〉

• 1 mismatch

Suppose in position i we have

〈ψpi
(i) | = 〈ψp(i) |, |ψpi

(i) 〉 = |ψq(i) 〉 and ψp(i) 6= ψq(i).

One-particle operator:

〈 {ψp1ψp2 · · ·ψpN
} |

N∑

i=1

u(i) | {ψp1ψp2 · · ·ψpN
} 〉 = 〈 p |u | q 〉

Two particle operator:

〈 {ψp1ψp2 · · ·ψpN
} | 1

2

N∑

i6=j

1

rij
| {ψp1ψp2 · · ·ψpN

} 〉 =
N∑

j=1

〈p pj||q pj〉

• 2 mismatches

Suppose in position i we have

〈ψpi
(i) | = 〈ψp(i) |, |ψpi

(i) 〉 = |ψq(i) 〉 and ψp(i) 6= ψq(i).

and for position j

〈ψpj
(j) | = 〈ψr(j) |, |ψpj

(j) 〉 = |ψs(j) 〉 and ψr(j) 6= ψs(j).

One-particle operator:

〈 {ψp1ψp2 · · ·ψpN
} |

N∑

i=1

u(i) | {ψp1ψp2 · · ·ψpN
} 〉 = 0

Two particle operator:

〈 {ψp1ψp2 · · ·ψpN
} | 1

2

N∑

i6=j

1

rij
| {ψp1ψp2 · · ·ψpN

} 〉 = 〈p r||q s〉
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• More than 2 mismatches

One-particle operator:

〈 {ψp1ψp2 · · ·ψpN
} |

N∑

i=1

u(i) | {ψp1ψp2 · · ·ψpN
} 〉 = 0

Two particle operator:

〈 {ψp1ψp2 · · ·ψpN
} | 1

2

N∑

i6=j

1

rij
| {ψp1ψp2 · · ·ψpN

} 〉 = 0

In the main text we will need Brillouin’s theorem. This states that

〈Φ0 |H |Φa
i 〉 = 〈 i |u | a 〉+

N∑

j=1

〈ipj||apj〉 = 〈 i | f | a 〉 = 0,

provided ψi and ψa are canonical HF orbitals. The singly excited state Φa
i is

obtained by replacing in Φ0 the occupied spin-orbital i by the virtual spin-

orbital a.

B Exponential structure of the wavefunction

We will outline how one can prove the exponential Ansatz for the wave func-

tion. The proof needs the factorization lemma of Frantz and Mills. Before

we state this lemma we consider first an example of a factorization of the

kind described by it.

The simplest linked disconnected diagram which appears in the exact

wavefunction is the first diagram on the left hand side:

(86)

The two diagrams on the left hand side are equal. Diagrammatically this is

obvious because the vertices are moved vertically and algebraically we have

∑

i,j,a,b

∑

i′,j′,a′,b′

〈ab||ij〉〈a′b′||i′j′〉
(∆ab

ij +∆a′b′

i′j′ )∆
ab
ij

Eab
ij E

a′b′

i′j′ |Φ0 〉

=
∑

i′,j′,a′,b′

∑

i,j,a,b

〈a′b′||i′j′〉〈ab||ij〉
(∆ab

ij +∆a′b′

i′j′ )∆
a′b′

i′j′

, Ea′b′

i′j′ E
ab
ij |Φ0 〉. (87)
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By summing the two equal terms in this equation and multiplying by 1/2 we

obtain the factorization

∑

i,j,a,b

∑

i′,j′,a′,b′

〈ab||ij〉〈a′b′||i′j′〉Eab
ij E

a′b′

i′j′

(∆ab
ij +∆a′b′

i′j′ )∆
ab
ij

|Φ0 〉

=
1

2

(
∑

i,j,a,b

〈ab||ij〉Eab
ij

∆ab
ij

)(
∑

i′,j′,a′,b′

〈a′b′||i′j′〉Ea′b′

i′j′

∆a′b′

i′j′

)

|Φ0 〉. (88)

This factorization is illustrated in Eq. (86). We see that by summing over

two diagrams with equal numerators and different ‘long denominators’ (the

vertical lines) we obtain a single product of diagrams with ‘short denomi-

nators’, this is half the square of the first-order contribution to T2, namely
1
2

(
T

(1)
2

)2
. Here we have the simplest application of the Frantz-Mills lemma:

the application to two equal subdiagrams, each containing one vertex.

In general, if we have one subdiagram with n vertices and one subdiagram

with m vertices, then we have in total (n + m)!/n!m! time versions of the

compound diagram obtained by shifting the two subdiagrams with respect

to each other along the horizontal axis. These time versions have the same

numerators but different long denominators. The Frantz-Mills factorization

lemma states now that the sum of the (n+m)!/n!m! long denominators can

be factorized into a product of short denominators. Since the numerator is

by definition already a product, the sum of (n+m)!/n!m! diagrams becomes

algebraically a single product. So, in the perturbation expansion of the

wavefunction sums of different time versions can be replaced by products.

The factorization lemma is proved by mathematical induction. If we were to

give a formal proof of the CC Ansatz, we would also have to use induction.

However, we only sketch the beginning of this proof.

Let us consider as another example the case n = 1, m = 2, for instance

the sum of the three third-order disconnected wavefunction diagrams on the

left hand side:
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The numerators are equal and the denominators become

1

A2 +B1

[ 1

A2A1

+
1

(A1 +B1)A1

+
1

(A1 +B1)B1

]

=
1

A1A2B1

. (89)

Hence the sum of these three wavefunction diagrams factorizes and yields

T
(1)
2 T

(2)
1 . In the very same way we obtain T

(1)
2 T

(2)
2 from the sum of three

diagrams with equal numerators.

As a further illustration we may consider the sum of the following six

(n = m = 2) schematic fourth-order diagrams all having the same numerator

and consisting of two connected pieces:

and the corresponding algebraic equation indeed factorizes:

1

A2 +B2

[ 1

(A2 +B1)A2A1

+
1

(A2 +B1)(A1 +B1)A1

+
1

(A2 +B1)(A1 +B1)B1

+
1

(A1 +B2)(A1 +B1)A1

+

1

(A1 +B2)(A1 +B1)B1

+
1

(A1 +B2)B2B1

]

=
1

A1A2B1B2

. (90)

If the upper subdiagram is equal to the lower, for instance both subdiagrams

are T
(2)
1 or T

(2)
2 , then we overcount. The first diagram is then equal to the

sixth, the second to the fifth and third is equal to the fourth. So in that case

only three of the time versions are different, and we must divide by two (=2!).

If the two subdiagrams are different, for instance the subdiagrams correspond

to T
(2)
1 and T

(2)
2 , respectively, then all six time versions are different and no

division by two must be performed.

In summary, we found so far the following factorized terms

1

2

[(
T

(1)
2

)2
+
(
T

(2)
2

)2
+
(
T

(2)
1

)2
]

+ T
(1)
2 T

(2)
1 + T

(1)
2 T

(2)
2 + T

(2)
1 T

(2)
2

=
1

2

[

T
(2)
1 + T

(1)
2 + T

(2)
2

]2

≈ 1

2
[T1 + T2]

2. (91)
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Continuing in this manner, using the perturbation expansion of the k-cluster

operator Tk =
∑

n T
(n)
k and T =

∑

k Tk we see that 1
2
T 2 is contained in the

linked cluster expansion of the wavefunction.

Also linked wavefunction diagrams consisting of three subdiagrams con-

nected by long denominators appear in the linked cluster expansion of the

wavefunction. It can be shown that summing all time versions leads to a

factorization of the long denominators. If the three subdiagrams are equal

we have to correct for the fact that we overcount. Hence also 1
3!
T 3 |Φ0 〉 is

contained in the linked cluster expansion. Continuing this argument, we find

|Ψ 〉 =
∞∑

n=0

{(RV )n}L |Φ0 〉

= (1 + T +
1

2!
T 2 +

1

3!
T 3 + · · · ) |Φ0 〉 = eT |Φ0 〉. (92)

So, we have made plausible that the exact wavefunction can be written in

exponential form.
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