Basis (linear algebra)

From Knowino
Revision as of 18:45, 12 January 2011 by Boris Tsirelson (talk | contributions)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

In linear algebra, a basis for a vector space V is a set of vectors in V such that every vector in V can be written uniquely as a finite linear combination of vectors in the basis. One may think of the vectors in a basis as building blocks from which all other vectors in the space can be assembled. This is similar to viewing the prime numbers as building blocks from which positive integers can be assembled.

Every nonzero vector space has a basis, and in fact, infinitely many different bases. This result is of paramount importance in the theory of vector spaces, in the same way that the unique factorization theorem is of fundamental importance in the study of integers. For instance, the existence of a finite basis for a vector space provides the space with an invertible linear transformation to Euclidean space, given by taking the coordinates of a vector with respect to a basis. Through this transformation, every finite dimensional vector space can be considered to be essentially "the same as" the space \mathbb{R}^n just with different labels for the vectors and operations. (Here, \mathbb{R}^n consists of row vectors (x_1, \ldots, x_n) with n real number entries.)

If a vector space has a finite basis, then every basis for the space has the same number of elements: this number is the dimension of the space.

The term basis is also used in abstract algebra, specifically in the theory of free modules. For more on this use of the term, see the advanced subpage.

[edit] Examples

Information.svg Some content on this page may previously have appeared on Citizendium.
Personal tools