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1 Introduction

These are notes for a six hour lecture series on the electronic correlation
problem, given by the author at a Dutch national winterschool in 1999. The
main purpose of this course was to give some theoretical background on the
Mgller-Plesset and coupled cluster methods. Both computational methods
are available in many quantum chemical “black box” programs. The audi-
ence consisted of graduate students, mostly with an undergraduate chemistry
education and doing research in theoretical chemistry.

A basic knowledge of quantum mechanics and quantum chemistry is pre-
supposed. In particular a knowledge of Slater determinants, Slater-Condon
rules and Hartree-Fock theory is a prerequisite of understanding the following
notes. In Appendix A this theory is reviewed briefly.

Because of time limitations hardly any proofs are given, the theory is
sketchily outlined. No attempt is made to integrate out the spin, the theory
is formulated in terms of spin-orbitals only.

From the outset we make the following approximations:

e The clamped nuclei approximation. This is the removal of the nuclear
kinetic energy terms from the Hamiltonian and the assumption that
the wavefunction depends only on the electronic coordinates. Since
the nuclear potential energy terms are not removed from the energy
operator, the electronic wavefunction depends parametrically on the

nuclear coordinates.

e No spin or relativistic interactions. For the lighter elements these are
small and can, if necessary, be included via perturbation theory. For

the heavier elements they are important.

Under these approximations the N-electron Hamiltonian becomes in atomic
units (m, = 1l,e=1,h=1)

H:Zu(i)%—zi' and  u(i) = —%V?jnga‘.

T
i=1 > K

(1)

Here r;; is the distance between electron ¢ and j and R,; between nucleus «
with charge Z, at position ﬁa and electron 7. Since the position vectors ﬁa
are taken to be constant, inclusion of the internuclear repulsions does not
affect the eigenfunctions of the Hamiltonian in (1). It will give a constant

shift in its eigenvalues.



Further we will restrict these lectures to closed-shell, ground state, spin-
singlet molecules. We assume that for these systems the solution of the
Hartree-Fock (HF) problem is available. As is well-known the HF equations
follow from variation of the expectation value

Bup = (@ | H | @) 2)

where @ is a normalized Slater determinant (antisymmetrized product) con-
taining the N lowest energy molecular spin-orbitals ¢;, + = 1..., N. These
so-called occupied orbitals are solutions of the HF equations and will be des-
ignated by 7, j, k, . ... The solutions of the HF equations with energies higher
than ey (the highest energy of the occupied orbitals) are the so-called virtual
spin-orbitals and will be designated by a,b,c, .. ..

We follow P.-O. Lowdin and define the electronic correlation energy AE,
as the difference between Eyp and the lowest eigenvalue Ej of the Hamilto-
nian (1)

AFEy = Ey — Eyy. (3)

In other words, the electronic correlation problem is the problem of finding
the lowest eigenvalue of the many-electron Schrodinger equation starting from
the exact solutions of the corresponding HF equation.

Much work has been done on this problem. In the nineteen seventies and
early eighties the configuration interaction (CI) method was developed to the
extent that hundreds of thousands of configuration state functions (CSFs)
can now be handled. Recall here that a CSF is a linear combination of Slater
determinants that is an eigenfunction of the total spin operator S2. Since S?
commutes with H, the H-matrix will consist of blocks of different total spin
quantum number S when CSF's are used.

It has been known in many-body physics since the nineteen fifties that
most truncated CI methods are not size extensive. That is, if we compute
M identical molecules with the interaction between the molecules switched
off in the total M molecule Hamiltonian, we do not get M times the energy
of one molecule computed with the same truncated CI method. We will
see that this is due to the appearance of unlinked clusters in the CI energy.
Goldstone’s linked cluster theorem (1957) states that in an exact theory all
unlinked clusters cancel each other. Although it was generally known that
most CI methods yield non extensive energies, it was often ignored during

the days that they were developed.



However, when it became clear that unlinked clusters do indeed give
large unphysical contributions to CI energies, chemists turned to formalisms
that are size extensive, notably Mgller-Plesset (MP) perturbation theory and
coupled cluster (CC) theory. These two methods, and variants thereof, are
the most often applied today, at least for molecules near their equilibrium
ground state. For molecules in excited non-singlet states and for dissociation
processes the MP and CC approaches are generally not applicable, but CI is.
We will give a short introduction to MP and coupled cluster theory. Since
the concepts and language of perturbation theory are applied frequently in

CC theory, we will start with the former formalism.

2 Rayleigh-Schrodinger perturbation theory

Rayleigh-Schrédinger perturbation theory (RSPT) can be fruitfully applied

when we can partition our Hamiltonian H as follows:
H=H9 1V, (4)
such that

1. We can compute the exact eigenvalues and eigenvectors of H(®. [Usu-
ally this requirement is too strong and we have to make do with (good)

approximations of the eigenvalues and eigenvectors].

2. The spectrum of H is not too different from that of H©®. In other
words the energy effects due to V' are rather modest. That is why V' is

called a perturbation.

We consider H(\) = H® + AV and its lowest energy eigenstate
H(A)Wo(A) = EOO‘)‘I’O()\)a (5)

which goes over into the problem to be solved when we choose A = 1. We

expand the exact solutions of H(\):
To(A) = Y A0 and Ey(\) =Y AE. (6)
n=0 n=0

Inserting these expansions into Eq. (5) and putting A equal to zero, we get

the unperturbed problem
HO o) = B | 9", (7)
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which we assume to be solved. Our goal is now to get expressions for the
perturbation corrections E(()n) and CIDgn) . We introduce the intermediate nor-

malization condition:
(d Y =0 for n>0, andrequire (O [dP)Y=1 (8)

so that <(I>(()0) | Uo(A)) = 1. The exact lowest eigenvalue Ey(\) of H(\) satis-

fies then the equation
Eo(N) = Eg” = M0 |V [ Wo(V)). (9)

Upon expanding both sides of this equation, we find the asymmetric energy

expression for the n'"-order energy

EM = (o v el | n>o. (10)

We see that, if we know the (n — 1)™ order contribution to ¥y()), we can
compute the n'" order contribution to Ey()\). In particular, the first-order
energy is the expectation value E(()l) = (V'), where we have introduced the
short hand notation (Q) = (@éo) |Q | CID[()O) ) for any operator Q.

The n'-order perturbation equation is obtained by expanding Wy()\) on
both sides of the exact Schrodinger equation [Eq. (5)] and Ey(A) on the right
hand side of this equation, followed by equating the terms on both sides that
multiply A”. From the intermediate normalization condition follows that @é")
can be obtained by solving the n'"-order equation (which is linear) on the
orthogonal complement of @éo). Using a basis of eigenfunctions of H® for

this space, we introduce the reduced resolvent:

0 0
pe s 12 (e (11)
S EY-EY
0o

>0

)

which in fact is the inverse of E'(()0 — H®O in this particular representation.
(Or more precisely, it is the inverse of the restriction of Eéo) — HO to the
orthogonal complement of CD(()O). Since the perturbation equations are linear,
it is not surprising that this inverse enters the theory). We assume that
the eigenvalues and eigenvectors of H® are known and hence we know R.
Further we assume that (1)(()0) is non-degenerate.

As stated above, the recursion relation for the n'"-order perturbed func-

tion follows by equating terms in \* and dividing both sides by E© — H©)

(o) = RV oY) =Y EPR[OF). (12)
k=1

>



The first-order correction to the wavefunction thus becomes

|<I>(()1)> = RV | CD[()O)> hence EéQ) = <‘I)(()O) 4 |q)(()1)> = (VRV). (13)
And
[of) = RrV|ey)) - EVR| )
— RVRV[0®) — (VIR*V |0}, (14)
so that
B = (o) |V |0y = (VRVRV) — (V)(VRV). (15)

We can continue this recursion and derive E®, etc. However, we will not
do this but rather give general expressions for the perturbation energies by
means of the bracketing technique of Brueckner. We will not attempt to prove
why the technique works, but just give the recipe, which is very easy to apply.
We will explain the procedure by the example of the fourth-order energy.
We start with the expectation value of the operator product (V RV RV RV ).
(The perturbation V' on the outside, the resolvents in between, four V’s
because we illustrate the fourth-order). The recipe then states that we must
insert in all possible ways any number of bra and ket pairs such that they
bracket V’s and Vs remain on the outside. A resolvent on the outside gives
zero, since R | <I>(()O)> =0 and (<I>(()O) |R = 0. Thus, one pair can be placed as

follows
(VR(VYRVRV) = (VY VR*VRV)
(VRVR(V)RV) = (V)Y VRVRV)
(VR(VRV)RV) = (VR*V){VRV). (16)
Also two pairs of brackets may be inserted, provided they are properly nested
(VR(VIYR(VIRV) = (VRV YV )(V). (17)

Each term gets the sign (—1)# where # is the number of pairs and we sum
the signed terms. Summarizing, we find by the bracketing technique the

following perturbation energies through fourth-order:

B = (V)

EY® = (VRV)

ES) = (VRVRV)— (VRV)(V)

E{Y = (VRVRVRV)—(VWVR*VRV)— (VY VRVRV)

—(VR*VYVRV)+(VRV YV YV). (18)

6



In fifth-order we find for the first time a bracket within a bracket:
(VR(VR(V)YRV )RV )

which obtains a plus sign (two pairs). In higher order it is easy to overlook
certain pairings and therefore the following formula for the number of terms

appearing in n'"-order gives a useful check

(2n — 2)!
=—" 1

# n!(n —1)! (19)
3 Mgller-Plesset perturbation theory
One could describe Mgller-Plesset perturbation theory as RSPT with

N

HO=F=)"f() and V=H-F (20)
i=1

Here F', the total Fock operator, is the zeroth order Hamiltonian and the
correlation operator H — F' is the perturbation.

Actually, a slightly different partitioning of the exact H is more conve-

nient:
qo 1%
H=F+(H—F)+H—F— <H F), (21)

which defines H(®) and the correlation operator V, respectively. Using the
perturbation equations (18) we find the Mgller-Plesset (MP) energies through

fourth-order

By = (H9)=(H)=Eur

EY = 0

E® = (VRV)

ES) = (VRVRV)

ESY = (VRVRVRV)— (VR*VYVRV). (22)

The fourth-order energy is the first where a renormalization term, namely
(VR2V)Y{(VRV), appears.

In Appendix A it is shown that the unperturbed (zeroth-order) functions
are Slater determinants built from eigenfunctions of the one-electron Fock

operator f(1), the so-called canonical HF orbitals.
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We drop from here on the subscript 0, since we are only concerned with the
correlation of the ground state, and consider £?) = (V RV ). The resolvent
R consists in this case of a sum over singly excited states plus a sum over
doubly excited states ...... plus a sum over N-tuply excited states. By
virtue of Brillouin’s theorem, (see Appendix A), the singly excited states
do not contribute. Since the perturbation V' contains at most two-electron
operators, it follows from the Slater-Condon rules that higher than double

excitations do not contribute. Hence

1 (Do |V [ D7))]
E® == N 23
4Z€i+€j—€a—€b’ ( )

/[:7.j7a7b

where we used that the energy of ®q is Fgr. The energy of (193;’ is Fyrp —
€ — € + €4 + €. The factor 1/4 is due to the overcompleteness of the basis.
Since a linearly independent basis requires ¢ > j and a > b and we do not
apply this condition, we correct by 1/4. Notice also that 7' = 0 and that
one defines ®% = 0 in a second quantized formalism, so that the diagonal
cases do not enter.

We introduce the shorthand notation

(pallrs) = (Pp(1)1h4(2) [ (1 = Pr2) /112 | e (1)1s(2)).

By the Slater-Condon rules we find for this case of two mismatches between
bra and ket:

(@o| H [2F) = (ijllab),
(Do | F|27) = (Po|@F7) =0 (24)

and the second-order MP energy becomes

! (i7]|ab)(abl|if)
E® == : 25
4i§b6i+€j_€a—€b (25)

It is possible to express the third- and fourth-order MP energies in Eq. (22)
by the aid of the Slater-Condon rules in terms of two-electron integrals and
orbital energies only. In third-order we will meet matrix elements of the kind
(®P|H —F —(H - F) |CI>§‘,'JI?,' ). The Fock operator, being a sum of one-
electron operators, only contributes in the case of less than two mismatches
between bra and ket. These Fock matrix elements cancel exactly against the

corresponding terms arising from the two-electron part of H. In other words,
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we do not find contributions from the Fock operator in the MP energies. This
is true in all orders of MP theory, as long as canonical HF orbitals are used.
This fact is self-evident in the second quantized hole-particle approach to
MP perturbation theory, (see Paldus & Cizek).

4 Diagrammatic perturbation theory

An alternative to the Slater-Condon rules is the use of diagrams. Basically
there are two closely related type of many-body diagrams: Hugenholtz and
Goldstone. Both are inspired by Feynman diagrams, which arise in time-
dependent perturbation theory. The theory starts from a Fermi vacuum state
| @ ), which simply is the lowest eigenfunction of F' (all occupied orbitals
filled). When we promote an electron to a virtual orbital we create a hole
in the Fermi vacuum and a particle in a virtual orbital. Thus, e.g. the
Slater determinant <I>§f;’ is a 2-hole/2-particle state. One says that the holes
‘run backwards in time’ and the particles ‘run forward’. In the present time-
independent approach this is just a rule of thumb to remember the orientation
of lines in the diagrams.

There are two conventions of drawing Goldstone and Hugenholtz dia-
grams: (i) Time flows from right to left. (ii) Time flows from bottom to top.
We will use the first convention, which is to say that hole lines run from
left to right and particle lines from right to left. We will first restrict the
attention to Hugenholtz diagrams, because they are easiest to draw.

The basic building block is the antisymmetrized two-electron integral:

r p
(pqllrs) — >< (26)
s q

where the orbitals in the bra leave the vertexr and the orbitals in the ket enter
the vertex. Here p,q,r,s are arbitrary orbitals. If we make a choice for
occupied and virtual orbitals we must direct the lines either to the right
(holes: 4,j,---) or to the left (particles: a,b,---). Thus, a product of two

antisymmetric integrals becomes,

~.

(ijllab)(abl|ij) —

> .



The energy denominator is sometimes given by a vertical line. For the case

of an intermediate doubly excited state it is:

—————-— (]
(€i+€j _E(z_Eb)_l — 1
— ]

F*b

Combining these ingredients we get for the second-order MP energy, where

the labels of closed lines are summed over:
a

}Z (ijllab){abllij) /\
4ijab€i+€j_6a_€b v

It is common not to show the vertical line cutting the lines in between the

vertices that denotes the energy denominator, which is why we do not show
it here.

[t remains to explain how we can extract the factor 1/4 from the diagram.
Two lines are equivalent when both start and end at the same vertex and
both go in the same direction. Let k£ be the number of pairs of equivalent
lines in the diagram. Then we must multiply the diagram with a weight
factor (1/2)*. In the present case we have one equivalent pair of hole lines
and one pair of equivalent particle lines, hence k = 2.

We summarize the graphical rules:

1. For an n'-order energy we write n vertices on a horizontal line. Each
vertex has two ingoing (say 7 and s) and two out going lines (say p and

q). Such a vertex contributes (pgq||rs).

2. Connect these vertices in all possible ways such that the resulting dia-
gram is linked (see below). A vertex may not be connected with itself.
Each distinct diagram gives a separate algebraic term. The n'® order

energy is the sum of these terms.

3. Between each pair of vertices we draw a virtual vertical line. This gives

the denominator factor

Zei— Z €q (27)

holes particles

10



where the sum runs over all hole and particle lines crossing the virtual

line.
4. Sum over the labels of all hole and particle lines.

5. Multiply by the weight factor 27%, where k is the number of pairs of

equivalent lines.
6. Multiply by the correct sign (see below).

We will demonstrate the method on the third-order energy. First we draw

all the possible skeleton (i.e. without arrows) diagrams. In this case there is

—

The above rules exclude the following third-order diagram because it contains

only one possibility

a vertex connected with itself:

This diagram contains » . (ai||bi) = (a|f —u |b). See Egs. (1) and (83) for
the definitions of u and f. As discussed above this two-electron part of the
Fock operator cancels against some two-electron terms, and that is why our
diagrammatic rules do not allow these diagrams.

Secondly, we insert all arrows in all possible ways. After a moment’s
reflection we see that there are three possibilities: the outside lines can (i)
both run to the left (ii) both run to the right or (iii) run in different directions.

11



Algebraically the corresponding third-order MP energies are (up to sign):
(i]|ab) (kL]|ij) {ab||kL)
By = *3 2

(€6, +€ —€— )€+ € — € — €p)

7gk,l,ab
1 7||ab) (ab||cd) (cd||ij

By = Lyl el o
abcdi’j(€i+€j_Ea_Eb)(€i+€j_€c_6d)

B - 4 Z ZJHG@((I/{?HCU@CHJ@

" a,b,c,i,j,k 62_'_6] Eb)(ej_'_ek_eb_ﬁc).

We now turn to the sign rule. Hugenholtz diagrams do no specify the
overall sign of the contribution of the diagram. This is due to the fact that
the basic diagram (26) may represent (pq||rs) as well as (pg||sr), which differ
in sign. In order to fix the sign it is necessary to distinguish the two particles
participating in the interaction. We follow the suggestion of Brandow and
draw one Goldstone representative of each Hugenholtz diagram. That is,
each vertex is replaced as follows
p
r p

—_—

V
A

s q

Now, orbital r and p are occupied by one electron, say electron 1, and s
and ¢ by the other (electron 2). Hence the diagram gives unambiguously
(p(1)0g(2)]|Yr(1)1h5(2)). The Goldstone diagram on the right hand side is
in fact a Feynman diagram describing the exchange of a photon (dashed line)
between electron 1 and 2. Since we work in a non-relativistic framework,
the interaction is instantaneous, which is why the dashed line is vertical
(remember that the time axis is horizontal).

In order to obtain a Goldstone representative from a Hugenholtz diagram
we replace all nodes as above, while keeping the directions of the lines and the
connectivity intact. Usually more than one possibility exists. For instance

the first third-order diagram above has two representatives:

12



Note that the first representative contains two loops. A loop contains oriented
non-dashed (= orbital) lines which, when followed starting at a certain vertex,
bring us back to this vertex. The second diagram has one loop. Let the
number of loops be [. Let the number of hole lines in a certain diagram be
h (both diagrams have h = 4). Then the overall sign is (—1)*". So the first
representative has sign +1 and the numerator

(ij]|ab)(k]ij){ab||k)
while the second has sign —1 and the numerator

(il|ab) (kl]] i) (abl|kL).

Since (kl||ji) = —(kl||ij) we see that both representatives give indeed the
same result.
The third-order diagram (iii) has eight different representatives, but again

only one is needed, for instance the following one

which has [ = 3 and A = 3. Hence this diagram yields the contribution

17]|ab) (akl|ic)(be||jk
Z (jab)(ak]lic)(bel|ik)

(@) (€i+€j_Ea_ﬁb)(ej"i_ek_eb_ec)

a,b,c,i,j,k
S (]]]ab)(ak]|ct)(bel|ik)

(61' + Ej — €q — Eb)(Ej + € — €p — Ec)

(29)
a,b,cyiyjok

Recall that the horizontal axis is a time axis, so that every one of the n
vertices in a MPn diagram has a definite time value, counting from left to
right: t; >ty > -+ > t,,. Evidently, these time values do not change if we
move the nodes along vertical lines. Inspecting the graphical rules (3)—(6) we
see that the value of a diagram is unaffected by such a deformation. In fact,
quite some left-right motion is also allowed as long as the time ordering of the
nodes is not changed. As soon as we change the time ordering of the nodes we

get a different diagram: a different time version. For example, the diagrams

13



(A), (B) and (C) are the same (and only one of them must be included in
the total MP4 energy) whereas diagram (D) is a different time-version and

must be included:

(D)

(4) (B) (C)
(HEE <

(30)

So, the first graphical rule, which stated that the vertices must be on one

)

A

horizontal line, was formulated too strictly.

5 Unlinked clusters

The fourth-order renormalization term [see Eq. (22)] is an example of an

unlinked cluster. Diagrammatically it reads

(VRV)(VRV) — @x@ (31)
2

The vertical line indicates the denominator squared, so that algebraically

(i ]ab)|*
Z (62' + € — €q — 65)2)

1,4,0,b

[(il|ab)|*
. 2
X(ijzab€i+€j_€a_€b &

Note that (VR?V ) = (@M | M) and hence is positive, whereas (VRV ) is

negative.

(VRVY(VRV) — 1—16 (

We mentioned in the introduction that unlinked clusters break size exten-
sivity. To explain this we assume that we are considering a system consisting
of two non-interacting subsystems A and B. Let the spin-orbitals p’, ¢/, ...
be centered on A and p”,q”,... be on B. By this assumption the differential

overlap of any spin-orbital on A with any one on B is zero, so that two-center

14



integrals of e.g. the type (p”¢||r's’) are zero. Hence the second-order energy
becomes

1 ,L'/ -/ a/b/ 2 1 Z’// Nz a//b// 2

1 Z [(@'5"]]a’V)| 4= Z [@"5"] )| (33)

it e on A G T 6 T G T €Y g on B € T € T € = €y

which is the sum of the second-order energies of A and B. In other words,
the second-order energy is size extensive. If we now look at Eq. (32), we see
that terms of the kind

Z |</L/]I||alb/>|2 " Z |</L‘//jll||alllbll>|2
i’ j',a' b on A (Gi/ + €j/ — € — 6b/>2 i’ .5 .a" b on B €ir + Gj// — €qr T
(34)

are non-vanishing. Because these terms are all negative they cannot cancel

each other. So, even though A and B do not interact these non-vanishing
bilinear energy terms are present and contribute to the energy of the dimer.

In this connection it is of interest to remark that exactly these terms
pollute the DCI (configuration interaction based on doubly excited states)

energy Ep. In order to show this we choose as the energy zero
(HO)Y = (H) = Egp = 0.

We write

B (@(0) + oM |H(0) +V | ®0) 1 1) )
b~ (00 + M) [P0 + @) ’

or, using that {®© + &W |dO &M =1 4 (&M | W),

Ep = _ED<<I>(1) ’qp(l) >+<q)(0) % |q)(1) >_|_<q)(1) h% |q>(0) >+<q)(1) | H©O ‘q)(l) ),
(36)

where we omitted the third-order term (@M |V |®W). Since HOR = —1

we find

H©O | oM ) = HORY | ) )= —V| ®O) )
so that
<q)(1) |H(0) |q)(1)> — _<q)(1) % |q)(0) ).
If we replace on the right hand side of Eq. (36) Ep by E®) = (@ |V | M)
we find for the DCI energy

Ep~E® — (oW |eW)E® (37)

15



The second term is represented by the diagram in Eq. (31).
Given a normalized DCI vector Co(®©® + &) it is easy to find an ex-
pression for (@M | &M, Indeed,

1=C30® 4 0W 0@ 4 oW) =21 + (oW | dM)Y)
so that
(1-G5)
3

The term Ep(1 — C3)/CZ is the Davidson-Siegbahn size-consistency correc-

(oW pMWy =

tion. Note that Cj is the coefficient of the HF ground state in the normalized
DCT vector.

We stated above that only linked clusters have to be considered in MP per-
turbation theory. Indeed, the renormalization terms cancel against the un-
linked clusters that appear in ( VRV RV RV ). It is easily seen that the follow-
ing two diagrams are the only unlinked possibilities appearing in ( VRV RV RV ),
because a third time version, with the upper diagram sticking out to the left
of the lower one, is the same as the first one. (Recall that the nodes may be

moved vertically).

e e ;

a a+b b a a+ba

(38)
Schematically we have indicated the denominators. Noticing that all dia-

grams have the same numerator and using for the denominators

(NS S T S S )
ala+b)b a(a+ba a2b

we find Eq. (38). The terms on the right hand side of this equation cancel ex-
actly the fourth-order renormalization term. Note further that the diagrams
on the left hand side of Eq. (38) are derived from intermediate quadruply
excited states (the middle vertical line crosses four hole-particle pairs), which
is why in DQCI the ‘Davidson-Siegbahn’ unlinked cluster does not appear.

16



So, we have shown for the special case of fourth-order Mgller-Plesset
theory that unlinked clusters cancel. This is a general result known as the
linked cluster theorem:

o0

AE=E—Egp =Y ({V(RV)"},) (40)

n=0
That is, we sum over all orders and retain in every order only the linked
diagrams. This restriction on the sum is indicated by the subscript L. In
the proof of this theorem one shows that in all orders unlinked clusters and
renormalization terms cancel each other. It follows that MP perturbation
theory is size extensive in all orders. Note that the number of linked Hugen-

holtz diagrams grows quickly as a function of order. From first through sixth
order the numbers of linked diagrams are 0, 1, 3, 39, 840, and 28300.

6 Convergence of MP perturbation theory

D. Cremer and Z. He published some convergence studies [J. Phys. Chem.
100, 6173 (1996)]. They distinguish class A and class B molecules. Class A
consists of BH, NH,, CHs, and CH,. All molecules are considered at different
geometries. The class A molecules are systems with well-separated electron
pairs. Class B consists of Ne, F; F~ and hydrogen fluoride again at different
geometries. Class B molecules are systems with electron clustering. Cremer
and He compare the MP results with full CI results in the same basis. Full CI
is based on all possible Slater determinants (ground+singly+ doubly+- - -+
N-tuply excited) and hence is exact within the given AO basis. Of course,
truncation of the AO basis introduces a serious error. However, within a
given basis full CI can serve as a benchmark.

Cremer and He show that on the average the class A molecules have a

monotonic convergence:
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Class A
100 gog o4 934940
80 732 ] -
© 60 -
5
s 40- -
20 -
0
MP2 MP3 MP4 MP5  MP6

The class B molecules show a more oscillatory behavior:

Class B
102 99.9 100.6
100 ] 98.1
G 98
S 96947 946
L 94 ]
92 :17
90
MP2 MP3 MP4 MP5 MP6

Note that MP6 overshoots the 100% mark, which is not forbidden as pertur-

bation theory is non-variational.

7 Second quantization

In order to discuss the coupled cluster (CC) method we will need the k-
fold excitation operator E;;°2" /¥, which is the operator that replaces in the
unperturbed HF function ®( the spin-orbital ;, by ., ¥, by 1,,, etc.
Although a first quantized definition of this operator is possible, it is fairly
cumbersome, while in second quantization its definition is most natural. So,
it is convenient to introduce at this point the second quantization formalism.

We define the operator X; that creates an electron in spin-orbital v, and

its hermitian conjugate X, that annihilates an electron in spin-orbital ,,.
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Antisymmetry imposes the anticommutation relations {A, B} = AB + BA:

{X], X1} =1{X,,X,} =0 and {X,, X[} = {X] X, } = (¢, |0g) = 0pq.
(41)
In second quantization the ground state Slater determinant can be written

as
— T yt T
| D¢ ) = X, X, - X, 10),

where |0) is the vacuum state, i.e. X,|0) = 0 and X[[0) = [¢,) . We
define

E§11522~:£ck - XI])L1X;Z2 t 'X;qukXqu e 'qu' (42)
for arbitrary orbital labels py,...,pr and qi, ..., qr. One-electron operators

have in second quantization the form
U=> (plulq)E?, (43)
psq
while two-electron operators have the form

1
V=2 ) (mplvlae)ByE = ), wllae) By (44)

pP1P291q2 p1p2q1q92

One can prove a priori that the one- and two-electron operators have this
form, or one can check a posteriori that these operators have the same matrix
elements in the space of Slater determinants as their first-quantized counter-
parts. We skip both proofs.

. i - .. )

The k-fold excitation operatoris Ei; 7 ™, i.e. the upper indices are virtual
orbitals and the lower indices are occupied orbitals. Excitation operators
commute and can be factorized, for example,

Eie? — Efll Ef; = Ef;Efll. (45)

1112

This follows directly from the anticommutation relations and the fact that

occupied and virtual orbitals are orthogonal, in other words d,,;, = 0, so that

Efe = XX X, X, = X! XE X X, = X3 X0 XX, — Gayi X, X,

1112

EES. (46)
We show that indeed £;°?";** is an excitation operator and consider
B @) = B B XL X0 )
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Move E;* to the right until it hits Xjk. Since we commute a pair, no sign is
changed: EZ“:XJ = X;rEfZc for ¢ # ix. When we hit Xjk we leave X[ behind
and use Xikak = —Xijik + 1. The first term vanishes because X;, may be
moved further to the right until it reaches |0) and X;, [0) = 0. So we find

X] at the position where before XZ-Tk was. At the same time we removed FE}*

from the excitation operator. Then we do the same with Ef;c *~! and so on.
Note that
Efar | ) = BTk [ By) =0 (48)

because on the left hand side an electron is created in an orbital () that is
already occupied in ®( and in the middle equation an electron is annihilated
in an orbital (a) that is not occupied in ®y.

We associate X | @ ) with a free line leaving a diagram and X, | @) with

ai--ag
i1eig

a free line entering a diagram and we see that E | g ) is represented by
a diagram with only lines sticking out to the left. Namely, a line sticking out
to the right and leaving the diagram stands for X;r |®o) = 0 and likewise
one entering on the right stands for X, | ®¢) = 0. A line leaving the diagram
from the left stands for a particle creator X and one entering on the left for
a hole creator (a particle annihilator) X;, i.e. E®|®q) is indeed represented
by two lines sticking out to the left. Note parenthetically that E% | ®y) =
Bt ®g) = 0, a fact that we mentioned earlier. Thus, the diagrammatic
rules are extended to wavefunctions: Free lines are associated with creation
and annihilation operators acting on ®(, while vertices are associated with
antisymmetric integrals in the same way as for energy diagrams.

As a first example we consider the first order contribution @), which is
expanded in doubly excited Slater determinants
E | @0 )(ab]|ij)

Aab
a7b7i7j ’LJ

1
c1><”:RV|<I>0>=Z >

(49)

Here A?;’ = €;+€; — €, — €. Algebraically, the factor 1/4 is again due to the
overcompleteness of the basis when we do not apply the restrictions a > b

and 7 > j. Depicted as a Hugenholtz diagram or its Goldstone representative
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(Brandow diagram) the sum is:

7jab

- Z Z] |(I)Zabab”ij> _ -~ > 7 (50)

with E“b XTXTX X;. Diagrammatically the factor 1/4 is due to the two
pairs of equwalent lines sticking out. Equivalent means that the free lines are
attached to the same Hugenholtz vertex and are of the same type (particle or
hole). As a new diagrammatic rule we find that the free lines sticking out to
the left are crossed by a (usually virtual) vertical line which gives an energy
denominator. The number of hole-particle pairs gives the excitation level.
As another example we consider the singly excited (i,a) component of

the second-order wavefunction

_1E} | D) 3 (jkl]ib) (abl|jk) _
2 A¢ Aab >
7 b.j.k 7k
(51)

The factor 1/2 is due to the two equivalent internal hole lines in the Hugen-

holtz diagram and the minus sign to the loop (I = 1) and the two internal
hole lines (h = 2) in the Brandow diagram. There are two imaginary verti-
cal lines giving the energy denominators. The lines leaving the diagram are

associated with
XIX;|®o) = E | D).

8 Coupled cluster Ansatz

In this section we will discuss that the exact, fully correlated, wavefunction

U=cl®,= Z T”(I)o

where @ is the Hartree-Fock ground state wavefunction and 7T is an operator

U can be written as

to be introduced in this section. This manner of writing ¥ is known in the
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literature as the coupled cluster “Ansatz”. Ansatz is a German noun meaning
something like “starting point”.

So far we concentrated mainly on energies, not on wavefunctions, al-
though we gave already two examples of correlated wavefunctions, Eqgs. (50)
and (51). We introduced (without proof) the linked cluster theorem for en-

ergies. This theorem is also valid for exact wavefunctions. It reads
(W) = {(RV)"}, | %), (52)
n=0

where the subscript L indicates that the sum is only over linked wavefunction

diagrams. Unfortunately, for a wavefunction diagram the adjective ‘linked’

does not mean the same as the adjective ‘connected’, whereas for an energy

diagram the two are synonymous (as they are in daily life).

Definition:

A wavefunction diagram is unlinked if it contains one or more energy dia-

grams, otherwise it is linked.

(Remember that an energy diagram is closed, with no lines sticking out).
For example, the following wavefunction diagrams are both linked with

the first one being connected and the second consisting of two connected

pieces:

(53)

Ay
vy

Both diagrams represent components of ®), the first one along a triply ex-
cited state and the second along a quadruply excited state. The following
doubly excited fourth-order wavefunction diagram contains an energy con-

tribution and hence is an example of an unlinked wavefunction contribution:

E§§> .
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The linked cluster theorem states that Eq. (54) does not contribute to the
exact wave function, whereas both terms in Eq. (53), the connected and the
disconnected one, do contribute to W.!

We will now turn to the cluster operator T'. In order to explain its def-
inition, we consider first the simple case of the full CI wavefunction of a
four-electron closed-shell system. The exact wavefunction in intermediate
normalization (i.e. the coefficient of the HF ground state is equal to unity)

and written in summation convention is

U = O+ L EMDy + 2 B2 4 ¢z prassg o chizisis | poasasts gy

ajaz ~i1ig ajagasz 111213 ajazaszaq 11121314

— (1+4Cy+Cy+ Cs 4 Cy)Py. (55)

Here we introduced the operator C) = cflll'j,',igk Ela1 {::;-Z’“, which contains the CI

coefficients ¢/ % . which have yet to be obtained from a full CI calculation.
In a similar manner the following linear combination of all k-fold excited

connected contributions to the exact wavefunction is introduced:

k' a1ag--ag ’Ll’iz'“ik Y

1\
T, = (—) flieiy paieasak - for ko] 9 N (56)

The expansion coefficients (‘cluster amplitudes’) 212" are the unknowns.
Diagrammatic perturbation theory may be applied to obtain these coeffi-
cients, which are represented by connected diagrams only. For instance the
first few T terms are given in Fig. 1 as connected diagrams (schematic, many
different arrow settings are possible, sum over the labels of the free particle-
hole pairs is implied, the open circle with four free lines represents the exact
Ty | ®y)). Thus, the first-order contribution (t(V)% to the cluster amplitude

tt, which multiplies E2 | ®g ):
(tD)g, = (ablliz) /AL,
[Note that the weight factor 1/4 cancels against (1/k!)? in the definition of
tp)
The first contribution to 7 (which starts at second-order) is given by the
diagram in Eq. (51). Explicitly, the corresponding cluster amplitude is

i 1 — (kl[ib)(abl|jk) | 1 (ajl|cb){cbl|ij)
(t(2))a = _5 Z Ao Aab + 5 Z AaAbe )
bjk i =gk jcb L]

I'Maybe ‘linkable’ would have been a better adjective for a wavefunction diagram than
‘linked’, since both diagrams in Eq. (53) can still lead to a single connected energy diagram,
whereas the diagram in Eq. (54) is ‘unlinkable’ to a connected energy diagram.
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Figure 1: All perturbation contributions to Ty through third order.

Ty| @) = >Q ~ (57)
>+> +
+ +§> +

. =SS
== .

where the second term is due to a diagram of the same type as in Eq. (51), but
with the arrows inverted on the fork labeled by a and i. The first contribution
to T3 is also of second-order and is given by the leftmost diagram in Eq. (53).
We see here that perturbation theory gives the cluster amplitudes order by
order. In the next section we will derive non-perturbative equations to obtain
the cluster amplitudes. When we solve these equations iteratively diagrams
of order n in the MP potential are added to the wavefunction in the nth
iteration.

As stated before, the connected diagrams give only part of the exact wave
function. Any linked disconnected diagram consisting of n > 1 pieces will
contribute to ¥ as well. In appendix B we make plausible by considering
all perturbation contributions that the exact wave function of an N-electron
system may be written as an exponential operator acting on the Hartree-Fock

ground state:

|U) =€ | D) (58)

with T'=T1+T5+---Tx. That is, the disconnected contributions are simply
powers of the connected contributions 77, Ts,..., Ty.

As an alternative to the perturbation theory approach of appendix B, we
can obtain the exponential Ansatz from full CI. As an example we consider
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again the four-electron closed shell system. It is easy to write out the expo-
nential operator and upon sorting the terms with respect to excitation level

the exact wavefunction becomes Eq. (55), in which the following substitutions

are made:
Cl = Tl
1
Cy = To+ =T
2
1
Cs = T3+ DT+ T7
6
1 1 1
Cy, = Tuy+TTs+ =-T*Ty+ -T2+ —T% 59
4 4+13+212+22+241 (59)

The terms T3, T, T3 and T, are the connected contributions and all the
remaining terms are disconnected (but linked, no energy diagrams multiply
the wavefunction diagrams).

By inverting these equations we can formally show that the exponential

Ansatz is true for the exact wavefunction. Inversion gives

Tl = C’1
1
T2 — CQ — 5012

1
Ty = C3—CiCat 5O

1
T4 = 04 — 0103+01202 — 5022 —

L
ZCl. (60)
In these equations the disconnected parts are subtracted from C,,, so that
T, is a sum of connected pieces only (n = 1,2,3,4). One easily verifies now,

using In(1+ ) =) (D" on that

n=1 n

T'+ T+ Ts5+T,=In(1+Cy+ Cy+ Cs + Cy),
since higher than four-fold excitations vanish in a four-electron system. Hence
HPATAT 190 ) = (1+C1 4+ Co+C35+ Cy) [ D) = | V).

So, the exponential operator acting on the HF ground state wave function
yields indeed the ezact (full CI) wavefunction | ¥). However, it is not rigor-
ously proved in this procedure that T} | ®g ) is indeed represented by a sum

of connected diagrams only; for the clarification of this we refer to Appendix
B.
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There is an interesting way of looking at the size extensivity of the coupled
cluster Ansatz. Suppose our system consists of two noninteracting systems
A and B (H = Ha + Hp), each with their own orbitals. The orbitals on A
and B being orthogonal to each other, it is easily seen that the excitation
operators on A and B commute and hence also the cluster operators. We
write T = Ty + Tp and from [T4,T5] = 0 we conclude that exp(T) =
exp(T'4) exp(Tg). (This is not true if T4 does not commute with 7s!). Since
the Hartree-Fock method is size extensive the HF wavefunction factorizes for
two non-interacting systems: ®, = @' ® ®F. Under these conditions the
exact U factorizes: U = [exp(Ta)®;]| ® [exp(Tp)®§] and the corresponding

energy is accordingly strictly additive.

9 Coupled cluster equations

The cluster operator T}, Eq. (56), contains coefficients tilfj;f’;k, which we have

introduced by their perturbation expansion. However, we can also formulate
(non-linear) equations from which these coefficients can be determined; these
are the coupled cluster equations. These CC equations can be seen as an

algebraic means to sum certain classes of diagrams to infinite order.

9.1 Exact CC equations

We recall from elementary quantum mechanics the following theorem
1 1
e Bet = A+ [B, A+ 5[[B,A],A] + 5[[[JB,ALA],A] NI (61)

i.e. a Taylor expansion in commutators. Now, introducing Hy = H — (H )

and AE = FE — ( H) we may write the exact Schrédinger equation
HyVU = AEV = Hyel'®y = ABe’®y = e THye' g = AED), (62)
so that it takes the following interesting form:

(Fix =+ [, 7]+ ([, 70, T) + ([, T, 70,7
1

+ 5 ll[Hx, T),T1, 71, 7]) @ = AED,. (63)

The commutator expansion stops after the fifth term because Hpy does not

contain higher than two-body interactions.
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In order to explain this truncation after five terms in (63) we work out
in somewhat more detail the commutator [U, Ty] where U is the one-electron

operator defined in (43), which we now write in summation convention
U=ul BV with ul=(p|ulq).

We will show that in the case of one-particle operators the commutator ex-
pansion stops after three terms. The excitation operators in T simply fac-

torize E'? = E;' E;?. So we meet commutation relations of the type
[EP, B} = 04 E7 — 07 B, (64)
From the general rule
[A, BC] = [A, B]C + B[A, (]
we obtain the following expression

[Ep Ea1a2] — 5a1EPfl2 5a2E¢11P 61’ Faaz 51’ Fa1a2. (65)

1112 2112 1112 qt2 19

Hence

[U, Tg] = tl112 [ a1Epa2 + uazEalp - uq Fauaz _ uq Ea1a2:| (66)

a1as 1112 1112 qr2 149

Note that the E’s on the right hand side carry only one label (p or ¢) arising
from U. In the integrals appearing in U the indices ¢ and p are replaced
by a’s and i’s, respectively, labels which arise from 75. The singly nested
commutation relation connects by one internal (summation) line U with 7.
To represent diagrammatically this equation we recall that four lines must
be sticking out to the left when representing £ | &) and the same holds

1172

for B2 | ®g ), provided p is a particle (virtual) orbital. (When p is a hole

1112

orbital it contracts to either i; or i, to obtain a nonvanishing ket and we are
left with a single excitation operator). An open circle is associated with t;lij;
no energy denominator is implied. The black dot represents ul. Assuming
that p and q are a particle and hole orbital, respectively, we get the following

diagrammatic representation of Eq. (66):

P
ay ay a;
p
Qg ag as
[U TQ] | @0) + + + (67)
17 11 11
. q
12 12 12
q



The minus signs in the last two terms are contained in the diagrams and
follow from the presence of internal hole lines.
If we now consider the two-fold nested commutator [[U, T3], T5] we meet
as the first term
finia yisia 01 [Epag Eg3a4]

ajaz”’azas °'p 11427 1304

The commutator can be easily worked out when we recall that excitation
operators commute

[Epaz Ea3a4} _ Eﬂ [E{n E@B.a4:| + [Ep E{13'a4]Eia22

11127 1314 12 ) 2314 217 234

= —(0F B3 4 o B B2 (68)

9114 1311

We see that no labels from U remain and that the surviving operators are
all excitation operators. The same is true for the final operators arising from
the other terms of Eq. (66), so that [[[U,Ts],T2],T5] = 0 and the cluster
expansion of a one-electron operator ends after three terms.

The two-fold nested commutator gives a connection of U with two 1"s,

for instance the first term:

ay
as
14
1112 41314 ,,0Q1 [[A30402 >_
talaQta3a4ui3 Ei1i4i2 (I)O -
az
12
1q

Turning now to two-electron operators we note that the operator appear-
ing in the two-electron operator satisfies £?? = EPE? — §¢EP and has four
free labels, p, ¢, r and s. In each level of nested commutation one of these
labels is replaced by a hole or particle label originating from the 7', just as
in the one-electron operator case, so that no labels on the EZ’s arising from
Hy remain after working out the fourfold nested commutator. The operator
Hy is fully connected by four lines with one or more (up to four) 7’s. Only
excitation operators are found in the four times nested commutator and since
excitation operators commute, it follows that the five times nested commu-
tator must be zero. Also in the lower commutators we find only excitation
operators, as we act on the HF ground state in Eq. (63).
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Since Hy is fully connected with the 7”s in Eq. (63) we introduce the

short hand notation:
{HNT"}c = |-+ [HNn,T), -+ ,T] (n times T), (69)

so that by projection of Eq. (63) by ( ®g| we get

4

AR =3 (] (T e |0) (70)

The exact correlation energy AFE is written here as an expansion of connected

quantities. It is important to observe that this expansion remains valid when

we only include certain terms of 7. As the energy expansion is solely in

terms of connected (is the same as linked for energy) diagrams the energy
stays size-extensive upon restriction of 7T'.

For the moment we do not make any approximations and use that { ®¢ |T" =

0, so that in Eq. (63) only terms with the 7’s on the right of Hy are non-

vanishing, hence we can also write

4

AE:Z%{HNT@, (71)

which in contrast to Eq. (70) is not manifestly connected. If we further use
that the ket may be at most doubly excited to get a non-vanishing matrix
element over a two-electron operator, together with the Brillouin theorem
(HyTy) =t (HyE?) =0 and ( Hy ) = 0, we arrive at the following deceiv-

ingly simple looking expression for the ezxact correlation energy

AE = (HyTy) + S(HNT?) (72)

The coupled cluster equations for the cluster amplitudes (hidden in T')

are obtained by projection of Eq. (63) onto k-fold excited states,

4
1 ayi--a n
Z —{ (Pil...i,f [ {HNT"}c | ©0) =0, (73)

n!

where we used that (@' % | D) = ( B D | Py ) = 0.

i1l i1-erig
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9.2 The CCD equations

Equations (72) and (73) are the exact coupled cluster equations, which are
equivalent to the exact Schrodinger equation. In order to solve them ap-
proximations must be introduced. The simplest approximation is the CCD
approach [referred to as coupled pair many electron theory (CPMET) by its

inventors Cizek and Paldus]

T ~T,=E®tY

ij
(summation convention!). Projection onto the doubles gives the CCD equa-
tions [take k& = 2 in Eq. (73)], where summation over repeated superscripts

and subscripts is again implied (a, b, 7, and j are fixed labels):

0 = (O Hy | Do)+ (% [{HyEL Yo | @0 )ik

1112 ajaz

1 o
+ (@Y | {HyEB&RESS Yo | g )t pist (74)

2 2112 1324 aijaz ‘azas”

Note that these equations have the following structure

M M
O:Ak+ZBk1xl+ZCkll’$le/a with kzl,...,M,
=1 ING

and where M = n?2__n?

nocc' “vir*

We have as many unknowns M (the amplitudes
x = t;]b) as equations and accordingly the t’s can be solved from this set of
coupled quadratic equations. Since we are projecting onto the doubles the
connected diagrams must also have four lines (marked by i, j, a, b) sticking out
to the left. [We must multiply Eq. (74) by | @f}’) to enable the diagrammatic
representation].

In order to indicate how diagrams may be used to reduce Eq. (74) to an
equation containing only one- and two-electron integrals, we first consider
the one-electron contributions to the term linear in ¢/12 . The operator Hy
contains a one-electron operator, which we indicated by a small dot, and we
saw before that », (p|u |a >tijlb and ), (i1]u | ¢ )t etc., arise. Con-

traction within the two-electron part of Hy is possible, i.e. terms of the type

o t?lb > «lak|la1k) appear. These are the loops in the following diagrams:
a a i i b b 7 J
1 1 a a J J b b
j j j j t ¢ ¢ v
a

30



Using canonical HF orbitals, that is, (a|u |a1) + >, (ak||a1k) = €,004,, We
find that these eight diagrams give
(€a — € +€p — )t <I>“b) = — A% | CI);I;’ ). (75)

1 “ab

The fact that no powers in the ¢’s higher than two appear in the CCD
approximation is most easily seen diagrammatically. The non-HF diagrams

appearing in Eq. (74) are very schematically:

r> gL

The first diagram represents simply | 9§ )( @4 |Hy |®g) = | DL )(ij]|ab).
In the second diagram Hy and T, are connected by two hnes. The last
two diagrams are quadratic in 75. Note now that it is impossible to have a
contribution containing the third power T3 that is connected with Hy and
has four free lines.

By bringing Eq. (75) to the left hand side of Eq. (74), dividing both sides
by A?Jb and summing over i, j, a, b, we can rewrite Eq. (74) in a form suitable

for iteration
1
Ty @) = R |V +{VvToto + Z{VaTz}o| [ o), (77)
where the resolvent R, on the space of 2-fold excited states (sum over re-
peated indices is implied) is defined for general k

BRI | ©g ) (@ | ELL Z“k
Rk NG

[ARRRITS

This definition is a specialization of the more general reduced resolvent in-
troduced in Eq. (11).

We reiterate that the appearance of the orbital energies is due to the fact
that we used canonical HF orbitals. It can be proved, more rigorously than
is done here, that no other one-electron terms than the orbital energies arise
when canonical SCF orbitals are used. This proof shows that only the two-

electron operator Vy = Hy — F appears on the right hand side of Eq. (77).
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Note parenthetically that Viy = V — (F'), where V is the Mgller-Plesset
operator defined in Eq. (21).

We end here the outline of the fact that it is possible to reduce the N-
electron CCD equations Eq. (74) to orbital equations by the diagrammatic
rules given above. That is, matrix elements as, for example, (@ [ {VyTo}c | o)
can be expressed in terms of one- and two-electron integrals and cluster am-
plitudes. Orbital equations can be found in the literature for CCD (T = Ty),
CCSD (T = Ty + T3) and for CCSDT (T' ~ T + T + T3).

9.3 CC theory versus MP theory

The fact that coupled cluster theory sums certain Mgller-Plesset diagrams to
infinite order can be shown by noting that the CC equations may be solved
iteratively. In each iteration a perturbation order is added. In Appendix
B we went from MP to CC, we will now give a rough sketch of how to go
from CC back to MP. We illustrate this on the CCD equations [Eq. (77)] and
drop the suffix C. It is understood that from now on only connected terms
are considered. The iteration is started by putting 75 on the right hand side
equal to zero, hence
TV | ) = RyViy | @p).

This confirms that T; starts with a first-order (in Vi) term. If we insert this
into the coupled cluster energy, Eq. (72), and realize that only Vy gives a

contribution, we get

E® = (VyRyVy) = (VRV),
which is the second-order MP energy, cf. Eq. (22). Insert T2(1) on the right
hand side of Eq. (77) and we get the second-order contribution:

T,” | ®y) = RV RoViv | @0),

yielding the third-order MP energy. Third-order contributions to 75 arise
from RyVyRoVyRyVy and 1/2R,Vy(RyViv)?. The first term gives simply a
fourth-order energy diagram with intermediate doubles [see Eq. (78)], while
the second term gives the diagram on the right with short denominators on

the part that has the quadruply excited intermediates

(78)
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We can now use the factorization lemma (see Appendix B) in opposite di-
rection and find that the second diagram is the sum of two connected MP
diagrams with doubly and quadruply intermediate excited states. Inclusion
of Ty in the CC approach gives energy diagrams that in the CI approach
would require quadruply excited states. One can continue the iteration and

thus effectively sum the MP series for certain kinds of diagrams.

9.4 CCSD(T)

In the MP4 energy we find diagrams with intermediate triples, these do not
occur in CCD. Neither the MP4 energy diagrams with intermediate singles
appear in CCD, however CCSD will generate the latter. An example of a

fourth-order diagram with intermediate triples, missed out by CCSD, is

(79)

Suppose now that the CCSD equations have been solved exactly, so that
the converged solutions 7'; and Ty are known, which diagrammatically are
designated by open circles with two and four free lines, respectively. Then

we can approximate Ty by RsVyT, i.e.

T3 | ®g) ~ (80)

and compute the energies ({T;VNT;;}C) and <{TIVNT3}C) represented by
diagrams of the type

O e e ) (81)

where the subdiagram within the dashed boxes represent 73| ®y). This is
the CCSD(T) method. The solution of the CCSD equations scales with the
number of orbitals n as n®Nj,. Obviously Eq. (80), the computation of the
non-iterative T3, scales as n”. Therefore the CCSD(T) method is often used

as a cheaper alternative to CCSDT, where the equations (73) for k = 1,2,3
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are solved simultaneously and which scales as n®Ni,. Since T5 starts in first-
order, the lowest order contribution to the first diagram in Eq. (81) is just
the MP4 diagram of Eq. (79). Since T} is of second-order the lowest order of
the second diagram in Eq. (81) is the MP5 diagram (Hugenholtz and one of

>

— e (82)

<>

In other words, CCSD(T) not only accounts for 4®-order diagrams with

its Goldstone representatives):

intermediate triples, but also contains quite a number of 5'"-order contribu-
tions. Since CCSD(T) is not much more expensive than MP4, it explains

why CCSD(T) has become a widely applied correlation method.

A Hartree-Fock, Slater-Condon, Brillouin

We write a normalized N-electron Slater determinant ®, with the aid of the
antisymmetrizer A = % > pesy (—1)PP, where Sy is the group containing
all permutations P of N electrons and (—1)? is the parity of P.

(I)O = \/ﬁ A whdjiz o ‘%‘N = {¢i1¢i2 o 770%1\7}

Normalized Slater determinants will be designated by curly brackets. The
variation of

with the constraint that (;|1;) = d;; leads to the one-electron eigenvalue

equation (HF equation)
f(1)¢p(1) = 6pwp(l)
with

f(1) =u(l) + Z<¢z(2) | (1 = Pi2)/ra |¢i(2)) (83)

The bracket denotes an integral over space and spin coordinates of electron

2. The operator P, permutes space and spin coordinates of electron 1 and 2.
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The one-electron Fock operator f has in principle an infinite set of eigenvalues
and eigenvectors.

We introduce the notation (p|u |q) for (¢, |u |1,) and (pg||rs), which

is shorthand for (¢,(1)¥,(2) | (1 — Pi2)/7m12 | (1)1s(2)).

The N-electron Fock operator F' = SN f(i) commutes with A, i.e.
AF = FA. Noting that by definition a canonical orbital 1, (i) satisfies
F(@)y, (1) = €p, 10y, (1), it follows easily that a Slater determinant containing
canonical HF orbitals is an eigenfunction of F. Indeed,

F{¢p1(1>"'¢pN(N>} = \/_'FA@DM( )pr(N)
= \/_.AZf wpl 'wPN(N)

=1

_ mA(i%)%l(l)---%(m

- (5

&) Wn (DU (N} (84)
Evidently, the subtraction of the constant

HMZ

N

(H—F)=FEugp—) &= —Z (ig]27) (85)

=1

l\Db—

shifts the energies by this amount, but leaves the fact intact that Slater
determinants are eigenfunctions of F.

In the main text we will need the Slater-Condon rules. These rules express
matrix elements of one- and two-electron operators with Slater determinants
in bra and ket in terms of one- and two-electron integrals. The orbitals
appearing in bra and ket are orthogonal to each other and normalized. They
are not necessarily canonical HF orbitals. First we apply a so-called line-
up permutation £ in the ket to bring orbitals in bra and ket to the same

positions. Example for 5 electrons:

(1hostbatps | H | (312)13th110at0aths ) = (hr1thotisibaths | H [ 1902103104105 )

Since AL = (—1)!A, where (—1)! is the parity of £, we get at most a minus
sign from applying the line-up permutation. In the example £ = (123), which
has parity +1. Note that the orbitals 15 and 15 are mismatching in bra and
ket. From here on we assume that the orbitals are lined up and omit the

possible minus sign.
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The Slater-Condon rules distinguish four cases differing in the number of

orbitals that mismatch between bra and ket.

e () mismatches
One-particle operator:
N

({tp¥ps *+ Upy } | ZU<Z) | {¥pitps -+ Y }) = Z<pz‘u F2y

=1
Two particle operator:

N N

1 1 1
({¥pi oty } |§ Z - | {1 ¥ps Uy }) = B Z<pipj||pipj>

i#] 0,J

o 1 mismatch

Suppose in position ¢ we have

<¢pi(i) ’ = <¢p(l) |7 |¢pz(l)> = W}q(l)) and ¢p(i) # %(i)-

One-particle operator:

({p1¥ps - Upy | Zu(l) | {UpVps - Upn ) = (plu|q)

Two particle operator:

1on 1 Y
({tp s -t } |§ § y | {Vp¥ps oy }) = § (p pilla py)
i# Y i=1

e 2 mismaltches

Suppose in position ¢ we have

(p (1) [ = (D) [, | p (1)) = [90g(2) ) and (i) 7# 1y ().

and for position j

(p, () | = (e G) ] [4p,(5)) = 19s(5)) and ¢ (5) 7# 9s(5)-

One-particle operator:

<{¢p1¢p2"'¢pw} | ZU(Z) | {¢p1¢p2"'¢p1v}> =0

Two particle operator:
N

ot} 5 D0 | Wt a}) = (ol )

/r'. .
i#j Y
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e More than 2 mismatches

One-particle operator:

({¥p1¥ps - Upn } | Z ) 1 Vi ¥ps Uy }) =

Two particle operator:

N

1
<{¢p1wp2 "'wpzv} | Z_ | {wmwpz' '¢pN}> =0
1753

In the main text we will need Brillouin’s theorem. This states that
N

(Dol H [ @) = (ilula)+ Y (ipsllap;) = (i| f |a) =

j=1
provided ; and 1), are canonical HF orbitals. The singly excited state ®¢ is
obtained by replacing in ®4 the occupied spin-orbital ¢ by the virtual spin-

orbital a.

B Exponential structure of the wavefunction

We will outline how one can prove the exponential Ansatz for the wave func-
tion. The proof needs the factorization lemma of Frantz and Mills. Before
we state this lemma we consider first an example of a factorization of the
kind described by it.

The simplest linked disconnected diagram which appears in the exact

wavefunction is the first diagram on the left hand side:

) et
+ — X
u A o (86)

>

A+A" A A+N A

The two diagrams on the left hand side are equal. Diagrammatically this is

obvious because the vertices are moved vertically and algebraically we have

(abllig)(@'V'|[I'5") b o
Z Z Aab+Aa’b’)AabE E |(I)0>

i,7,a,b 4 ,j ’b’

,b/ |Z Clb‘ ‘/L]> a’t’ rrab
- Z Z ab i Aa/b’)Aa/b’ ) Ez"j’ Ez’j | Dy > (87)

i',j a’b/z]ab

37



By summing the two equal terms in this equation and multiplying by 1/2 we

obtain the factorization

(abllij)(a'V||i'j") EXESY

> 2 a o aory A | 20)
i,5,a,b 4,5 ,a’ b’ A +A )A
1 (abl|ij) B} (@b'lli'j") g
- §<ZTJ 2 g )1 69
i,5,a,b i i’,5',a’ b i’ g’

This factorization is illustrated in Eq. (86). We see that by summing over
two diagrams with equal numerators and different ‘long denominators’ (the
vertical lines) we obtain a single product of diagrams with ‘short denomi-
nators’, this is half the square of the first-order contribution to 75, namely
%(TQ(U)Z. Here we have the simplest application of the Frantz-Mills lemma:
the application to two equal subdiagrams, each containing one vertex.

In general, if we have one subdiagram with n vertices and one subdiagram
with m vertices, then we have in total (n + m)!/n!lm! time versions of the
compound diagram obtained by shifting the two subdiagrams with respect
to each other along the horizontal axis. These time versions have the same
numerators but different long denominators. The Frantz-Mills factorization
lemma states now that the sum of the (n+m)!/n!m! long denominators can
be factorized into a product of short denominators. Since the numerator is
by definition already a product, the sum of (n+m)!/nlm! diagrams becomes
algebraically a single product. So, in the perturbation expansion of the
wavefunction sums of different time versions can be replaced by products.
The factorization lemma is proved by mathematical induction. If we were to
give a formal proof of the CC Ansatz, we would also have to use induction.
However, we only sketch the beginning of this proof.

Let us consider as another example the case n = 1, m = 2, for instance
the sum of the three third-order disconnected wavefunction diagrams on the

left hand side:

+ + p— X
S — ~— \\
>\. ./X\ N A, A
~_ NP ~1 B,
A7+B7
A,tB; A, 4 Ay,+B,; 4 A +B; A;+B; B,
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The numerators are equal and the denominators become
1 1 N 1 n 1 B 1
AQ -+ Bl A2A1 (Al -+ Bl>A1 (Al —+ Bl)Bl AlAQBl ’

Hence the sum of these three wavefunction diagrams factorizes and yields

(89)

TQ(I)TI(Q). In the very same way we obtain T2(1)T2(2) from the sum of three
diagrams with equal numerators.

As a further illustration we may consider the sum of the following six
(n = m = 2) schematic fourth-order diagrams all having the same numerator

and consisting of two connected pieces:

o« o Jﬂ . ‘.‘ . : '.

A+ B, A+ B, A, A, A,+B, A,+B; A, +B, 4, A,+B, A,+B, A;+B;, B,
® ® ® | ® |
® | ® ® ® ——e—o
A,+B, A, +By A, +B; A A,+B, A,+B; A +B; B, A,+B, Aj+By B, B

and the corresponding algebraic equation indeed factorizes:

1 1 1
+
Ag + By [(Az + B1)As Ay (A2 + B1)(A; + By) A,
1 1
+
Ay + B1)(A1+ B1)By (A1 + Bs)(Ay + B1) A

i +

1 1
(4 +By)( A+ BB T (A 1 BQ)BQBl]
= ; (90)

A1A3B B
If the upper subdiagram is equal to the lower, for instance both subdiagrams
are T1(2) or T2(2), then we overcount. The first diagram is then equal to the
sixth, the second to the fifth and third is equal to the fourth. So in that case
only three of the time versions are different, and we must divide by two (=2!).
If the two subdiagrams are different, for instance the subdiagrams correspond
to Tl(z) and T2(2), respectively, then all six time versions are different and no
division by two must be performed.

In summary, we found so far the following factorized terms

1
5 [(Tz(l))Q + (TP + (Tf2))2] +TOT® 4 TOT® 4 7O
1 S|
= 5 [Tf” + 14 Té”] ~ S+ ) (91)
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Continuing in this manner, using the perturbation expansion of the k-cluster
operator T}, = ) T,gn) and T' = Y, T}, we see that $7? is contained in the
linked cluster expansion of the wavefunction.

Also linked wavefunction diagrams consisting of three subdiagrams con-
nected by long denominators appear in the linked cluster expansion of the
wavefunction. It can be shown that summing all time versions leads to a
factorization of the long denominators. If the three subdiagrams are equal
we have to correct for the fact that we overcount. Hence also 57°|®q) is

contained in the linked cluster expansion. Continuing this argument, we find

hE

) = D {(BV)"} [®)

S
Il
o

1 1
= (1+T+5T2+§T3+--.)\<I>0>:eT\@o). (92)

So, we have made plausible that the exact wavefunction can be written in

exponential form.
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