# Differential ring

From Knowino

Revision as of 06:00, 24 June 2011 by Boris Tsirelson (talk | contributions)

In ring theory, a **differential ring** is a ring with added structure which generalises the concept of derivative.

Formally, a differential ring is a ring *R* with an operation *D* on *R* which is a derivation:

## [edit] Examples

- Every ring is a differential ring with the zero map as derivation.
- The formal derivative makes the polynomial ring
*R*[*X*] over*R*a differential ring with

## [edit] Ideal

A *differential ring homomorphism* is a ring homomorphism *f* from a differential ring (*R*,*D*) to a differential ring (*S*,*d*) such that *f*·*D* = *d*·*f*. A *differential ideal* is an ideal *I* of *R* such that *D*(*I*) is contained in *I*.

Some content on this page may previously have appeared on Citizendium. |