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Chapter 1

Introduction

1.1 Oxygen

The oxygen molecule (Og) is very important to us. Most life would not be
possible without oxygen. Atmospherical Og originates from the photosynthesis
process, which occurs in plants. Absorption of solar ultra-violet (UV) radia-
tion by Os molecules in the stratosphere leads to photodissociation of these
molecules. The resulting oxygen atoms react again with oxygen molecules
to form ozone (Os), which also absorbs UV radiation in photodissociation,
though at wavelengths different from the Osphotodissociation. In this way
oxygen molecules protect life on earth from the harmful solar UV radiation.

Research, both theoretical and experimental, has been performed on the
oxygen molecule for several other reasons. First of all, because of scientific cu-
riosity, and because it is fun to investigate oxygen. It is also a small, relatively
simple molecule. This makes it possible to use it as a test case in fundamental
research. In theoretical calculations, the molecule is small enough that very
high-level, very accurate calculations are feasible using present computers. In
this thesis, we present theoretical and computational studies of the oxygen
molecule. In the remainder of this introduction we discuss some theoretical
background, and we describe in considerable detail the photodissociation ex-
periment that motivated the studies presented in this thesis, in particular the
study in Chapter 3.

1.2 The Born-Oppenheimer approximation

Exact solutions of the Schrédinger equation, the basic equation of non-rela-
tivistic quantum mechanics, do not exist for Oy. Approximations must be
made to solve this equation. Oxygen consists of eighteen particles: two nuclei
and sixteen electrons, which we consider as electrically charged point masses.
The nuclei are about thirty thousand times as heavy as the electrons, and
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Figure 1.1: Potential energy curves for most of the electronic states of oxygen
playing a role in this thesis.

have much less kinetic energy. In 1927 Max Born and Robert Oppenheimer!
developed the formalism that is now known as the Born-Oppenheimer (BO)
approximation. They assumed the nuclei to be stationary for the description of
the electronic motion, i.e. the electrons adapt their motion instantaneously to
the changing nuclear geometry, minimizing their total (electrostatic potential
plus kinetic) energy. The nuclei move in the potential caused by the fast-
moving electrons. In this approximation the Schrédinger equation separates
into two differential equations, one for the electrons and one for the nuclei.

In the first step of the BO approximation the nuclear kinetic energy term is
neglected in the Hamiltonian, and the electronic Schrodinger equation is solved
for a set of fixed nuclear geometries (a set of values for the internuclear distance
R). This yields electronic energies as function of R, the electronic potential
energy curves. The potential energy curves for several electronic states of
oxygen are shown in Fig. 1.1. For small R the electronic energy rises very
steeply. For large R the electronic energy becomes a constant, the dissociation
limit. The zero-point of energy in Fig. 1.1 is the lowest dissociation limit of
O3, the energy of two ground state oxygen atoms.

In the second step of the BO approximation, the nuclear dynamics is con-
sidered. The nuclei vibrate in the potential field from the electrons and the
internuclear Coulomb repulsion. The nuclei can be in different vibrational
states, depending on the form of the potential energy curve for the state the
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electrons are in. Some potentials in Fig. 1.1 decrease monotonically, for exam-
ple the states 1L, °IL,, °%;, and 22}, These states are called repulsive. If
the electrons of an oxygen molecule get excited to such a state the molecule will
dissociate. Stable vibrational states are only possible for electronic states that
have a well for some value of R. The oxygen molecule has six of these strongly
bound electronic states below its first dissociation limit: the ground state
X 32;, two low-lying gerade states alAg and b' E;r, and the three Herzberg
states ¢'X, A’ 3A,, and A3Y}. This thesis focuses mainly on the Herzberg
states. The 13IL, state seems repulsive, but it has a very shallow minimum
at R ~ 5.5 ap, in the long-range. These states all dissociate into (correlate
with) ground state (*P) oxygen atoms. The B3X state is an example of a
bound electronic state that dissociates into an excited state atom (1Ds) and a
ground state atom. The small horizontal dashes in the bound potential energy
curves in Fig. 1.1 indicate the energies of the nuclear vibrational levels in these
states. For example, v = 0 to 6 are indicated for the ground state, and v =0
to 10 for A3S}. The molecule also rotates, with total angular momentum
quantum number J. The energy difference between the rotational levels is too
small to visualize in Fig. 1.1. One quantum state of the molecule is defined by
specification of the electronic, vibrational, and rotational state, and hence it
is called a rotational-vibrational-electronic (RVE) state.

1.3 Non Born-Oppenheimer effects

Within the Born-Oppenheimer approximation the nuclear dynamics is treated
for each electronic state separately. When two electronic states are close in
energy, this is not a valid approximation. This is the case, in particular, in
the long-range, where several electronic states approach the same dissocia-
tion limit. Here we have to take couplings between the electronic states into
account, that were neglected in the calculation of BO potentials.

Spin-orbit interaction (the coupling between the electronic orbital angular
momentum and the electron spin) is ignored in the electronic Hamiltonian used
in the first step of the BO approximation, as the spin-orbit coupling is usually
small compared to the Coulomb interaction. However, spin-orbit coupling is
important for the oxygen molecule in the long-range, as it determines the three
fine-structure states of ground state O(*P;) (j = 2,1,0) atoms. Spin-orbit
coupling may thus induce transitions between Born-Oppenheimer electronic
eigenstates in the long-range.

Interactions between the rotational angular momentum and the electronic
orbital and spin angular momenta (orbit-rotation and spin-rotation interac-
tions) give also rise to couplings between BO eigenstates, just as the radial
derivative coupling (9/0R matrix elements). Non-BO effects can be impor-
tant even when the interacting states are not close in energy, for example in
the electronic dipole transition from the ground state to the Herzberg states.
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This transition is forbidden in the BO approximation, and gains intensity only
after inclusion of non-BO effects.

1.4 The Herzberg states

The story of the Herzberg states, that this thesis is about, started in 1932
when Gerhard Herzberg? observed very weak absorption bands of the electric
dipole forbidden transition from the ground state to A3Y}, the transition
that is now known as Herzberg I. The rotational analysis was given in 1952 by
Herzberg.? The Herzberg IT and I1I transitions (from the ground state to ¢!,
and A’ 3A,, respectively) were also first observed by Herzberg in absorption,*
and he presented the rotational analysis in 1953.

After the pioneering work of Herzberg, much other work has been done
on these states, both theoretical and experimental. The theoretical work was
performed mostly within the Born-Oppenheimer approximation: calculation
of electronic potential energy curves and rovibrational levels.>% In this thesis
we also calculate potential energy curves (Chapter 2). However, non Born-
Oppenheimer effects are very important in the description of the O, Herzberg
states, as we will show in this thesis. In photodissociation, spin-orbit couplings
determine the distribution over atomic fine-structure states, and the polariza-
tion of the photofragments, i.e., the relative populations of the m components
of the atomic fine-structure states. We study these quantities in Chapter 3.
This photodissociation process has also been studied experimentally by many
people, see Ref. 7 and references therein. We focus on the experiment from
Ref. 7, which uses the new velocity-mapped ion-imaging technique. This pho-
todissociation experiment is described in Sec. 1.5 of this introduction.

These spin-orbit couplings also affect the bound RVE states. The shallow
long-range minimum of 13II, supports two vibrational levels, and spin-orbit
coupling of 1311, with the Herzberg states perturbs the Herzberg spectra just
below the dissociation limit. Employing our potentials and spin-orbit cou-
plings we perform full RVE state calculations in Chapter 4. We found a new
assignment of the perturbing levels of the 1°II, state.

The excitation mechanism of the Herzberg transitions is studied in Chapter
5. The Herzberg transitions are all electric-dipole forbidden, they only gain
intensity through spin-orbit and orbit-rotation coupling. A first attempt to in-
clude these effects was the calculation by Klotz and Peyerimhoff® of electronic
transition moments. We apply our excitation mechanism in the calculation
of line intensities in the bound state part of the Herzberg spectrum. These
integrated line cross-sections have been measured very accurately,” 2 the ex-
periments are described in Sec. 1.6. This excitation mechanism also influences
the photodissociation. The three Herzberg states yield different photofrag-
ment fine-structure distributions and polarizations, and the excitation mecha-
nism determines the relative intensities of the three contributing states. Also
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interferences between the three states are possible.

1.5 Photodissociation experiment: photofragment fine-
structure distribution and polarization

In a photodissociation process several vector quantities play a role: the polar-
ization vector e of the photolysis laser, the transition dipole moment vector u
of the molecule, the relative velocity vector v of the recoiling fragments, the
total angular momentum J and the total angular momenta j, and j, of both
fragments. All these vectors can be related to the laboratory-fixed direction of
the laser polarization e. In addition to scalar properties of the photofragment
distribution over atomic fine-structure levels O(*P;) we study in Chapter 3
the correlation between e and v, i.e., the angular distribution of photofrag-
ments, and the correlation between e and the fragment angular momenta j,
and Jp, i.e., the fragment polarization, characterized by the distribution over
the HTagnetic sublevels mg, my.

In the axial recoil approximation, the two atomic fragments are assumed to
recoil along the direction of the internuclear axis at the time of excitation into
the continuum state. For a parallel transition (X « X, IT « II) the transition
dipole moment p is oriented along the internuclear axis, and thus, in the case
of direct dissociation p || v. For a perpendicular transition (X « II, TT « A)
the transition dipole moment lies perpendicular to the axis, so u L v. The
interaction between the electric field of the photon and the transition dipole
moment is given by e - 1, and the transition intensity depends on the angle
between e and j, and hence on the angle # between e and v. The 6 dependence
of the photofragment angular distribution for a one-photon transition is given
by13

do

dQ(
where ¢ is the total cross section. For a purely parallel transition, we have a
cos? @ distribution, and for a purely perpendicular transition, the distribution is
sin? §. Using the second-order Legendre polynomial P;(cosf) = (3 cos? §—1)/2
and the anisotropy parameter § we find § = 2 for a parallel transition, § = —1
for a perpendicular transition, and an intermediate (3 for transitions of mixed
character.

The angular distribution of photofragments can be measured in an ion-
imaging experiment.'* The molecules are dissociated with a polarized laser
pulse, and the resulting fragments are state-selectively detected with resonance
enhanced multiphoton ionization (REMPI). A second laser pulse ionizes the
atomic photofragments. The ions are accelerated by an electric field towards
the detector which consists of a dual microchannel-plate, phosphor screen and
CCD camera. The highest spatial resolution is achieved with velocity-map

0) = %[1 + BPy(cos 0)), (1.1)
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ion imaging,'® !¢ invented by Eppink and Parker in Nijmegen in 1997. In this

technique an electrostatic lens guides all ions with the same initial velocity and
charge/mass ratio to the same point on the detector, irrespective of their initial
distance from the lens-axis. When the laser polarization direction is chosen
parallel to the vertical axis of the detector screen, the inverse Abel transforma-
tion'” can be used to reconstruct the original three-dimensional (3D) velocity
distribution from the two-dimensional (2D) ion image. The measured angular
distribution of the ions differs from the photofragment atomic angular dis-
tribution, because the REMPI process uses polarized light. Because of this
polarization, the ionization efficiency of the atoms depends on their angular
distribution and polarization, and on the geometrical setup of the experiment.
Using angular momentum theory the atomic fragment angular distribution and
polarization can be recalculated from the measured ion angular distribution,
as we will show in Chapter 3.

The photodissociation of Oy in the Herzberg continuum is a fast disso-
ciation process (=~ 0.1 — 0.3 ps), which means that the dissociation occurs
on a smaller timescale than rotation, and that the axial recoil approxima-
tion can be used. Excitation into the Herzberg continuum is of mixed par-
allel/perpendicular character, due to the forbidden nature of the transitions
and the multitude of participating intermediate states. Therefore the angular
distribution is a linear combination of the pure sin?# and cos? @ distributions,
with a 3 somewhere between —1 and 2. In the velocity map ion-imaging ex-
periment of Buijsse et al.” a pulsed molecular beam of cold (=~ 10 K) Oy in
helium is crossed at right angles by one or two counterpropagating pulsed fo-
cussed laser beams. The first (variable wavelength) laser excites ground state
Oy into the Herzberg continuum. The second laser ionizes the nascent O(3P;)
atoms at 226 nm, the (2+1) REMPI wavelength. In this REMPI process, the
O(®P) atom is ionized with three photons. The resonant intermediate state
0(2p3(*S)3p®P) is reached with 2 photons. Dissociation at 226 nm can be
studied in a one-laser experiment, in which the same laser is used for both
excitation and detection. A raw and Abel inverted ion-image for dissociation
of Oy at 225.67 nm, and subsequent REMPI detection of O(3P,) is shown in
Fig. 1.2 (a) and (b) respectively.

The 3D velocity distribution is obtained by rotation of the inverted image
[Fig. 1.2 (b)] around the vertical symmetry axis (the ¢ polar angle). This is an
image from a one-laser experiment. The laser polarization e is vertical, and the
laser propagation from left to right. All fragments with the same initial velocity
form a ring in the inverted image, and the angle 6 is given by the angle with the
vertical axis of the image. The image shows three rings and a central dot. The
central dot is 02+ signal with zero transverse kinetic energy. The inner ring is
the signal that we are interested in: one-photon excitation into the Herzberg
continuum and subsequent dissociation into O(3P) + O(3P;). Note that only
one atom is detected, O(®P) in this case. The three fine-structure states
O(3Pj) of the second atom give in principle rise to three rings in the ion image,
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Figure 1.2: Raw (a) and Abel inverted (b) ion image for dissociation of Oy at
225.67 nm, and subsequent REMPI detection of O(3P).
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Figure 1.3: Velocity (a) and angular (b) distributions obtained from Fig. 1.2.
Panel (b) shows the angular distribution for the one-photon O(3P;) + O(3F;)
channel (solid line). This angular distribution is best fitted with 5 = 0.56
(dashed line), for comparison we show also dotted curves with § = 0.46 and
0.66. We thank André Eppink’ for making this figure and Fig. 1.2 available
to us.
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separated in kinetic energy by the O(3P) fine-structure splittings. However,
the experimental resolution is not sufficient to resolve this small kinetic energy
difference. Only one ring is measured, thus summing over the three fine-
structure states of the second atom. The other rings are from two-photon
excitation and dissociation into O(3P,) + O(!Dy) (middle ring) and O(®P»)
+ O(®P;) (outermost ring). These last two rings show a quadrupolar angular
distribution, that can be described by a fourth-order Legendre polynomial.
This is indicative of the two-photon process.

Fig. 1.3 shows the velocity distribution obtained from Fig. 1.2 (b) by inte-
gration over # and ¢. The speed distribution shows the three rings as peaks.
Branching ratios over the three fine-structure states O(*P;) with j = 0,1,2
were obtained by integrating the one-photon O(3P;) + O(3P) peak for the
three images. The fine-structure branching ratio was determined for the one-
laser experiment at 226 nm only. In the two-laser experiments at other disso-
ciation energies, the signal intensity depends on the precise overlap of the focal
points of the two lasers. This overlap changes too much between the images
for different j.

Fig. 1.3 (b) shows the angular distribution of the ions from the inner ring
of Fig. 1.2. The data (solid line) is best fitted with a distribution with 8 =
0.56 (dashed line). The (3 parameter describing the O(*P;) atoms angular
distribution is not equal to this measured angular distribution of the oxygen
ions. The REMPI process uses polarized laser light, with the same polarization
direction as the excitation laser pulse in this experiment. Because of this
polarization, the ionization efficiency of the atoms depends on their angular
distribution, and on the geometrical setup of the experiment. In Chapter 3 we
calculate both the angular distribution of the atoms, and the observed angular
distribution of the ions. The two distributions differ most for low energies,
just above the dissociation limit.

1.6 Bound state spectroscopy: energy levels and tran-
sition intensities

Light can induce transitions between RVE states in the molecule, when the
states have the correct symmetry-relation with respect to each other. A tran-
sition is resonant (occurs most likely) when the energy difference between the
initial and final RVE state is equal to the photon energy. The energies of
the rovibrational states in the electronic ground state are well known for a
time.'® 1 The energy difference between the ground state and the Herzberg
states is about 4 eV, which is in the UV range of the electromagnetic spectrum.
From the UV absorption spectrum of ground state oxygen molecules, one can
thus infer the energies of RVE states in the electronically excited Herzberg
states. Experimental studies of the level positions of Herzberg RVE states are
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numerous.? +91120°24  Vibrational levels in the Herzberg states have been
calculated in Chapter 2 of this thesis, and a full RVE state calculation, espe-
cially of states closely below the dissociation limit, can be found in Chapter
4.

The intensity of the transition can be measured by integration of the ab-
sorption spectrum. This intensity depends on several factors. For example,
the rotational quantum number J for initial and final state may differ by at
most 1. The vibrational wave functions of both states must have some overlap.
The most important factor is the transition dipole moment matrix element be-
tween initial and final state electronic wave functions. The transition dipole
moment between the ground state, which has 329’ symmetry, and the Herzberg
states, of ¥+ 3A,,, and 'X symmetries, is zero in first order. The Herzberg
transitions gain intensity only after inclusion of spin-orbit and orbit-rotation
interactions of ground and excited states with intermediate states of several
symmetries. This results in a complicated mechanism for the excitation into
the Herzberg states. This mechanism has been elucidated in Chapter 5 where
we compare experimental integrated line cross-sections” 2 with calculated re-
sults.
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Chapter 2

Photodissociation of Oy in the Herzberg

continuum. I. Ab initio calculation of
potential energy curves and properties

Abstract

We present ab initio complete active space self-consistent-field
plus multireference configuration interaction (CASSCF + MRCI)
potential energy curves for the eight electronically excited unger-
ade states of oxygen (A%}, c'¥- A’ 3A,, ', °I1,, °IL,, °%;,
and 23%F) that correlate with the O(3*P) + O(3P) dissociation
limit. We also report the R-dependent spin-orbit couplings be-
tween these states and the R-dependent radial derivative coupling
matrix element (23X7|0/0R| A3XF). The near degeneracy in the
long range of the same-symmetry states 2%} and A*Y} may re-
sult in unphysical mixing of these states in a CASSCF calculation.
We derive the correct asymptotic behavior of these states as dic-
tated by the quadrupole-quadrupole interaction and we show how
a correct long range description of these states can be achieved
numerically by employing undistorted molecular orbitals. Bound
state calculations using Herzberg I, II, and IIT potentials show ex-
cellent agreement with all available spectroscopic data. In the ac-
companying paper the potentials and couplings will be employed in
a semiclassical study of the photodissociation of Og in the Herzberg
continuum.

2.1 Introduction

The first step in the formation of ozone (O3) in the atmosphere is the pho-
todissociation of Oz.! Dissociation of ground state O2(X3X7) occurs in the

Herzberg continuum (200-240 nm) via transitions to the Agqu ,
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A’ 3A,, states (the so-called Herzberg I, II, and III transitions). These three
transitions are electric dipole forbidden and the photoabsorption cross sec-
tions are several orders of magnitude smaller than, e.g., the cross section in
the Schumann-Runge continuum (below 176 nm) which arises from an allowed
transition. Since the Herzberg continuum is very weak it allows sunlight to
penetrate deep into the atmosphere where the Oy concentration is large. As a
result, the Herzberg transitions lead to 90 % of the photodissociation of O9 in
the lower stratosphere and give rise to the Chapman ozone layer.? 3

In 1998 Buijsse et al.* constructed a photoabsorption model based on
the latest experimental and theoretical knowledge of the Herzberg system.
This model relies to a large extent on extrapolation of spectroscopic data
for the Herzberg I, II, and III bands. These bands occur because the three
electronically excited states are weakly bound. Note that in recent years several
experimental studies re-investigated these bands.? ! The Herzberg transitions
borrow intensity from electric dipole allowed transitions, mainly through spin-
orbit (SO) interactions in electronic ground and excited states. The Herzberg
I transitions give the largest contribution to the Herzberg continuum. The
dominant channels involve the A3SF | state (& 73 % at A = 226 nm),

3y— I 3y— SO 3¢+
X Zg,il B Eu,ﬂtl A Eu,il

X?’E;m LEN 13Hg,0+ = A3E;r,i1
and the A3Y  state (+ 19 % at A = 226 nm)

X0 S5 Pl g = APSE
where the symbols || and L refer to the parallel and perpendicular components
of the dipole operator. The other transitions contributing to the Herzberg con-
tinuum are all perpendicular. A one-photon transition gives rise to an angular
distribution of the photofragments P(0) = 1+ BP2(cos ), where 6 is the angle
between the laser polarization and the fragment recoil direction and P; is the
second order Legendre polynomial. In the sudden recoil limit the anisotropy
parameter 3 equals 2 for a parallel transition and —1 for a perpendicular tran-
sition. Thus, Buijsse et al. could validate their photoabsorption model by
determining the overall # parameter in an ion imaging experiment.

In this experiment* the atomic fragments were detected by (2+1) REMPI
yielding O(3Pj:271,0) fine-structure resolved, energy dependent anisotropy pa-
rameters (;(E). In the adiabatic (low energy) limit all the electronically ex-
cited states involved correlate with the O(3P;) + O(®*P,) limit. However, in
the experiment j = 1 and j = 0 atomic fragments were found and furthermore
the 3; parameters were different for j = 2, 1, and 0. This suggests that initially
excited states with different parallel/perpendicular character such as A3Zj7 11
(8=~ 1.23) and A3E;O_ (8 = —1) have different atomic fine-structure branch-
ing ratios. These branching ratios are determined by transitions that occur, as
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we will show, at interatomic distances between Ro o = 4.5 and 9 ag where the
separations between the potential energy curves correlating with the O(3P) +
O(®P) limit are of the same order as the spin-orbit couplings (=~ 1 mEy). Thus
the experimental results contain information about potentials and couplings in
a region that is difficult to probe with spectroscopic techniques. In this paper
we present ab initio calculations of the potentials and couplings for all eight
ungerade states that correlate with the O(3P) + O(®*P) limit. The results are
used in a dynamical calculation described in the accompanying paper,'' where
we compare calculated and measured 3;(F) parameters.

In the experiment Oy was prepared in a cold molecular beam, where the
population of the ground state (N = 1) was estimated to be at least 75%.
Hence, we have ignored rotational couplings. We found, however, that in
addition to the spin-orbit couplings, also the radial nonadiabatic coupling pro-
portional to the nonadiabatic coupling matrix element (NACME) (23%+|0/0R
|A3%F), which arises from the nonseparability of electronic and nuclear mo-
tion, becomes important between 4 and 8 ag. The six ungerade states not
involved in this coupling matrix element are all of different D, symmetry, so
all other radial derivative couplings are zero.

We will show that in the strong interaction region the CASSCF+MRCI
method described in detail in Sec. 2.3 gives very good results by comparing
(in Sec. 2.5) calculated vibrational energy levels and rotational constants with
spectroscopic data available for the Herzberg bands. However, this method
gives convergence problems in the long range (see Sec. 2.3). Furthermore,
when the A%} and 2%} states become nearly degenerate in the long range,
they do not approach the correct atomic limit defined in Sec. 2.2, but some
(arbitrary) linear combination. This results in spin-orbit couplings not going
to their analytically known long range values. Therefore we present an alter-
native procedure for obtaining molecular orbitals in the long range, also in
Sec. 2.3. In contrast to the CASSCF based calculations, this procedure gives
the correct long range limit for the spin-orbit couplings. In Sec. 2.2 we derive
this long range limit using the atomic spin-orbit coupling constant and angular
momentum theory. We present the derivation in some detail because we will
need the analytic description of the long range behavior of the electronic wave
functions when we employ the ab initio results in the dynamical calculation
in the accompanying paper.!! In particular the relative signs of the couplings
must be consistent. In Sec. 2.4 we present fits of the potential curves that
smoothly connect short range and long range results, and have the correct
asymptotic behavior. We also present fits for the NACME and spin-orbit cou-
plings. We will end with some conclusions in Sec. 2.6. Throughout this paper
we employ atomic units. Note that 1 mE;, = 219.474 63 cm™ 1.
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2.2 Theory

2.2.1 Potential Energy Curves

To describe the photodissociation of Og, we calculated potential energy curves
for all ungerade electronic states dissociating into two O(*P) atoms. Further
we computed nonadiabatic and spin-orbit couplings between these states. The
total Hamiltonian is given by

ﬁ(R) = ﬁcoul(R) + IA{SO(R)7 (2.1)

where f[coul(R) is the usual time independent Coulombic Hamiltonian in the
clamped nuclei approximation, Hgo(R) is the spin-orbit interaction, and R
is the internuclear distance. The potential energy curves €.z s(R) and the
corresponding electronic adiabatic Born-Oppenheimer (ABO) wave functions
are defined by .

[Hcoul(R) - €c|A|S(F€)]|CASE7 R> =0, (22)

where A, S, and ¥ are the usual Hund’s case (a) quantum numbers. The
index ¢ distinguishes between states that belong to the same irreducible repre-
sentation of Dy, and have the same spin part. All the electronically excited
states that are relevant to our problem are ungerade and we omit this sym-
metry label. Upon dissociation into two Russell-Saunders coupled atoms the
ABO wave functions can be expanded in products of atomic wave functions
[lada)[$a0a)lbAs)|sp0p), Or in coupled atomic states

ILASS) = |LA)|SS), (2.3)
with
LAY = > [lada)[loAs) (laXals Ao | LA),
Aa b
|SY) = Z|saaa>|sbab>(saoa5b0b|52>, (2.4)
Ta0b

where a and b label the atoms, for O(3P) I, =l = s, = s = 1, and \g, \p, 04,
and oy are the projections of the atomic angular momenta on the internuclear
axis. The symbol (aabf|cy) is a Clebsch-Gordan coefficient. The coupling of
l, and Iy to L is not strictly necessary, but very convenient, since the ABO
states will turn out to correlate in the long range one-to-one with these coupled
atomic states.

If, for a given spin state and A quantum number, only one coupled atomic
state |LASY) exists it must correlate in the long range to an ABO state on
symmetry grounds. Otherwise, we may construct long range ABO states by
considering the leading interatomic term of the multipole expansion of Heou
at large internuclear distance.!? To find its matrix elements we write the
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interatomic potential part V of Heou as a multipole expansion in spherical
tensor form.'® With K =y + Iy we have

~ (_1)l2 (ZK)' 1/2 R R
- = 2.
v ; REFL [ (201)!(212)! K ;VK, (2.5)
with )
Z Qll”’?h l(zznz llmllQmQ‘K0>v (26)

mimo
where we assumed the molecule to lie along the z-axis. The Wigner- Eckart
theorem relates the matrix elements of the atomic multipole operator Ql o

to the reduced matrix element (! a||Ql1 1L,

la L1

A(a) PN la—mq (a) 17
amal Q0 ity = (-1 (el Y @i, e
and similarly for atom b. We may also apply the Wigner-Eckart theorem to
the coupled spherical tensor Tk . Using the expression for its reduced matrix

element (see, e.g. Eq. 5.68 in Ref. 14) we find

((Laly) LA T |(IL1) LAY = (—1)2K+E =N (DAL — N'|K0)

lo, I 0
Xl 1l p L+ DL+ 1)(I|ON ) QY 115 (2.8)
L L' K

The only permanent multipole moment of an O(®*P) atom is the quadrupole.
The leading term of the interatomic potential is thus the quadrupole-quadru-
pole interaction Vs, with l; = Iy = 2 and K = 4. The Vs matrix elements are
given by

(LASS|Vs|L'N'S%) = 56“'6/\/\/ 3 /70 70Q2_ (—1)E"A(LAL, —AJ40), (2.9)

where we define the quadrupole moment of O(3P) as

Q.. = (10102010 =~/ 2112211 (210)

Thus it turns out that the coupled atomic states correspond to long range
ABO states, because the off-diagonal elements of V5 are zero. Therefore we
will drop the label ¢ and instead use the notation |(L)ASY; R) for the ABO
state computed at an interatomic distance R that correlates with |LASY).
In Table 2.1 we give for all ABO states relevant to our problem the usual
spectroscopic notation, the corresponding quantum numbers L, |A|, and S, and
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Table 2.1: The labeling and the correlation with the coupled atomic states
of the O9 ungerade excited states. The coefficient ¢y denotes the fraction of
A = 0 atomic substates in the coupled atomic state, which is used in the BSSE
correction, see Eqs. (2.17) and (2.18).

State Doy |LIAIS) o
bk Biu(2) 001y  1/3
23y Biu(x) 1201)  2/3
'y Auly) |100) 0
D Au(y) 1102) 0
B u(y)
11, 2 110 1/2
By (2) [110) /
, Bau(y)
311, 2 211 1/2
Bau() |211) /
Bou(y)
511, 2 112 1/2
Auly)
A 3A, 221 0
Bi(2) |221)

the irreducible representation labels of Dy, the group in which all numerical
calculations were performed. The transformation between real Ds; adapted
states and the complex spherical states |[(L)ASE; R) is given by

1 A . LTy A
[(L)A, z) = m [(=D)*(L)A; R) + (—1)"|(L) — A; R)] o)
(L)A,y) = ———e [(-DM(I)A R) — (~1)*|(L) — A R)]

2(1 + 51\70)

where the spin part of the wave function |SX) has been omitted on both sides.

2.2.2  Spin-orbit coupling
The Breit-Pauli spin-orbit Hamiltonian Hgo(R) is given by'®

2 4 7(n) & .10 & 70)
A gun Zn8i - L; 28 L7 +s8;- 1
Hso(R) = =5 ) B > ) : (2.12)
i,n m i>j i

In this formula the summation labels ¢ and j indicate electrons and the label
n runs over the nuclei. The symbol up is the Bohr magneton, ¢ is the speed
of light, Z, is the charge of nucleus n, §; is the spin-operator for electron i,
iga) is the orbital angular momentum of electron 7 with respect to particle a
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(nucleus or electron), and 4y, is the distance between particles a and b. This
Hamiltonian couples ABO states with the same value of 2 = A + X. Matrix
elements are nonzero for AQ =0, AA = —-AY =0,+1, AS=0,%1, g « g,
and u < u. From the last two rules follows that we only need to consider the
ungerade states, because the initial excitation is into the ungerade Herzberg
system. Using the Wigner-Eckart theorem, the matrix elements of Hgo(R)
can be written as

((L)ASY; R|Hso (R)|(L)A'S'S'; R) =

(-5 (_SZ : Ei) (L)AS: R||Hso(R)[|(L)N'S'; R), (2.13)

where m = ¥ — Y/ and the quantity between brackets is a 35 symbol. In the
atomic region the spin-orbit coupling is given by

Hgo(00) = A(la - 3 + 1y 8), (2.14)

where A is the atomic spin-orbit splitting constant, which has an experimental
value of —0.353 mE;, for O(3P) atoms.!® For R — oo we may also apply the
Wigner-Eckart theorem to the orbital part to find an explicit expression for
the reduced matrix element in Eq. (2.13),

-A —-m A
% [R(Sas 86, S, S")R(la Iy, Ly L') + R(sp, 80,5, 8"V R(ly, Loy L, L')],  (2.15)

where the function R(z,,xp, X, X’) is given in terms of a 65 symbol by

((L)AS; 00||Hso (00)[|(L)A'S"; 00) = BA(—1)mTE—A ( L 1 L’)

R(xq, 2, X, X') =

1 ’

[(2X + 1)(2X" + D)zg(q + 1)]2 (—1)%etoetX {‘:”}g ;”(?, xlb} (2.16)
Equation (2.15) can be used to illustrate one of the problems encountered
in the long range with the standard CASSCF (+MRCI) method to calculate
optimized MOs, properties and molecular energies (see Sec. 2.3). If the wave
functions for A3%F and 23X do not converge to the correct atomic limits
(with L =0 and L = 2, respectively), but to an arbitrary linear combination,
then the reduced matrix elements calculated on basis of these mixed wave
functions will also tend to a linear combination of the values in the correct
atomic limit.

2.3 Calculations

2.3.1 Potential Energy Curves

All calculations were performed with the MOLPRO'” package. In the short
range (R < 6 ag) we use the augmented correlation consistent polarized va-
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lence quintuple zeta (aug-cc-pV5Z) one-electron basis set.'® The orbitals were

optimized with the CASSCF!% 20 method. In the calculations we employ Doy,
symmetry, but Do, symmetry is imposed on the orbitals, using the LQUANT
option. The states A’ 3A,,, A3SF, and 233} appear all in the same By, irrep
of Dy, (in this energy ordering at equilibrium geometry). The orbitals for
2331 are obtained in a state averaged calculation together with the A3XF
and A’ 3A, states. The orbitals for A3YF and A’ 3A,, are optimized in a state
averaged calculation of only those two states. All other states are lowest in
their symmetry and are optimized independently. The active space consists of
all 2s and 2p valence orbitals and three extra bonding [0, m,(x,y)] orbitals.
The 1s core orbitals were fully optimized but kept doubly occupied.

The orbitals were used in an internally contracted multireference configu-
ration interaction (MRCI)?1:22 calculation with single and double excitations.
All configurations that contribute more than 1 % to the CASSCF wave func-
tion are used as reference configurations in the MRCI calculation. The energies
of the A3 and A’ 3A,, states are calculated in a single calculation, optimiz-
ing both states simultaneously. The energy of the 233 state is obtained by
optimizing only the third By, state. We applied the Pople size consistency
correction.?3 As we will show in Sec. 2.5 this method gives excellent results
for the short range part of the potential.

However, for R > 6 ag we encountered three problems with this method.

1. Convergence problems occurred in the CASSCF calculations in some
cases.

2. The reference configuration selection mechanism in the MRCI calcula-
tion results in discontinuities in the potential curves. The jumps are
quite small (~ 200uE,), which is fully acceptable in the short range. In
the long range, however, such jumps are not negligible compared to the
interaction energies.

3. The A3Y} and 2%} state did not converge to the correct atomic limit.
For example, the analysis in Sec. 2.2 shows that the SO coupling between
A3 F and 31, should vanish for large R, whereas the reduced matrix
element for the SO coupling between 23X} and 3II, should be %\/514
However, at the CASSCF level these couplings are both nonzero (see
Sec. 2.5) suggesting that the computed states are linear combinations of
the A3YF and 233} states. This is of course not too surprising, since

these states are of the same symmetry, and nearly degenerate for large
R.

To circumvent these problems we employed a somewhat different approach
for the long range calculations. For these calculations, we constructed molec-
ular orbitals as fixed linear combinations of atomic orbitals. For instance, a
2pm, orbital was constructed as 2p,(A) + 2p,(B), etc. The atomic orbitals
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were determined in a separate state averaged CASSCF calculation of the three
O(3P) states, which yields spherical symmetry adapted atomic orbitals. The
active space in these calculations consisted of the 2s and 2p orbitals. In or-
der to use the MOs in an MRCI calculation they were orthogonalized, but
not optimized. First, core orbitals were constructed from atomic 1s orbitals.
Then, the “active” space was constructed by projecting the core component
out of the 2s/2p valence space. The virtual space was constructed as the
orthogonal complement of the core and valence spaces. Within each orbital
space orthonormal bases were obtained with Lowdin orthogonalization. In the
MRCI calculation we used the complete active space as reference space, thus
avoiding the discontinuities arising from configuration selection. In Sec. 2.5 we
will demonstrate that these undistorted molecular orbital based calculations
yield the correct atomic limit for the SO couplings. For these undistorted
“long range” calculations we used a slightly smaller one-electron basis than for
the short range. It consists of the (13s8p) primitive set of van Duijneveldt,?*
which was contracted to [5s4p] using the default MOLPRO contraction.?” The
primitive set was supplemented with a (6d4f2¢g) even-tempered set of polar-
ization functions with exponents of the form a = 2.5" g with oy = 0.13, 0.29,
and 1.24 for the d, f, and g functions respectively and n = 0,...,k — 1 where
k is the number of functions of in the set. These polarization functions were
contracted to [3d2f1g], again with the standard MOLPRO contraction. Finally
a diffuse s(a = 0.076666) and p(a = 0.051556) orbital and the outermost
d(a = 0.13) orbital were added uncontracted.

2.3.2 Basis set superposition error

Extensive literature on van der Waals interactions shows that the Boys-Ber-
nardi?® counterpoise procedure is an effective method to reduce the basis set
superposition error (BSSE).2” Van Mourik et al.?® showed that for chemically
bound diatomic molecules BSSE correction may improve the convergence be-
havior of molecular properties with basis set size, but that the corrected results
are not necessarily in better agreement with the complete basis set limit than
the uncorrected results. Hence, for the short range we minimized the BSSE by
using a rather large one-electron basis. In the long range we used a BSSE cor-
rection. Note, however, that strictly speaking the Boys-Bernardi counterpoise
procedure is not defined for a molecule dissociating into open-shell fragments.
An ambiguity arises when the O(®P) atom is calculated in the molecular basis,
because the cylinder symmetry of the molecular basis breaks the spherical sym-
metry of the atom. Specifically, the O(3P) states split into A = 0 and |A\| = 1
states, where A is the projection of the electronic orbital angular momentum
on the internuclear axis. Fortunately, in the long range we can estimate the
contributions from the atomic substates to the molecular wave functions using
Egs. (2.3) and (2.4). Thus, we generalized the Boys-Bernardi counterpoise
procedure by defining the atomic energy for a given molecular state as the
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weighted average of the atomic substates, i.e.,
AE.(R) = coAEx=0(R) + (1 — co) AE}x =1 (R), (2.17)

with, for a molecular state |LASY),

co =Y [(la0lpAs| LA)[? (2.18)

Ab

and similarly for Ej. The value of ¢y is listed for all molecular states in Table
2.1.

2.3.3 Couplings

We calculated the radial derivative couplings (2337 |0/0R|A3S ) with the
two-point finite difference method (AR = 0.1 ag) as implemented in MOL-
PRO at the CASSCF as well as the CASSCF+MRCI level, and we repeated
both calculations, using undistorted MOs. In these calculations we used the
complete 2s/2p active space, and we employed the augmented Duijneveldt ba-
sis described above. In Sec. 2.5 we will argue that the results based on the
undistorted long range method are to be preferred.

The spin-orbit matrix elements were calculated at the CASSCF level, tak-
ing into account both one- and two-electron integrals of the Breit-Pauli opera-
tor. Again the active space consisted of the 2s/2p orbitals. These calculations
were also repeated using the long range method. As the one-electron basis
we used the uncontracted (12s6p3d) primitive Gaussians from the cc-pVQZ
basis,'® since the spin-orbit integral routines implemented in MOLPRO cannot
handle contracted bases. A test calculation with the s, p, d, and f orbitals
of the aug-cc-pV5Z basis resulted in a change of about 1 %. The spin-orbit
matrix elements being related by the Wigner Eckart theorem [Eq. (2.13)], we
only calculated the 21 independent reduced matrix elements listed below. Since
the electronic wave functions were calculated separately at each geometry, the
signs of the reduced matrix elements were not consistent between the different
geometries. The signs were adapted so that all reduced matrix elements had
smooth curves as function of R, and the same sign for R = 10.9 ag as in the
atomic approximation given by Eq. (2.15).

2.4 Analytic fit of potentials and couplings

2.4.1 Potential energy curves

Since we employ different methods in the short range and long range parts of
the potential we must determine a relative energy shift of the two sets of ab
initio points before we can fit the potential. The slopes of the potentials in the
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region where the data sets overlap do not match perfectly. Therefore, instead
of matching the potentials in a single point, we leave a small gap between
the short range and long range data sets and determine the relative shift by
treating it as a free parameter in the fit. In this way we obtain a smooth fit.
We use the functional form

V(R) = Vsr(R) + Vir(R), (2.19)

with

Nmax 2

Vsr(R) = Z Z Cnmyte” Y, (2.20)

n=0 m=1

where we introduced a shift y = R — 2.8 for numerical reasons. Furthermore,

C’r(lLR)

n=5,6,8,10

where C’éLR) accounts for the electrostatic quadrupole-quadrupole long range

part of the potential and C’éLR), CéLR)
fn are Tang-Toennies damping functions

, and C’%R) for dispersion. The functions
29

nok
fal@) =1-e" Y 75 (2.22)
k=0

We take C5(LR) from Eq. (2.9), using the quadrupole moment of O(3P) of Q.. =
—0.94464 a.u. This quadrupole moment was calculated with MOLPRO, using a
fourth-order finite field calculation (at field values +2.5 x 10™* and +5 x 10~*
a.u.) with the partially spin-restricted open-shell single and double excitation
coupled cluster method®? 3! with perturbative triples®? [RCCSD(T)], employ-
ing a sextuple zeta (aug-cc-pV6Z)33 basis set. We fix the long range coefficient

CéLR) to the values listed for the various states by Dalgarno et al.4. Note
that the Q.. value of —0.788 used in that paper is about 19 % smaller than
ours. That value was apparently calculated at the Hartree-Fock level. The
long range coeflicients C’éLR) and CS}R) and V,, are determined in a linear
least squares fit of Vir(R) to the ab initio points in range 3 (given in Table
2.2), with the damping function set to 1. A weighting of R® was used in this fit.
After the long range parameters and V., were determined in this way, all other
parameters (¢, m, @, 3, and the relative energy shift) are found in a nonlinear
least squares fit, with a weighting of R3. The short range and long range data
sets used in this final fit are given as range 1 and 2 in Table 2.2, which also
specifies the values of ny.x. The asymptotic value of the potentials is made
equal by setting V., = 0 for all states. The polynomials in the exponential part
of the fit cause unphysical oscillatory behavior of the fit when it is extrapolated
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Table 2.2: Fit of the potential energy curves. Data points from the “short
range” (Range 1) and “long range” (Range 2) calculations used in the fit, and
“long range” method data points (Range 3) used in the fit of the coefficients
CéLR) and C%R), are given as Rpyin — Rmax (in ag), where all points within
the interval (the given values included) with a grid spacing of 0.1 ag have been
used. The fit error in the short range part is given in the column headed “SR
error” as the maximum absolute error for all points with R < 8.0 ag. The
error in the long range is given in the last column as the largest relative error
in the data points with R > 8.0 ag.

State  Range 1 Range 2 Range3 npax SR error LR error

(1En) (%)

ey 2245 55-10.0 8.0-10.6 6 40 1.2
A'3A, 2345 5580 84-10.6 6 34 1.6

8.7-10.6
A3yF 2345 55-10.0 7.0-10.3 6 37 0.8
1, 3.0-5.9 7.7-10.3 8.5-10.3 5 35 0.8
311, 2.7-5.4 7.5-10.3 7.5-10.3 5 52 0.4
5.7-6.5

511, 3.06.0 7.5-10.3 8.0-10.3 5 23 1.1
5y 2.6-5.8 7.0-10.6 8.4-10.6 6 65 1.7
28%F 3.7-4.3  4.6-10.0 7.0-11.0 4 17 0.4

towards small R. To ensure physical behavior in the extrapolation we used an
exponential function C” exp[—a/(R — Rl )], where C’ and o/ were chosen so
that the value and derivative of this exponential match with the fitted curve at
the innermost data point (at Rl ;). Fortran routines to evaluate the potential
energy curves can be downloaded from the EPAPS service.?®

2.4.2 Nonadiabatic coupling

The nonadiabatic coupling as a function of R consists of a single, somewhat
asymmetric peak. The tails of the peak appear to go to zero faster than a
Lorentzian and slower than a Gaussian function. We obtained a good fit with
the functional form

— Cq
1+ C{efo‘l(R*Rﬂ + eal(Rle)}

g2,4(R)

Cy
1+ C{e—az(R—R2) + 6042(R—R2)}'

+ (2.23)

It has two linear parameters, the peak heights C; and Cs, and five nonlinear
parameters, the peak positions Ry and Rj, the peak width parameters a;
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and a9, and the parameter C' that influences the shape of the peak. The
nonlinear least squares fit employed a weighting function of |go 4(R)|~'/2, i.e.
a higher weight when the coupling is smaller. This fit procedure results in
a relative error of 0.3 % around the peak maximum. The relative error is
smaller than 1 % for R < 9 ag, and increases to 15 % for R = 11.0 ag, where
the coupling is only about 1 % of its maximum. To compare the magnitude
of the nonadiabatic coupling with the magnitude of the spin-orbit coupling,
we have to multiply the nonadiabatic coupling by the dissociation fragment
velocity v, which is given by \/2E/u, where E is the kinetic energy, and p is the
reduced mass. At the highest experimental dissociation energy (A = 204 nm,
see the accompanying paper, Chapter 3 of this thesis) we have an excess kinetic
energy of 35 mE; after dissociation. This corresponds to a fragment velocity
of 2.2 x 1073 atomic units. At the maximum of the peak of the nonadiabatic
coupling, this corresponds to an energy hv (23%F|0/0R|A3Y}) = —0.43 mEy,
which is comparable to the spin-orbit interaction (effective spin-orbit splitting
constant A = -0.36 mE,). At internuclear distances R > 9.0 ag, hiv(9/0R) <
0.03 mEy,, which is much smaller than the spin-orbit interaction.

2.4.3 Spin-orbit coupling

The R dependence of the spin-orbit matrix elements does not suggest a simple
functional form. Therefore we used cubic spline interpolation, and exponential
extrapolation. For extrapolation R — oo we fitted a function of the form
A + Bexp|—a(R — Rena)] through the “long range method” data points with
10.0 < R < Reng = 10.9 ag. We determined « in a nonlinear optimization
procedure, fitting the parameters A and B using linear least squares, with
unit weights. The long range extrapolation was then shifted to pass exactly
through the last data point. For inward extrapolation we fitted an exponential
of the form A’ + B’ exp[2.5(R — Rstart)], so that the value in the first data
point (Rstart, see Sec. 2.5.2) matched the “short range method” value, and the
derivative in the first data point matched the derivative of the line connecting
the first two data points. The spline is defined by the extra conditions of the
derivatives in the first and last data points. We used “long range method”
data points for R > 4.5 ap, and “short range” data points for R < 4.0 agp.
Fortran routines to evaluate the spin-orbit and nonadiabatic coupling are also
available from EPAPS.3?

2.5 Results and Discussion

2.5.1 Potential energy curves

In Fig. 2.1 we show the fits of the potential energy curves. In Table 2.3
we list the calculated spectroscopic constants R., w., and D, together with
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Table 2.3: Spectroscopic constants for the bound states. Experimental values for the Herzberg states are from Ref. 36
and the experimental values for the 311, state are from Ref. 7. Calculated literature values for the Herzberg and very
weakly bound states are from Ref. 37.

R, AQOV We Agm?v D, Aam:v
State  Present Expt. Calc. Present Expt. Calc. Present FExpt. Calc.
A3YF 2.8735 2.8724 2.880  3.655 3.663 3.563  30.52 30.33  29.55
A'3A, 28602 2.8592 2.867  3.732 3.713 3.590 33.29 33.20 32.38
Ay 2.8693 2.8610 2.874  3.601 3.631 3.517 40.87 41.00 40.57

5y 5.735 6.24 0.268 0.272 0.199
o1, 6.168 6.58 0.164 0.160 0.182
31, 5.333 .. 5.6 0.422  0.31>  0.27 1.267 0.64 0873
1, 6.876 0.089 0.095

%A value for R, is not given, only r9 = 5.84 and r1 = 6.65 agp.
®This is not we but AGy .
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o)

Potential Energy (mE,

Figure 2.1: Calculated potential energy curves for the ungerade states disso-
ciating to O(*P) + O(®*P). Note that the potential axis on the right hand side
(R > 4.5) is scaled with a factor of 50 with respect to the left hand side of the
figure.

experimental®® and theoretical®” literature values. For the three Herzberg
states agreement of our results with experiment is excellent. For three of the
four weakly bound states (°%;,% IT,,' II,) no experimental data is available.
The R, values that we find for these states are about 0.5 ag shorter than the
values computed by Partridge et al.3” Our calculated R, values are determined
by our “short range” calculations which employ a larger one-electron basis as
well as a larger number of active orbitals than the calculation by Partridge et
al. The values that we find for the D, of these weakly bound states in part
depend on choices that were made when merging the short range and long
range results.

The only spectroscopic data on the 3II, state derives from its presumed
role as perturber of the A?’Ej state.” It seems that our values for w, and D,
for this state are too large, while the results of Partridge seem closer to the
experimental values [Table 2.3]. However, in the region of R ~ 5 — 7 ag rele-
vant for the observed v = 0 and v = 1 vibrational levels of the 3II, state, the
splittings between the ABO potentials are comparable to the spin-orbit cou-
pling and one may not assume Hund’s case (a) states. Preliminary calculations
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Table 2.4: Vibrational energies and rotational constants of all experimentally
known vibrational levels of the A3Y[ state, compared with experimental data
from Ref. 7 (where available) and 36.

v G()(mE,) Error (%) B(v)(uEn) Error (%)
0 1.809 —0.31 4.114 —0.24
1 5.330 —0.26 4.032 —0.30
2 8.712 —0.25 3.947 —0.33
3 11.944 —0.25 3.857 —0.34
4 15.011 —0.26 3.758 —0.36
) 17.897 —0.29 3.647 —0.41
6 20.576 —0.34 3.520 —0.50
7 23.021 —-0.43 3.371 —0.66
8 25.195 —0.54 3.190 —0.92
9 27.050 —0.68 2.964 —1.26
10 28.532 —0.82 2.669 —1.43
11 29.588 —0.83 2.281 —0.83
12 30.199 —-0.41 1.720 130

that take the SO coupling into account show a much better agreement with
experiment when our potentials and SO couplings are used. We will analyze
this matter in more detail in a separate paper.>®

For the Herzberg states we calculated all the vibrational energies and ro-
tational constants with the sinc-function discrete variable representation (sinc
DVR) method.?® In Tables 2.4, 2.5, and 2.6 we compare our results with
the experimental values of Jenouvrier et al.” (where available) and Slanger.3¢
Almost all errors are less than 1 %. The most noticeable exceptions are the
rotational constants of the highest vibrational levels, for which the errors are
1-2 orders of magnitude larger than for the other levels. This does not indi-
cate a serious deficiency of our potentials. In fact, it can easily be understood
because these energy levels are just below the dissociation limit, so that a
small relative error in the vibrational energy may give a huge change in the
expectation value of (R™2).

In Fig. 2.2 we show the R dependence of the BSSE: AE\—q(R) and AEy—;
(R) for the method that we used in the short range (solid lines) as well as for
the method used in the long range (dashed lines). For both methods AEy\—o(R)
is larger than AE)y—;(R), which is expected since the A = 0 component of the
atomic O(3P) state has two electrons in the p, orbital (along the internuclear
axis) in the dominant configuration, compared to one for the |A\| = 1 compo-
nents. Also we see that the short range calculation, which employs a larger
one-electron basis gives a smaller BSSE. For the short range calculations the
BSSE is about 1 % of the D, of the Herzberg states and we did not correct
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Table 2.5: As Table 2.4, for the c'Y state.

v G()(mEp) Error (%) B(v)(zEn) Error (%)
0 1.784 —0.82 4.127 —0.55
1 5.260 —0.85 4.046 —0.74
2 8.606 —0.85 3.963 —0.58
3 11.818 —0.86 3.876 —0.59
4 14.891 —0.87 3.785 —0.60
5 17.819 —0.87 3.689 —0.61
6 20.596 —0.88 3.588 —0.63
7 23.217 —0.89 3.481 —0.64
8 25.674 —0.90 3.367 —0.63
9 27.964 —0.90 3.246 —0.66
10 30.079 —0.90 3.117 —0.63
11 32.016 —0.89 2.979 —0.58
12 33.770 —0.87 2.832 —0.48
13 35.337 —-0.84 2.673 —-0.34
14 36.714 —0.80 2.500 —0.21
15 37.895 —0.75 2.310 0.01
16 38.874 —0.70 2.096 0.28
17 39.645 —0.63 1.850 1.26
18 40.205 —0.51 1.567 5.45
19 40.566 —0.32 1.254 8.31
Table 2.6: As Table 2.4, for the A’ 3A,, state.
v G(v)(mEy) Error (%) B(v)(uEn) Error (%)
0 1.846 0.35 4.153 —0.26
1 5.440 0.20 4.073 —0.35
2 8.895 0.09 3.990 —-0.34
3 12.202 —0.01 3.902 —0.38
4 15.351 —0.08 3.806 —0.39
) 18.326 —0.15 3.701 —0.41
6 21.109 —0.22 3.582 —0.49
7 23.675 —0.31 3.445 —0.63
8 25.995 —-0.43 3.284 —-0.84
9 28.033 —0.57 3.091 —1.17
10 29.749 —-0.74 2.852 —1.56
11 31.106 —0.89 2.562 —1.63
12 32.098 —0.93 2.224 0.47

13 32.752 —0.76 1.826 46.2
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W

BSSE correction (mE

L) - x- undistorted MRCI, |A| = 1_|
/ - +- undistorted MRCI, A =0
) —»— CASSCF+MRCI, || = 1
— C‘ASSCF+MR‘CI, A=0

| |
25 35 4.5 55 6.5 7.5

R (ao)

Figure 2.2: The BSSE correction for the short range CASSCF+MRCI (solid
lines) and long range undistorted orbitals MRCI calculation (dashed lines).
The A = 0 (+ marks) and A = 1 (x marks) curves refer to atomic substates
of ¥ and Il symmetry.

for this. Around 6 ap the BSSE for the long range calculation is in the order
of 30 % of the interaction and we applied the correction given in Eq. (2.17).

2.5.2  Spin-orbit coupling

In Table 2.7 we compare the reduced spin-orbit matrix elements calculated at
R = 7.5 ag with the undistorted orbital method and with our “short range
method”. We also list the asymptotic results corresponding to Aeyxp = —0.353
mEy;. Generally, there is good agreement between the two calculated values
and the experimental value, except when either the A3X 1 or the 23 state
is involved. In these cases the results for the “short range method” deviate
considerably. We take this as an indication that the state-averaged CASSCF
method, with the choice of the active space that we used in the short range,
does not properly describe the nearly degenerate A3XF and 23X states in
the long range. Clearly, one expects the undistorted orbital method to fail
somewhere in the strong interaction region. Fortunately, there is a region—as
we show in Fig. 2.3—where both methods give nearly the same SO couplings,
even when the A®Y} or 233} states are involved. This justifies our procedure
of merging short range and long range results in the fit of the SO couplings.
In Figs. 2.4 and 2.5 we plot all the fits of the reduced matrix elements. We
note that there is a considerable variation of the SO couplings with R. The fine-
structure energy levels of the A’ SAu7Q state are given by €, 0 = €y, 0=2+ A, AL,
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Table 2.7: Spin-orbit reduced matrix elements ((L)|A|S; R||Hsol|(L')|A’]S"; R)
in pEn. Quantum numbers L, A, and S for bra and ket states can be found
in Table 2.1. The atomic limit is calculated with the experimental splitting
constant A = —-353 uEy. The calculated values are for both the calculations
for R = 7.5 ag. Ab initio calculations were done between Rgiat and 10.9 ag.

Number bra ket Rstart(29) Atomic LR method SR method
1 I, A'3A, 2.2 705 725 726
2 1, A3SF 2.2 —814 —815 —558
3 1, 235 F 3.7 288 355 693
4 371, A3A, 2.2 611 628 629
5 311, A3y F 2.2 0 —54 —405
6 311, 239+ 3.6 —748 —767 —656
7 5T, A 3A, 1.6 —789 —811 —813
8 511, A3%F 1.6 911 911 624
9 511, 239+ 3.5 —322 —396 —1755

10 311, I 1.6 499 513 514
11 311, 5y 2.1 —558 —574 —575
12 511, 5% 2.1 —966 —993 —995
13 1, 311, 2.2 499 513 511
14 311, 311, 2.2 —432 —444 —443
15 511, 311, 1.6 —558 —573 —572
16 511, 511, 2.2 —966 —994 —991
17 VZC) YRGS Ve 1.6 —814 —877 —1021
18 PA) VRN Ve 3.6 —576 —532 —64
19 A'3A, A'3A, 1.8 —864 —889 —887
20 VZED YD Y 2.2 911 980 1141
21 235+ oy 3.8 644 594 71

where A, is the effective spin-orbit coupling constant for vibrational level
v. It is calculated as the expectation value of the R-dependent SO coupling
(1/2)(w{(L = 2)A = 2,8 = 1,¥ = I;R|Hso(R)|(L = 2)A = 2,5 = 1,¥ =
1; RY|v) for the vibrational wave function of level v. Since different vibrational
wave functions probe different R regions, the R dependence of the SO cou-
pling is reflected in the variation of A, with v. In Table 2.8 we compare the
calculated constants A, with the experimental values from Refs. 36 and 40.
Generally, the deviations from the experimental values are less than 4 %. For
v = 13 the error is somewhat larger, which is of course consistent with the
error found for the rotational constant for this level. We also compared our
SO couplings with all the couplings between ungerade O states that were
calculated by Klotz and Peyerimhoff*! and we found that all the differences
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R (ao)

Figure 2.3: Spin-orbit matrix elements (A%}, RH]:]SOHch;; R) (+ marks),
(285 R||Hso||c'S; s R) (x marks), and (*I1,; R|Hso|c'S; ; R) (o marks),
calculated with optimized (solid lines) and undistorted atomic orbitals (dashed
lines), and their analytic atomic limits (dotted lines).

are less than 15 pE,,.

At infinite separation, Eq. (2.15) relates all reduced spin-orbit matrix ele-
ments to a single atomic SO coupling constant A. We find that A = —0.3627
mkEy, reproduces all fitted values at infinity to within 6.4 puEj, and all nonzero
values within 2 %. A least squares fit of the eigenvalues of Aexpi - § to the
experimental atomic fine-structure levels'® gives Aq, = —0.353 mE;. Note
that the experimental energy levels do not exactly obey the Landé interval
rule*?43 due to spin-spin (and spin-other-orbit) interactions. In particular,
Ej—y — Ej—p = 0.7222 mE;, and F;—g — Ej—2 = 1.032 mE;, compared to
—2Acxp = 0.706 mE;, and —3Aqp, = 1.059 mE;,. Since we do not include
spin-spin interactions that cause violation of the Landé interval rule, we can-
not expect agreement with experiment to better than about 3 %. In Table 2.7
we also list Rgart, the R value of the innermost data point. For smaller R,
extrapolation has been used.

2.5.3 Nonadiabatic coupling

In Fig. 2.6 we plot the nonadiabatic coupling matrix element (23%F|0/0R
|A3%F), calculated at the CASSCF (solid lines) and the MRCI (dashed lines)
level employing both optimized (+ marks) and undistorted (x marks) orbitals.
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Figure 2.4: Fits of the spin-orbit reduced matrix elements, numbers 1 to 10
from Table 2.7. The different line types are only to distinguish the different
matrix elements.

-2 T T T T T

Figure 2.5: As Fig. 2.4, numbers 11 to 21.
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Table 2.8: Calculated and experimental (Refs. 36 and 40) spin-orbit splitting
constants (in mEy,) for the vibrational levels of A’ 3A,,.

v A, calculation A, experiment Error (%)
0 —0.3363 —0.3413 —1.47
1 —0.3344 —0.3401 —1.69
2 —0.3320 —0.3397 —2.27
3 —0.3292 —0.3377 —2.52
4 —0.3257 —0.3351 —2.80
) —0.3214 —0.3316 —3.08
6 —0.3161 —0.3271 —3.38
7 —0.3092 —0.3211 —3.72
8 —0.3004 —0.3132 —4.08
9 —0.2891 —0.3020 —4.29
10 —0.2746 —0.2860 —-3.99
11 —0.2570 —0.2630 —2.31
12 —0.2371 —0.2378 —0.28
13 —0.2163 —0.178 21.5
0.5 | | | | |

(au)

- +- CASSCF+MRCI
- x~- undistorted, CAS+MRCI _|

-2.5
—+— CASSCF
| | T% undistlorted, CAIS
-3
4 5 6 7 8 9 10

R (ao)

Figure 2.6: The nonadiabatic coupling matrix element (23%}|0/0R|A3% ), as
described in Sec. 2.5.3.
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We find good agreement between these results in the region R < 4 ag where
also the SO couplings match. For the optimized orbitals we find a very large
coupling of =3 a.u. at R = 5 ag. The MRCI calculation, employing these
optimized orbitals gives rather different results, which one may take again as
an indication that the optimized orbitals do not provide a good description
of the A3 and 23X states in this region. By contrast, for the undistorted
orbitals the MRCI results are very similar to the CAS results. In the fit we
used the undistorted orbital CAS results.

2.6 Conclusion

We performed high level ab initio calculations on the potential energy curves
of several excited ungerade states of Og: the Herzberg states c'X;, A’ 3A,,
and A3Y! and the repulsive states °I1,, 11, 5%, , °II,, and 233}. We also
calculated spin-orbit interactions between these states, and the nonadiabatic
coupling matrix element (2337|0/0R|A3E ). In the long range we used an ap-
proach based on undistorted atomic orbitals, to ensure that the states approach
their correct atomic limit, defined by the quadrupole-quadrupole interaction,
which is the first term in the multipole expansion of the interatomic poten-
tial. We combined these long range results with CASSCF optimized orbitals
MRCI results employing an aug-cc-pV5Z AO basis. The resulting curves for
the bound states reproduce all experimentally known vibrational levels within
1 %, and rotational constants within 1 % for all levels, except the very highest.
The correctness of the atomic limit is necessary to obtain consistency in the
nonadiabatic coupling matrix element and the spin-orbit matrix elements, that
were also calculated as a function of the internuclear distance R. The nonadi-
abatic coupling was calculated in the same one-electron basis as the potential
curves, the spin-orbit interaction in a smaller basis. We estimate the error in
the spin-orbit matrix elements to be about 3 %.
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Chapter 3

Photodissociation of Oy in the Herzberg
continuum. II. Calculation of fragment
polarization and angular distribution

Abstract

Parallel and perpendicular components of the Herzberg I, II,
and III transitions contribute to the photodissociation of O3 in the
Herzberg continuum. The photodissociation dynamics determines
the O(3P;), j = 0,1, and 2 atomic fine-structure branching ratios
and angular distributions, which were determined in ion imaging
experiments at A = 236, 226, and 204 nm by Buijsse et al. [J. Chem.
Phys. 108, 7229 (1998)]. In the preceding paper we presented po-
tential energy curves for all eight ungerade O states that correlate
with the O(®P) + O(®*P) dissociation limit, and the R-dependent
spin-orbit and the nonadiabatic radial derivative couplings between
these states. Here, we employ these potentials and couplings in
a semiclassical calculation of the fine-structure branching ratios,
atomic polarizations, and fine-structure resolved anisotropy param-
eters. We discuss the adiabaticity of the dissociation by comparing
the results with adiabatic and diabatic models. The O(3P;) 2+1
REMPI detection scheme used in the experiment is sensitive to
the polarization of the atomic fragments. We predict an impor-
tant effect of the polarization on the anisotropy of the j = 1 and
j = 2 ion images at low energies (A > 236 nm). The agreement be-
tween the semiclassical calculations and experiment is reasonable,
possible explanations for the remaining differences are discussed.
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3.1 Introduction

The photodissociation of molecules into open-shell fragments is interesting
because generally multiple coupled electronic states are involved. For nonsin-
glet state fragments the (nonadiabatic) couplings determine the fine-structure
branching ratios. This has been studied in detail for the relatively simple HCI
and OH molecules.»2 The photodissociation of Oy in the Herzberg continuum
is complicated since already in the excitation step several electronically excited
states are involved. Both parallel and perpendicular electronic transitions con-
tribute. This is reflected in the angular distribution of the photofragments,
which was studied by Buijsse et al.> with the velocity mapped ion imaging
technique.* In the experiment O5 was cooled to 5-10 K in a molecular beam,
and photodissociated with a linearly polarized laser at 236, 226, and 204 nm.
At these energies only the three fine-structure components of the ground state
O(®Pj=2,1,0) atoms can be produced. State selective detection of the atoms
was achieved by (2+41) resonance enhanced multiphoton ionization (REMPI)
of the O(®P;) states. The angular distribution of the O(*P;) photofragments
can be expressed as [1+3;(E) P (cos 0)], where P; is the second order Legendre
polynomial, 6 is the angle between the polarization of the dissociation laser
and the recoil velocity, and 3;(E) is the fine-structure resolved and energy de-
pendent anisotropy parameter. The observed ion image actually corresponds
to the distribution of the ions. This may be different from the distribution
of the atoms when the atoms are polarized, because the ionization efficiency
depends on the angle between the recoil velocity and the polarization of the
detection laser. This angle is equal to 6 because the laser polarizations were
taken parallel to each other. In the case of direct dissociation, which is appro-
priate in this case, the fine-structure averaged 3 parameter is fully determined
by the parallel /perpendicular character of the initial electronic excitation.

The fine-structure dependent anisotropy parameters §;(E) may differ for
7 =2, 1, and 0, if the fine-structure branching ratios of the electronic states
reached via a parallel transition differ from those reached via perpendicular
transitions. In the adiabatic limit all electronic states involved correlate with
the O(3P2) + O(®P,) limit. It turns out that even at 236 nm the dissociation
is not fully adiabatic and hence the experiment contains information on the
nonadiabatic coupling between the electronic states.

Apart from the initially excited Herzberg states (A3%, ¢!37 and A’ 3A,,)
there are five other ungerade states (1111, 131L,, 2%, 1°I1,,, and 1°%7) that
correlate with the O(3P) + O(3P) dissociation limit and are involved in the
dissociation dynamics through spin-orbit interactions (in the long range). Fur-
thermore, the A3Y 1 and 233} states are coupled through the radial derivative
coupling g2 4(R) = (232F]0/0R|A3S}) which arises from the nonseparability
of the electronic and nuclear motion. In the preceding paper,® which we will
refer to as paper I, we presented high quality ab initio calculations of the poten-
tial energy curves and R-dependent spin-orbit couplings for all eight electronic
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states, as well as go 4 (R). In the present paper we employ these ab initio results
in a semiclassical calculation of the energy dependent fine-structure branching
ratios for the three Herzberg states. We also compute the energy dependent
atomic alignment. By taking into account the experimental values in Ref. 3
for the parallel and perpendicular branching ratios of the Herzberg transitions
we calculate the anisotropy parameters for the ions, which we compare to the
experimental results of Buijsse.?

In the present work we neglect the possible effects of coherent excitation
of the Herzberg states and Coriolis coupling. Such effects may be important
for photodissociation of Os in a well defined initial quantum state, for which
no experimental data is available yet. Also, properly describing these effects
may require a full coupled-channels quantum treatment. Thus, the present
semiclassical study should be considered as the first step beyond the adiabatic
and diabatic models. Note that a full quantum treatment would also require
knowledge of the radial second derivative nonadiabatic couplings and a com-
plete model of the initial electronic excitation, rather than just the electronic
excitation branching ratios.

The outline of this paper is as follows. In the next section (Sec. 3.2) we
present the theoretical framework of this paper. We describe the construction
of diabatic and adiabatic models (Sec. 3.2.1), the semiclassical calculation and
our extended diabatic model, which includes the nonadiabatic radial deriva-
tive coupling (Sec. 3.2.2), and the procedure to calculate atomic fine-structure
branching ratios, alignment and ion images from the dynamics results (Sec.
3.2.3). In Sec. 3.3 we discuss the results of the dynamics calculations, and the
resulting fragment branching ratios and alignments. We present our conclu-
sions in Sec. 3.4. The derivation of the angular REMPI detection sensitivity
is given in the Appendix.

3.2 Theory

3.2.1 Adiabatic and diabatic model

The construction of adiabatic and diabatic models to describe the fine-struc-
ture branching in diatomic molecules is well established.®7 First, we partition
the total electronic Hamiltonian

H(R) = IA{coul(R) + IA{SO(R)7 (31)

where ﬁcoul(R) is the nonrelativistic electronic Hamiltonian in the clamped
nuclei approximation, Hgo(R) is the (Breit-Pauli) spin-orbit operator and R
is the internuclear separation. In the region where the initial photoexcitation
occurs (R = R,) we assume that the eigenfunctions of H_ou are a good first
order approximation to the eigenfunctions of the full electronic Hamiltonian
and Hso gives a small perturbation. The choice of R, is not critical, provided
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that the adiabatic Born-Oppenheimer (ABO) potentials, i.e. the eigenvalues
of ﬁcoul, are well separated in this region. We take R, = 2.85 ag. Adiabatic
dissociation with respect to ﬁcoul implies that the ith electronic eigenstate of
f[coul(Ra) of a given symmetry evolves into the ith eigenstate of the same sym-
metry for R — oo. When, for a given symmetry, the eigenstates of Heou (00)
are degenerate we define the asymptotic ABO eigenstates by considering the
leading interatomic term of the multipole expansion of He o at large R that
lifts the degeneracy. We followed this procedure in paper I to arrive at the ABO
states |(L)ASY; R), which are eigenstates of Heoui(R) and where A, S, and ¥
are (good) Hund’s case (a) quantum numbers of the Oz molecule. By consid-
ering the quadrupole-quadrupole interaction between the O(3 P) fragments, we
found that L, which is the asymptotic total orbital angular momentum, can be
used to label the asymptotically degenerate A3} (L = 0) and 235} (L = 2)
states for any R.

The ABO states are eigenfunctions of the electronic inversion operator® #,
with eigenvalues (—1)£5. Here we consider only ungerade states, so L + S
must be odd. We should also consider the inversion operator i, which inverts
both electronic and nuclear coordinates and which determines parity. For
Q = A+ X # 0 states, however, this operator affects the rotational part of the
wave function,? which we do not explicitly include in the present semiclassical
formulation and so we may ignore it. For £ = 0 states we have’

i|(L)ASY; R) = (—1)ET5|(L)-AS—3%; R). (3.2)

Ungerade states with A = ¥ = 0 have an intrinsic parity of —1. For A = —X #
0 both odd and even parity states can be constructed. Note, however, that in
the calculation of the spin-orbit coupling in paper I we employed the parity
unadapted 3°II, (A = £1) states. Asymptotically the ABO wave functions
|LASE) = |(L)ASE; 00) can be expanded in product atomic wave functions

ILASS) = > [lada)[$a0a) 1Mo} [$500) (LaMalbAs| LA) (5000 5506|ST),
AaAbOa0Op
(3.3)
where a and b label the atoms and for O3P) I, = I, = s, = s, = 1 and
Aas Ab, 0q, and oy, are projections of the atomic angular momenta on the inter-
nuclear axis. The symbol (aabf|cy) is a Clebsch-Gordan coefficient.
Since the spin-orbit interaction does not vanish asymptotically the analysis
of the photofragments requires a recoupling to product atomic multiplet states

|jawajbwb> = |jawa>|jbwb> where

)\iai

The transformation between the ABO states and the atomic eigenstates can
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be expressed as’

<jawajbwb |LASE> =

4 la Sa ja
> (Gawadvws|i' QG ULASE) VGl BILIST I s go 0y (3.5)
§'=0 L s

where [X] = 2X +1 and the last factor is a 9—j symbol. This description of the
photodissociation, correlating the ABO eigenstates |(L)ASY; Ry) of Heou(Ra)
with asymptotic ABO states |LASY), and using Eq. (3.5) to transform the
asymptotic ABO states into product atomic multiplet states, is called diabatic
with respect to spin-orbit coupling, since the effect of the spin-orbit coupling
is treated by the basis transformation. According to the Massey criterion'’
the diabatic or spin-orbit sudden limit is reached when the time for traversing
the SO recoupling zone is small compared to h/AFEgso, where AEgo is the
spin-orbit coupling. This is the high recoil velocity limit.

The low recoil velocity limit may be described by a model which is adiabatic
with respect to the total electronic Hamiltonian H(R) [Eq. (3.1)]. In this case
A and ¥ are no longer good quantum numbers and the noncrossing rule only
applies to states with the same value of 2. Since # commutes with Hgo as
well as with ﬁcoul and the electronic states excited are ungerade, we construct
ungerade coupled atomic states

. . _1 . . . .
ljawajow)u = 272 [|jaWajows) — |Jbwhjawa)] - (3.6)

Note that for dissociation into a j, = j, channel we must have w, # wy. For
wqe + wp = 2 = 0 intrinsic parity adapted states may be constructed using

%‘jawajb_wa> = (_1)ja+jb |ja_wajbwa>~ (37)

From this it follows that ungerade 2 = 0 states with j, = j, are odd parity
states. The asymptotic energy of |j,wajows)y is Ej, + Ej, with

Ej=(1/2)AG+1) - ll+1) —s(s + )] = (1/2)A[H(G + 1) — 4], (3.8)

where A is the atomic spin-orbit coupling constant!! of ~0.353 mEj;,. These
rules are sufficient to derive the adiabatic correlation diagram for the eight
ungerade O, states as shown in Fig. 8 of Ref. 7. The Herzberg states all cor-
relate adiabatically with the j, = j, = 2 limit. For Q = 2,3 [i.e. A" 3A, 9/3]
we immediately find that the asymptotic states must be |2220),, and |2221),,,
respectively. However, for 0 = 0~ there are two asymptotically degener-
ate states: [222—2),- and |212—1),-, and for Q = 1 we have [222—1),, and
|2120),,. In order to find the atomic polarization in the adiabatic model for
the © = 0~ states we must find the proper linear combination of [222—2),,-
and |212—1),- that correlates with the lowest lying Q@ = 0~ Herzberg state
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Table 3.1: Adiabatic correlation between molecular Herzberg states and prod-
uct atomic states.

State > CilJawWajsws) u
TS~ 0.525 73]2—222), — 0.850 65[2—121),,
A3ST
u,0—

)
0.850 652—222),, + 0.525 73|2—121),,
A'3A,1 —0.985 872—122), + 0.167 51|2021),,

APTE0.167 51[2—-122),, + 0.985 87(2021),,
AN, 1.0[2220),,
A'3As 1.0[2122),,

(612;’0,). For 2 = 1 we must find the proper linear combination of |222—1),,
and |2120), that correlates with A’ 3A,, 1, the lowest lying Q = 1 Herzberg
state. Just as in the construction of the asymptotic ABO states we do this by
diagonalizing the quadrupole-quadrupole interaction in the basis of degenerate
states. The matrix elements u(jawajbwb|175|jaw;jbwl’)>u are found by inserting
the resolution of identity in the molecular basis, I = 3 ass |[LASY) (LASY,
twice (Vs = IVsI). The transformation coefficients are given in Eq. (3.5) and
the quadrupole-quadrupole matrix elements in the molecular basis are given in
Eq. (9) in paper L. Following this procedure we obtained the complete adiabatic
model for the Herzberg states as given in Table 3.1.

3.2.2 Semiclassical Dynamics

The Massey criterion gives only a crude indication of the validity of the adi-
abatic or diabatic models for predicting branching ratios. It is even less clear
whether the models can be used to predict fragment polarization. Further-
more, the diabatic model presented so far does not take into account the effect
of the nonadiabatic radial derivative coupling between the A3 and 23%F
states, which should be important in the high energy limit. Finally, the SO
coupling in the Franck-Condon region is not completely negligible. Thus, we
performed semiclassical calculations to study the energy dependence of the
photodissociation process. It is well established'? '3 that the semiclassical ap-
proximation is valid for a De Broglie wavelength \/ag < 27. For the energy
range considered in the experiment we have 0.2ag < A < 0.6ag.

In the present semiclassical study we neglect the possible effects of co-
herent excitation of the Herzberg states. At R, = 2.85 ag we compute the
eigenfunctions of the total electronic Hamiltonian

H(R,) — Em(Ra)] U,0(Ra) = 0, (3.9)

where ¢ labels the eigenstates, sorted on energy, within each Q symmetry
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Table 3.2: Herzberg excitation branching ratios r;g and anisotropy parame-
ters B;q for the different molecular eigenstates (i§2) of the Herzberg transition.
These depend on the excitation wavelength A\ in nm. Given energy dependen-
cies are linear fits from Fig. 7 of Ref. 3, and X' = \ — 226.

State (i, |Q|) ﬂlg TiQ
¥ - (L0) -1 0.0228 + 3.439 - 107\
AN, (L,1) —1 0.0223 + 3.356 - 104\’
A 3N, (1,2) —1 0.0334 + 5.034 - 1074\
A 3N, (1,3) ~1 0.0005 + 7.5 - 1076\
APET o (2,0) -1 0.1883 — 6.822 - 10~ 4\
+5.67 - 107\
ASSl (2,1 1.2288 0.7327 — 5.0779 - 10~4)\
+2.2589 - 1073 N/ ~5.67-1077\?

21328 -1076)\"2

block. Near equilibrium geometry the energy ordering of the states is ¢!%,
A'3A,, and A3SF. So for © = 0, i = 1 and 2 correspond to c'¥, and
A3 T respectively. For Q = 1 the lowest state (i = 1) is A’ 3A,,, and A3%}F
corresponds to i = 2. For Q = 2 and 3 we only have A’ 3A,, initial states,
these have i = 1. See also Table 3.2. We take each of the eigenfunctions
corresponding to the Herzberg states as initial conditions for the semiclassical
propagation. We expand ¥;o(R) in a basis of ABO states,

Tio(R) = Y dfhss(R)(L)AST; R). (3.10)
LASY

Substituting this expression in the time-dependent Schrédinger equation while
treating R = R(t) as a classical coordinate and projecting with ((L)ASE; R|
gives the quantum-mechanical equations of motion

O BaslB O} = Y {(DASS: RIEIRO(L)INS'S; R)
LIASTSY

—ihdg—it)«L)ASZ;R|%|(L’)A’S’E’;R>}ciLQA,S,E,[R(t)]. (3.11)

The diagonal elements of the first term on the right-hand side of this equation
are equal to the ABO potentials ez jzs(R) and the off-diagonal elements are

the SO couplings. The radial derivative term arises from % = %%. This

term only couples the A3 (](0)01X; R)) and 23%1(](2)013; R)) states. The
computation of the ABO potentials and the SO and 9/9R coupling is described
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in paper I. The nuclear motion [R(t)] is governed by the classical Hamiltonian
2
p A
Ha = i + (P[R@®)][H[R(H)][W[R(L)]), (3.12)
where p is the reduced mass of Oy and pg is the momentum conjugate to R.
The classical equations of motion are

d_R_chl_@

= = 3.13

dt  Opr (8.13)
dpR _ _chl
dt  OR

==Y Y dRslR <LA52| |L N S'S e ors [R(1)).
LASY L'AN'S'Y!
(3.14)

The initial conditions for the electronic state (i) are R(0) = R, and pr(0) =
2u(E — E;). The total energy is given by E = hv — Dy +2FEj—o, where v is
the frequency of the dissociation laser, Dy = 188.034 mEy, is the dissociation
energy'# of the ground state X?’E and E;j—, = —0.3526 mEy, is the energy of
an O(3P,) atom with respect to our zero point of energy, which is chosen such
that ezz5(00) = 0. The semiclassical equations have been solved numerically
using the MATLAB computer linear algebra system.!®
In addition to the semiclassical calculations we will also present the results
of an extended diabatic model. In this model we still assume that SO coupling
is negligible, but we do take into account the radial derivative coupling. Hence
one may also refer to this model as spin-orbit sudden. Only for the A3X state
it deviates from the diabatic model presented above. For this state it amounts
to expanding the wave function as

U(R) = ¢o(R)[(0)01%; R) + c2(R)|(2)01%; R) (3.15)

and solving the semiclassical equations for two states, without the SO coupling,
and with the initial condition co(Rg) = 1; c2(R,) = 0. Thus Eq. (3.11) becomes

ad [0 [ an(R) ngz,A[Ra)}] ROl
ot [c2[R(1)] —ihRgo a[R(t)]  €201[R(1)] o R(t)]

When R = 4 s negligible we find |cg(c0)| = 1 and cz(c0) = 0 and hence
the model reduces to the simple diabatic model presented above. In the high
energy limit the potentials are negligible compared to the coupling and we find
¢o(00) = cos ¢ and co(00) = sin ¢ with

b=— / g2 A(R)dR'. (3.17)

R,

With the radial derivative coupling computed in paper I we find ¢ = 33.74°.
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3.2.3 Ion image

The computation of the ion image requires the O(3Pj) fine-structure popula-
tions and polarizations.'® 17 These are obtained by expanding the electronic
wave function at large R = Ry, (we take R, = 15 ag in the semiclassical calcu-
lation) in the coupled atomic basis

io(Ry) = > i i (Bl awajows). (3.18)

JaWajbws

The expansion coefficients are calculated using the recoupling matrix element
given in Eq. (3.5),

A2 ien (B0) = D (Jawajows| LASE) ik g5, (Rp).- (3.19)
LASY

The two-atom density matrix is defined by

0 (Ry) =

pjawajbwbuaw Jpwy

P jra) (3.20)

e (
Jawajbwb JaW aJ

A partial trace over the quantum numbers of atom b gives the reduced density
matrix for atom a

Q)
Pjawa;jtw!, Z pjawajb%,ga whijjw b(Rb)(SJbJ{,éww (3'21)

wabjbwb

Since atoms a and b are indistinguishable and we are only interested in relative
intensities we may ignore atom b. Using w, +wp = Q = w), + wj, in Eq. (3.21)
shows that pj waijl ol /(Rp) = 0 for w, # w). This is a direct consequence of
ignoring coherence in the excitation of different 2 states. The detection is fine-
structure selective, hence the atomic products are described by a j, = j, = j
block of the density matrix, which is diagonal

P;"g;jw’ (R) = P;f,?éww’- (3.22)

The R, dependence disappears when Ry, is sufficiently large. The atomic fine-
structure level populations are given by

P =>"P. (3.23)

w

The polarizations of the O(SPJ—) states are given by the irreducible components
of the density matrix!'®

p{(i9; 5) = (P}?) 12 “(jwi—w'[kq)pie s (Rs)

1)1 iQ (3.24)
(P; 5qoz “(jwi—w|kO) P, .
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We normalized the multipole moments with respect to the population of level
7. Note that

P09 §) = (2j + 1)1/
1

2
— = <o (5 =1) <

V6 V6 (
2 @) /20y 2 3.25)
——< Qji=2)< —
\/ﬁ 7p0 (7’ J ) — \/ﬂ
4 4.y, - 6
——< ;7 =2) < —.
m Y2 ( J ) m

These normalized multipole moments are related to Zare’s molecular frame
polarization parameters!'? A((Ik) through:

R V2E 1[G+ DIM?
po (J) = B GITPT) Ay, (3.26)

For k up to 4 the reduced matrix elements (j||J*)||5) of the operator equiva-
lents J*) of order k are listed by Zare,'? and the normalization constants c(k)
are given by Orr-Ewing.?° General expressions for these quantities are

_ _ (2] + k + 1)!(k!)2
Gl = \/ (gj - k)!?’“)(;k))!

k) =/ P ),

(3.27)

The REMPI detection scheme uses a two-photon transition, for which in
general the relative absorption intensity is given by?!

~(k)
P .
I= E %-ﬁa(])a (3.28)

k Po

where Ii(j) are relative geometrical factors. In appendix 3.4 we derive for
the REMPI detection scheme used in the experiment of Buijsse et al.® that
Io(j) = 1,1,(1) = 272, I,(2) = —/7/10, and I,(2) = 0. The 3" are the ¢ = 0
multipole moments of the density matrix with respect to the probe frame, i.e.,
with respect to the polarization axis of the detection laser. Thus, we rotate
the multipole moments with respect to the recoil frame to the probe frame
by21

: (3.29)
= o (i€ ) Py (cos ),
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where we used pgk) = 0 for ¢ # 0 and for the Racah normalized spherical
harmonics Cro (8, ¢) = Pr(cos8).

To obtain the ion images we multiply the angular distribution of the atoms
[1 + BiqPa(cosB)] with the relative absorption intensity and we weight the
contributions of the initial Herzberg states according to the branching ratios
TiQ,

25 (k)
I;?bb ZTzQ [14 BiaPs(cosb)] {PZQ Z (o) GU j % (J) Pr(cos 6)
Q2

(3.30)
The branching ratios ;o and the anisotropy parameters ;o are taken from
the experimental papers®2? and are summarized in Table 3.2. Note that r;q,
Biq, PlQ and p( )(zQ; j) all depend on the photodissociation laser wavelength.
When we multiply out the two Legendre polynomials in Eq. (3.30), and re-
expand the result in Legendre polynomials, we find the following expression
for the ion image

I;’bS(H): Z ci(E, j)Py(cos0), (3.31)
k=0,2,4
with
pc
Zum{H = B0 20 (ZQJ;M )}
1
2) @)
o pie ) Po (18 J) . ‘ 2 py (8% 4)
Z inP; { i) L(j) + Bin ”77«»(9,])12( >H
)
iaPo (82 7)
ca(E,j) ZTzQﬁzQP Qp(o)(m 5)12(3)-

(3.32)

Note that Buijsse et al. did not attempt to extract the ratio c¢4/co from the
images. This results in the following intensity ratios for the ion images for

j=0,1,2
2

r(E) = (B, )/ Y colE, j') (3.33)

51

3'=0
and anisotropy parameters of the ions
B3 (B) = ea(E, j)/co(E, ). (3.34)

The polarization effects on the detection can be seen when we compare inten-
sity ratios to the O(*P;) fragment branching ratios

P TiQP;Q
>0 Z?/:o ’“iﬂpf'g

ri(E) = (3.35)
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Figure 3.1: The ABO potentials (dashed) and the eigenvalues of the total
Hamiltonian H(R) (solid), for Q = 1. The asymptotic limits are marked j,, jp.

and anisotropy parameters

ZiQ TzQﬁzQPjQ

(F) = -
ﬁ]( ) Ziﬂ riQP;Q

(3.36)

3.3 Results and discussion

Before we present the calculated branching ratios and anisotropy parameters
and compare them to the experimental results we will analyze the photodis-
sociation dynamics of the A3Eq‘;1 state in some detail. We select this Q2 =1
state because it is the major channel (= 73 %).

In Fig. 3.1 we show the ABO potentials ey g(R) as well as the Hund’s
case (c) potentials, i.e., the eigenvalues of the total Hamiltonian H(R), for
all = 1 states. At small R the Coulomb interaction dominates the SO
coupling, and the two sets of curves nearly coincide and can be labeled with
Hund’s case (a) quantum numbers. For large R only the spin-orbit interaction
lifts the degeneracy of the states and the Hund’s case (c¢) curves approach the
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Figure 3.2: Populations of the ABO states in the electronic wave function for
semiclassical dissociation of initial state A?’Ej’l, at A = 226 nm.

asymptotic values given in Eq. (3.8) while the ABO potentials all go to zero
(with our choice of the zero of energy). Note that the ABO curves, in contrast
with the Hund’s case (c) curves, may cross when they have the same Q. The
first crossing, around R = 4.75 ay, involves the A?’E;l and the ®I1, 1 state.
In Fig. 3.2 we show the contributions of the ABO states to the electronic
wave function as obtained from the semiclassical calculation for the dissociation
of the A3Y} state at 226 nm. For R < 4.5 ag the wave function remains in the
initially excited state. We observe that states that have a nonzero spin-orbit
matrix element with the A3X ] state become populated before the other states
[A’3A, 1 and 23%7 ] mix in by a two-step process, as expected. At large R
the populations of the ABO states do not reach an asymptotic value, but keep
oscillating because the ABO states are not eigenfunctions of H(R). In order
to analyze at what value of R the fine-structure branching ratios reach their
asymptotic value, we plot in Fig. 3.3 the populations of the asymptotic Hund’s
case (c¢) basis functions |j,wqjpws ). Note that we summed the populations of
states with the same (j,,jp) quantum numbers. To give an indication of the
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Figure 3.3: The electronic wave function for semiclassical dissociation of
A3Z'u"’1, at A = 236 nm (solid lines) and A = 204 nm (dashed lines). Plot-
ted are populations of asymptotic Hund’s case (c) basis functions |j,wajswe)u;

where populations of states with the same j,, j, value were added.

effect of the photodissociation energy we show curves corresponding to A\ =
236 nm (solid lines) and A = 204 nm (dashed lines). At low energy we see
a higher population of states with (j,,j,) = (2,2) and a lower population of
states yielding j = 0 fragments. This is expected since the low energy adiabatic
limit predicts purely j = 2 fragments.

The effect of the nonadiabatic radial derivative coupling is most easily
visualized for the extended diabatic model, where it is the only coupling. Fig.
3.4 shows how the 23X state is populated as a function of R for a range
of photodissociation wavelengths. Although the coupling has its maximum
around 6 ag (see Fig. 6 in paper I) the transitions mostly occur at somewhat
larger R because the energy gap between the A3XF and the 2351 states is
smaller there. The E — oo limit is computed from Eq. (3.17). Note that at
A = 204 nm, this limit is not yet reached. In the semiclassical calculations the
effect of the radial derivative coupling is expected to be less important because
spin-orbit coupling reduces the population of the A3 state. Neglecting the
radial derivative coupling in the semiclassical calculation changes the fine-
structure branching ratios by at most 0.03 and the anisotropy parameters by
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Figure 3.4: Population of the 235} ABO basis state (|(2)01%; R)) for dis-
sociation of A3X (|(0)01%; R)) in the extended diabatic model, at different
dissociation energies (laser wavelengths).

at most 0.05.

The populations P;Q and the alignment parameters p(()k) (i€2; j) are given in
Tables 3.3 and 3.4, respectively, for all Herzberg states separately. Semiclassi-
cal results are given for five energies, including the three energies £ = 4.325,
12.87, and 34.61 mE, that correspond to the three wavelengths A = 236, 226,
and 204 nm for which experiments were done. We also give the results for the
adiabatic model and for the extended diabatic model at A = 204 nm. Note
that for most Herzberg states the semiclassical results for the populations are
between the adiabatic and diabatic limits. The exceptions are A?’E;O and
A’ 3A, o states. For the latter state, the j = 2 population actually has a
minimum around E = 6 mE,. In the adiabatic model only the j = 2 state is
populated. In the semiclassical calculation for E' = 1.108 mE; (A = 240 nm)
however only the 012;0 and A’ 3A, 3 have reached a j = 2 population of more
than about 90 %, whereas the other states still have substantial contributions
for j < 2. At E = 34.61 mE;, the populations are generally quite close to
the diabatic limit, with the largest absolute difference of 0.13 for the j = 2
population for the ¢! state. Note however that the relative differences with
the diabatic limit for the 7 = 0 populations can be about a factor of 2, e.g. for
the A3Ej71 and 'Y states.

By definition pgo) (1©;7) = 1/4/25 + 1 so this parameter is not listed in
Table 3.4. We recall from Section 3.2.3 the ranges for the other parameters:
~0.816 < piP (19§ = 1) < 0.408, -0.535 < p (i€ j = 2) < 0.535, and ~0.478
< (i = 2) < 0.717. Note that p”( A’ 3A,3 ;5 = 1) is equal to its
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Table 3.3: Populations P;Q (E) for the extended diabatic model at the highest
energy (34.61 mkEy,), for the semiclassical calculation at several energies, and
for the adiabatic limit, which is not energy dependent.

Semiclassical Diabatic
E =1.108 4.325 12.87 22.20 34.61 34.61lmkE,;

State j Adiabatic A =240 236 226 216 204 204nm
A?’Ej’l 2 1 0.778 0.744 0.692 0.663 0.642  0.547
1 0 0.216 0.240 0.273 0.292 0.306  0.359
0 0 0.005 0.016 0.035 0.045 0.052  0.094
A3E:0, 2 1 0.591 0.557 0.490 0.472 0.472 0.573
1 0.369 0.330 0.337 0.339 0.335 0.282
0 0 0.040 0.113 0.173 0.189 0.193 0.145
¥ 2 1 0.948 0.899 0.820 0.771 0.732  0.593
1 0 0.051 0.095 0.159 0.196 0.223  0.311
0 0 0.001 0.005 0.021 0.033 0.045  0.096
Al 3Au71 2 1 0.640 0.538 0.439 0.405 0.385 0.334
1 0 0.337  0.404 0.468 0.485 0.493  0.500
0 0 0.023 0.058 0.092 0.110 0.122  0.166
A 3Au’2 2 1 0.552 0.532 0.549 0.559 0.567 0.584
1 0 0.365 0.334 0.281 0.266 0.258 0.250
0 0 0.083 0.134 0.170 0.175 0.175  0.166
A 3N, 2 1 0.896 0.842 0.807 0.795 0.788  0.751
1 0 0.104 0.158 0.193 0.205 0.212 0.249

0 0 0 0 0 0 0 0
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Table 3.4: Alignment parameters b%& (i€2; ) (E) for the extended diabatic model at the highest energy (34.61 mEy, ), for the
semiclassical calculation at several energies, and for the adiabatic limit, which is not energy dependent. The parameters
with k = 0 are 1//2j + 1 by definition, those are not listed.

Semiclassical Diabatic
State (j,k) Adiabatic F =1.108 4.325 12.87 22.20 34.61  34.61mE,
\—wMHL (1,2) —0.272 0.083 0.095 0.068 0.047 0.037
(2,2) —0.3859 —0.282 —-0.153 —-0.073 -0.041 -0.021 0.013
(2,4) 0.1111 0.033 0.049 0.010 —-0.014 -0.033 —0.067
&wMHﬁT (1,2) 0.122 —0.214 —-0.498 —-0.569 —0.610 —0.538
(2,2) 0.3129 0.094 0.137  0.189  0.219 0.243 0.309
(2,4) —0.0457 —0.099 —0.039 0.078  0.127  0.153 0.128
%Mmo\ (1,2) 0.195 0.212 0.165 0.113 0.060 —0.162
(2,2) —0.0457 0.072 0.171 0.225 0.242 0.252 0.221
(2,4) —0.3129 —0.213 —0.136 —0.093 —-0.074 —0.057 —0.000
A uD:L (1,2) —0.244 —-0.194 -0.198 —-0.201 —-0.202 —0.205
(2,2) 0.1186 —0.096 —-0.167 —0.227 —-0.310 —0.327 —0.334
(2,4) —0.1709 —0.088 —0.061 —0.055 —0.069 —0.086 —0.178
A’ wD:,w (1,2) —0.307 —-0.424 —-0.638 —-0.719 -0.762 —0.816
(2,2) 0.000 0.214 0.309 0.380 0.391 0.392 0.381
(2,4) 0.4183 0.012 0.035 0.128  0.160 0.178 0.205
A’ wDSw (1,2) 0.408 0.408 0.408  0.408 0.408 0.408
(2,2) 0.1336 0.180 0.209 0.230 0.237  0.242 0.266
(2,4) —0.1793 —0.145 —-0.123 —-0.108 —-0.102 —0.099 —0.080
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Figure 3.5: Cumulative plot of distribution over atomic j levels. The diabatic
model is marked o. The experimental data are given with /A marks and error
bars. The semiclassical results are marked x. The dashed lines represent the
fine-structure branching ratios r;, the solid lines represent the intensity ratios
of the ion images, r;?bs(E).

maximum value of 0.408 for all energies. This can be easily understood since a
jo = 1 atom arising from an 2 = 3 state must necessarily have w, = 1, because
wa +wp = Q and |wp| < 2. We observe that in general the largest variations in
the polarization parameters occur for low energies. The atomic polarizations
have not yet been measured directly. Experimental determination of these
parameters would be a welcome extra test of the present calculations. We
only list the ,084) (i92; j) parameters for completeness, they do not play a role
in the present two-photon detection scheme.

We compute the fine-structure branching ratios for the photodissociation
of Oz [rj(E)] by combining the branching ratios for excitation of the different
Herzberg states (r;q) given in Table 3.2 with the population parameters P]?'Q
according to Eq. (3.35). The energy dependent results for the semiclassical as
well as the extended diabatic calculations are shown in Fig. 3.5. The intensity
ratios that may be determined from the ion images formally depend on the
polarization of the atoms according to Eq. (3.33). In Fig. 3.5 we see that only
for the lowest energy in the semiclassical calculation there is a small difference
between the intensity ratios in the images (solid lines) and the branching ratios
(dashed lines). Experimentally determined intensity ratios are only available
for A = 226 nm. We find that the semiclassical results lie within the exper-
imental error bars, while the extended diabatic model is clearly outside the
error bars. Note that the semiclassical results are between the adiabatic (100
% j = 2) and diabatic limits for the full energy range considered.

In Figs. 3.6, 3.7, and 3.8 we compare the calculated anisotropy parame-
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Figure 3.6: The anisotropy parameter (3y(FE). The markers have the same
meaning as in Fig 3.5.

ters with experiment for, respectively, j = 0,1, and 2 atomic fragments. For
7 =1 and j = 2 polarization of the atoms may cause a difference between the
anisotropy of the atomic fragment distribution [8;(E), the dashed lines in the
figures] and the experimentally determined anisotropy parameters ﬂ;?bs(E) of
the ion images [solid lines in the figures]. Note that the largest polarization
effects are predicted for low energies. For j = 2 and 7 = 1 the semiclassical
results are in better agreement with experiment than the extended diabatic
model. For 7 = 2 we also have results for the adiabatic model. For this model
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Figure 3.7: The parameters 3;(E) (dashed) and 3?*(E) (solid). The semi-
classical calculation is marked X, the diabatic model results are marked o, and
the experiment is marked with A\ and error bars.



64 Chapter 3: Calculation of fragment polarization and angular distribution

12 T T T
A adiabatic

—a

1.0 experiment™]|

semiclassical

0.6

diabatic

04 | | | | |
0 5 10 15 20 25 30 35

excess energy (mEh)

Figure 3.8: The parameters (2(E) and 33*%(E). The adiabatic model results
are marked with squares, the other markers have the same meaning as in Fig
3.7.

we find a large polarization effect, just as for the semiclassical calculations at
low energy. The largest deviations between the semiclassical calculation and
experiment occur for j = 0 (Fig. 3.6). This is somewhat surprising since in
this case there are no polarization effects, so the branching ratios determine
the anisotropy parameters. However, in Fig. 3.5 we already saw that the semi-
classical results are in good agreement with the experimentally determined
branching ratios at A = 226 nm. Clearly, additional independent experimental
data on the branching ratios and anisotropy parameters would be most wel-
come to further test our understanding of the photodissociation dynamics of
O5 in the Herzberg continuum. Furthermore, note that we took the Herzberg
excitation branching ratios and anisotropy parameters from the experimen-
tal paper.? These values were determined from extrapolation of spectroscopic
data. However, the R dependence of the transition moments that was used in
the excitation model in Ref. 3 is not in full agreement with ab initio calcula-
tions.? 23

3.4 Conclusion

Several electronic states contribute to the photodissociation of O in the Herz-
berg continuum. The photodissociation dynamics determines the fine-struc-
ture branching ratios for these states. This is reflected in the anisotropy of the
fine-structure resolved fragment distributions. In paper I we computed poten-
tials, spin-orbit and radial derivative couplings for electronic wave functions
that were carefully constructed to have the correct long range behavior. In
this paper we present the results of semiclassical dynamics calculations, which
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apply these potentials and couplings. We compare the calculated branching
ratios and anisotropy parameters to experimental results. In order to investi-
gate the adiabaticity of the dissociation we also present results for the limiting
adiabatic and diabatic models.

We find that at the lowest energy for which experimental data (A = 236
nm) are available the dynamics is still not fully adiabatic and at the highest
energy (A = 204 nm) it is not yet fully diabatic. The dynamics is mainly
determined by transitions that occur between 4.5 and 9 ag, where the spin-orbit
interaction becomes large compared to the separation of the ABO potentials.
We also considered the effect of the radial derivative coupling between the
A3 T and 2327 states. In the hypothetical infinite energy limit this coupling
causes a 2%} population of about 30 %. In the extended diabatic limit we
ignore the SO coupling and only include the radial derivative coupling. We
find that for A\ = 204 nm the 233 state is still only populated by about 15 %.
In the semiclassical calculations the A3Y} state becomes (partly) depopulated
through spin-orbit coupling before the radial derivative coupling reaches its
maximum, hence the effect on the calculated images is small.

The 24+1 REMPI detection used in the experiment is sensitive to the po-
larization of the atoms. The semiclassical calculations show that strong po-
larization effects on the anisotropy of the ion images can be expected for low
energies. Formally, polarization of the atoms also affects the determination of
the fine-structure branching ratios from the ion images, but we find that this
effect is almost negligible.

Generally, there is reasonable agreement between the semiclassical calcula-
tions and experiment. The largest difference between the semiclassical calcu-
lations and experiment occurs for the anisotropies in the 7 = 0 images. In the
present study we took the Herzberg excitation branching ratios from literature
results which mainly rely on experimental data. We believe that additional ab
initio calculations of the transition moments may help to resolve the remain-
ing differences. Also, experimental determination of the anisotropy parameters
with smaller error bars and a direct determination of the polarization of the
atoms, particularly at low energies would be most welcome.
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Appendix: Derivation of detection angular sensitivity

The geometrical factors Ix(j) for the REMPI detection are derived from the
spherical components of the two-photon excitation intensity operator. Follow-
ing Ref. 24 we write the ¢ = 0 spherical components of the geometrical factors
of a general two-photon transition in the case of linearly polarized light as

-m 0 m

[ . . E ji—m. / .i k 'i
2

| (20 By (G R RG| L ean

je

where

N (pgpllrlInege) (negel [r™][nigi)
R(e) =) . (3.38)
R O I RN (W)
The transition is from initial state |n;j;m) to final state [ngjsm), through inter-
mediate states [n.jem), where j;, je, j; denote the total angular momentum, m
denotes the projection of the angular momentum on the space fixed (SF) axis
of laser polarization, and n;,n.,ns denote all other quantum numbers of ini-
tial, intermediate, and final state, respectively. The symbols (nsj¢|[r™||n.je)
and (neje||r™||nj;) represent the reduced matrix elements of the transition
dipole o , B, and E,, are the energies of intermediate and initial state, v
is the frequency of the detection laser, and T’ is the homogeneous linewidth.
The factors IPF (j;, ;) are called Py, by Mo et al. Components with g # 0 are
zero for a two-photon absorption process.

Experiments2® and theoretical calculations®® have shown that the interme-
diate state 2522p33s3S° contributes about 97% of the total two-photon excita-
tion line strength in the (2+1) REMPI detection of O(3P;) at 226 nm. When
we neglect possible other intermediate states, the only possible value for j.
equals 1, and the summation over n. drops out of the reduced matrix element
factor R(j.). Then R(j.) is the same for all components of one transition
|nfjf) < |niji). Since we are only interested in relative intensities, this factor
can be divided out. We find

LY (irdy) = Z(—l)ji—m\/m( ji  k ji)

-m 0 m

i v (e v oaY

f e e A
(LAY (L) e
In the experiment, the final state is not resolved, and we have to sum over all
possible final states. Using the single-intermediate-state model the branching

m
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Table 3.5: Branching ratios r**(j; < j;) for the REMPI transition
O(2p*(*S)3p 3P;,) «— O(2p* ®P;,) via the 2p®3s3S° intermediate state.

Ji gy (s < ji)
0 0 1/3

0 1 0

0 2 2/3

1 0 0
11 1/2

1 2 1/2

2 0 2/15

2 1 3/10

2 2 17/30

ratios 7% (j; < j;) from one given j; to the three possible final states j; are
also given by Bischel.2> These values are are given in Table 3.5. We then
finally find

gy DIRE (G, )/ ISE (G, d)- (3.40)

HM“
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Chapter 4

Reassignment of the Oy spectrum just below

dissociation threshold based on ab initio
calculations

4.1

Abstract

Vibrational Herzberg bands of the Oy molecule just below its
first O(®P) + O(3P) dissociation limit are since long known to be
perturbed. Jenouvrier et al. [J. Mol. Spectr. 198, 136 (1999)]
assigned the cause of the perturbations to five vibrational lev-
els supported by the shallow minimum in the 13II, potential en-
ergy curve around 5.5 ag. Using ab initio potential energy curves
and spin-orbit couplings from previous work [J. Chem. Phys. 116,
1954 (2002)] we present a full quantum calculation of all ungerade
rotation-vibration-electronic states of oxygen just below the dis-
sociation threshold, through a total angular momentum quantum
number of J = 19. This calculation shows that the original assign-
ment, based on a Hund’s case (a) model of a regular 131I, multi-
plet was not correct. Based on our calculation we present a new
assignment of the perturbing states: 1°II, g_o(v=0), 1°II, 1(0),
1310, 2(1), 1310,1(1), and 1%L, - (0) in order of ascending term
values. We show the new assignment to be consistent with experi-
mental data and we also propose new spectroscopic parameters for
the perturbing states.

Introduction

Eight ungerade states of Oy correlate with its lowest dissociation limit O(3P)

+ O(®P).

spectroscopic studies

Three of these states are very well characterized by extensive
1711 of the so-called Herzberg bands, bands correspond-

ing to transitions from the X3Z; ground state to the A3YF(Herzberg I),

69
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'Y (Herzberg I1), and A’ 3A,, (Herzberg I1I) states. The other five ungerade
states, 1°IL,, 158, 1°1L,, 1'1L,, and 23%;}, are difficult to detect because these
potentials have only shallow minima at large internuclear separations (r > 5
ag), which leads to very unfavorable Franck-Condon overlap with the ground
state that has an ro = 2.29 ag. Still, the spin-orbit interaction between all
these states affects the O(®P;) fine-structure branching ratios for photodissoci-
ation of Oy in the Herzberg continuum.?!3 These interactions (together with
spin-orbit interactions amongst the gerade states) are also responsible for the
excitation and quenching of the fine-structure levels in collisions among oxygen
atoms.'*15 A quantitative understanding of processes affecting fine-structure
level populations is very important in atmospheric chemistry.!® Clearly ab
initio calculations are a valuable source of information about these potentials
and couplings. However, the open shell character of these states complicates
the proper treatment of the electron correlation and the basis set superposition
error.'? Thus, spectroscopic information on states in the so called recoupling
region (r & 4 — 7 ag) can provide useful benchmark information.

A glimpse of the spectroscopy of the weakly bound states is provided by
perturbations in the Herzberg bands that occur less than about 110 cm™!
below the dissociation limit. The weakly bound states cause a characteristic
pattern of deviations from straight lines which emerge when the term values
of the observed Herzberg levels are plotted as a function of J(J 4 1). Pertur-
bations in the v = 11 band of the A3} state were first noted by Herzberg?
in 1952. In 1986 Borrell et al.’® report perturbations in the N = 9, 11, and
13 rotational levels of this band. They suggest, based on potentials of Saxon
and Liu,'” that the 5 state is the perturber. In 1991, Partridge et al.'®
perform more advanced ab initio calculations on these states and propose the
1311, state, which has a deeper well, as the more likely candidate.

Jenouvrier et al.'® recently remeasured the Herzberg bands with high
resolution Fourier transform spectroscopy, identifying perturbations in the
A3SE (v=11), '35 (v=18,19), and A’ 3A, 2(v=12) Herzberg bands. They
attributed the perturbations to five 13II, levels. Assuming that this state is
a regular Hund’s case (a) multiplet, the perturbing levels were assigned to
be 1311, 0—1 (v=0), 1311, 2(0), 13IL, (1), 1311, (1), and 1®II, (1) in order
of ascending term values. It was assumed that the 1°I1,(0) level was the
lowest 1°II, level, although no corresponding perturbations were observed.
In a previous paper,'? which we will refer to as paper I, we calculated po-
tential energy curves for all the electronic states involved at the internally
contracted multireference configuration interaction level plus Pople size con-
sistency correction, employing large basis sets. We also computed all diagonal
and off-diagonal spin-orbit couplings amongst those states at the complete
active space self consistent field level. We employed these ab initio data in
a semiclassical study of the photodissociation of Oy in the Herzberg contin-
uum. '3

In the present paper we use the ab initio results in a full quantum calcu-
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lation of the spectroscopically observed levels of Os just below dissociation.
Our calculations indicate that the major perturbing state, 13IL,, cannot be
described by a regular Hund’s case (a) state in the relevant region of r =
5.5 ag. In fact, the diagonal spin-orbit coupling matrix element is negative
and spin-orbit couplings with other electronic states cannot be neglected. Al-
though the electronic states are mixed we can assign the perturbing state and
propose a new assignment by comparing the exact results with more approxi-
mate Hund’s case (a) and (c) calculations. Many of the observed perturbations
involve rather high rotational levels with J up to 17. Since in some cases the
experimental J = 0 spectroscopic parameters depend on the assignment and
the too simplistic Hund’s case (a) model, we also performed calculations for
the rotational levels that were actually observed. The pattern of perturbations
depends very sensitively on the position of the 1°I1,(0,1) levels relative to the
highly vibrationally excited Herzberg levels. To achieve better agreement with
experiment we slightly scaled and adjusted our potentials. This scaling also
allows us to draw a conclusion about the accuracy of the ab initio calcula-
tions of potential energy curves of and couplings between weakly interacting
open shell atoms. We also use the plot of the term values versus J(J + 1) to
extract the rotational constant of the “pure” 13II, level via a fit of the term
values to a polynomial in J(J + 1). Since most 1°II, levels are mixed with
the Herzberg states, computation of the rotational constant as the expectation
value of 1/2ur? typically yields larger rotational constants.

The outline of this paper is as follows: In Sec. 4.2 we discuss the theoreti-
cal aspects of our calculation, the different parts of the Hamiltonian, and the
basis functions used to expand the wave functions for the rotation-vibration-
electronic (RVE) states. We also give some computational details on the dis-
crete variable representation used for the radial nuclear motion. In Sec. 4.3, we
discuss our potentials, the rotationless vibrational level positions in the Hund’s
case (a) and (c) approximations, and in a full coupled calculation, the scal-
ing and adjusting of the potential energy curves, and finally in Sec. 4.3.6 the
results including the full rotational part of the Hamiltonian. We give our con-
clusions in Sec. 4.4. In appendix 4.4 we define our basis functions, and derive
their behavior under the parity operation. We also present a new derivation of
the rotational kinetic energy matrix element which avoids the use of Hougen’s
isomorphic Hamiltonian.?°

4.2 Theory

We compute RVE bound states of the Os molecule as eigenstates of the total
Hamiltonian, . A R R .
H = HCoul + HSO + Hvib + Hr0t7 (41)

where Hoou is the usual Coulombic Hamiltonian in the clamped nuclei ap-
proximation and Hgo is the Breit-Pauli spin-orbit (SO) Hamiltonian. The
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nuclear radial kinetic energy is given by Hyip, = —(h%/2u)r (82 /9r%)r, where
7 is the interatomic distance and yu = 7.9975u is the reduced mass of 1010.
The rotational energy part H,o; will be discussed below. The electronic adi-
abatic Born-Oppenheimer (ABO) wave functions, i.e., the eigenfunctions of
I:[COul, are taken from paper I. The ABO states are pure Hund’s case (a) wave
functions and we denote them by |(L)ASY;r), where A and ¥ are the pro-

jections, respectively, of the total electronic angular momentum (L) and the
electron spin (S) on the internuclear axis. At large internuclear separation L is
also a good quantum number and we use it to distinguish between the triplet
states A3Y (L = 0) and 2331 (L = 2) of the same (Doop,) symmetry, as was
explained in paper I.

In that paper we presented analytic fits to the ABO potentials Vz5(r)
for different values of L, |A|, and S, which are defined by

Viiaps(r) = (L)ASS; r| Hoow|(L)ASE; 7). (4.2)

In addition, we computed r-dependent SO coupling matrix elements which,
using the Wigner-Eckart theorem may be expressed as

((L)ASZ; 7| Hso|(L)A'S'S s 7) =

!

(_1)5_2 <SE (Z j E’) §/> <(L)AS;r||HSO(T)H(LI)A/S/§T>7 (43)
where the quantity between large parentheses is a 35 symbol. Note that matrix
elements are only nonzero when AQ = 0, where Q = A+3. We provided fits to
the 21 independent reduced SO matrix elements ((L)AS;r||Hso(r)||(L/)A'S’;
r). We also presented in paper I the only nonvanishing radial derivative cou-
pling matrix element amongst the eight ABO states, i.e., (A3S};r|0/0r|235;
r). However, in semiclassical calculations on the photodissociation of O2 we
found that the effect of this coupling just above the dissociation limit is neg-
ligible and hence we do not include it in the present bound state calculations.

4.2.1 The rotational Hamiltonian

The rotational Hamiltonian is given by

Fr(exac 1 T T T - & &
Ao = 5 (72 = ) 4 (12 = 1) (87 = 89)

ST 4 LS — (LI LJ) — (ST + s”jﬂ] . (4.4)

~

+(

in body-fixed operators, with i = Z +L+S and Z is the angular momentum as-
sociated with the rotation of the nuclei. In the Appendix we derive this Hamil-
tonian and its matrix elements. Asymptotically, the states we are considering
are derived from coupling atomic P states and hence we have at most L = 2.
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Furthermore, the expectation value of L? in diatomic molecules is generally
only weakly r-dependent for a given electronic state.?! Hence the L? term
only induces a shift in the electronic energy in the order of L(L + 1)h2 /2ur?
and we neglect this contribution. The L*SF /2ur? term couples states which
are also coupled by SO coupling. However, because of the 1/2ur? factor it is
much smaller than the SO coupling (see paper I) and we neglect it. We also
neglect the L*J¥ term. This term couples states with different A values, so
its main effect would be to give (small) perturbations for nearly degenerate
states of different electronic character, e.g., near crossings. We do keep the
SEJF term, however, since it gives rise to intra state coupling. In particular,
it couples the = 07,41 components of the A3%;" state. We will come back
to this point in the discussion (Sec. 4.3.6).
To summarize we use a rotational Hamiltonian,

Hyon = Hygt™ + HS (4.5)
with
(s 1 ~ ~ ~ ~ ~
A = (]2 4+ 8- J2 - 12— §? 4.6
rot 2/“ﬁ2 ( + z z z) ( )
and
~ -1 A, =« A A
oS — = (St i 4+ S ). 4.7
rot 2,&7’2 ( J + S J ) ( )

In the Appendix we define electronic-rotation Hund’s case (a) basis functions

|(L)YASSJMSQ; ), which are eigenfunctions of Hooy [see Eq. (4.1)] as well as
Fy (diay
Hr(ot g):
{5 = 1+ 1)+ S(5+1) - 02 = A2 = 2]} [(DASZIM s 7) = 0.
(4.8)
2(38)

The matrix elements of H.

ot follow directly from

SEIJFL)ASSIMQ; r) = e (J,Q)es (S, D) (L)ASE £ 1TMQ £ 1;7), (4.9)

where c4(I,m) = [[(I+1) —m(m+£1)]'/2. In the Appendix we show that states
of parity p = £1, containing an ungerade electronic part, can be constructed
as

[(L)ASEJMQp;r) =
1
2(1+0a,0050)

(L)ASSIMQ; 1) — p(—1)?|(L)—AS—SJM—Q; 7). (4.10)
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4.2.2 Vibrational motion

The vibrational motion is treated by a sinc-function discrete variable repre-
sentation®? (sinc-DVR). The localized radial basis functions ¢,,(r) = (r|n) are
associated with the grid points r, = ro + n4, where A is the grid spacing, via

bnlr) = %sinc (#’ _A’""> , (4.11)

where sinc(xz) = sin(z)/x. These functions are orthonormal. The matrix

elements of Hyj, are given by

2 x2 /

A 24 3A2) n=mn,
(nlHvinln') = q 325 (con’ / (4.12)

2u A% (n—n’)2 n # n.

In a DVR all multiplicative operators are represented by diagonal matrices, so
for the potential matrix elements we have

(n|Viais(r)|n') = 0nn Viiais(rn)- (4.13)
When evaluating rotational Hamiltonian matrix elements we may use
1, 1
=0pn—- 4.14
(0l 5 ) = B s (114)

n

Our RVE basis functions are products:
[(L)ASEJIMQn) = [(L)ASSITMQ; 1)y (r). (4.15)

Since we neglect the electronic radial derivative coupling for Hund’s case (a)
basis functions, the vibrational Hamiltonian matrix is diagonal in all angular
quantum numbers.
The total dimension of the basis that is required to converge all the states
up to the dissociation limit is quite large (order 10*). Therefore we follow a
two-step procedure in which we exploit the fact that I%{fjf ) is the only term in
the Hamiltonian that couples different 2 values. Thus for each value of 2 we
compute and diagonalize the Hamiltonian matrix of
Hy = Heou + Hso + Hy, + H8). (4.16)
Since Hy does not lift the degeneracy of odd and even parity states, we solve
this problem in a parity unadapted basis with {2 > 0 and we obtain the eigen-
functions as
Iy = Y [(L)ASSIMOn)cy i, (4.17)

LASSn
(A+E2Q)
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Note that for 2 = 0 these eigenfunctions have an intrinsic parity. These
functions are labeled = 0% for p = +1 or 2 =0~ for p = —1. For Q # 0 we
obtain parity adapted functions as

[JQup) = D [(L)ASSIMQpn)cy v, (4.18)
LASYn

We will use the conventional e/f parity label which corresponds to p(—1)”
being even (e) and odd (f), respectively [see Eq. (4.10)]. For the 1600
molecule one can show that the ungerade states must have odd parity (p = —1)
(see the Appendix) and hence for even J only f states exist and for odd J only
e states. Also note that 0 states must have e parity (and hence only occur
for odd J) and 0, states must have f parity (and hence occur only for even
J).

In the final step of the calculation we select all (odd parity) eigenfunctions
of ﬁo which have an energy E that is less than a certain threshold (Eipyresh)
and we use these functions as a basis to diagonalize the total Hamiltonian

rot
the eigenvalues of H for several values of Eipresh-

For a given set of potential energy curves and spin-orbit couplings this pro-
cedure gives essentially exact results. However, since we cannot expect our
ab initio calculations to be accurate to spectroscopic resolution, we need a
thorough understanding of the spectrum in order to convincingly argue that
a new assignment is called for. For this purpose we also report the results of
approximate calculations in which we ignore the rotational part of the Hamil-
tonian (H,o;) and treat the molecule as either a pure Hund’s case (a) or (c).
In the Hund’s case (a) calculations we use a Hamiltonian that includes H Coul,
Hip, and the part of Hso that is diagonal in (L), A (and ¥) [see Eq. (4.3)].
For the Hund’s case (c¢) calculation we first diagonalize f{coul + ﬁso in the
electronic basis for each point of the radial grid to obtain Hund’s case (c)
potentials. Subsequently, we take into account the vibrational Hamiltonian
in a Born-Oppenheimer type approximation, i.e., treating the system as a set
of independent one-dimensional vibrational problems. To compare with these
approximate calculations we also report a full calculation, with all of the elec-
tronic couplings included, but with neglect of the rotational Hamiltonian.

H=Hy+H (JS), Convergence of the calculations is checked by comparing

4.2.3 Convergence of the sinc-DVR

In the DVR calculation we employed a grid ranging from » = 1.6 ag to r =
27 ap with a grid spacing of Ar = 0.045 ag. For the most strongly bound
state in our study, the ¢'X; state, which has a D, of 8999 cm~!, this Ar
corresponds to 4 points per De Broglie wavelength, which we computed as
27(2uD,)~/2. We checked that the convergence with respect to Ar of even
the highest vibrational level (v = 19) of the c state is better than 4-10~7 cm 1.
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Figure 4.1: Hund’s case (a) (dashed lines) and (c) (solid lines) potential energy
curves for Q = 0, 1, and 2 in part (a), (b), and (c) respectively. In part (a), case
(c) Q = 0% curves have been marked 0%, other (not marked) curves are 0.
Hund’s case (a) labels are formally only applicable to the dashed lines. The
dotted line represents the O(3P;) + O(3P,) dissociation limit, the different
case (c) dissociation limits O(3P;,) + O(*P;,) are marked (jq, jp)-

The innermost point of the grid at 1.6 ag is chosen well into the repulsive region
of all potentials involved and the results are fully converged with respect to
this parameter. The very large grid size guarantees that even states located at
only about 1 cm~! below the dissociation limit are converged to better than
1073 em™ .

4.3  Discussion

4.3.1 Potentials

In Fig. 4.1 we show the ABO potentials (the dashed lines) and the Hund’s
case (c) potentials (the solid lines) for 2 = 0, 1, and 2. Details of the ab initio
calculations of the potentials and the spin-orbit couplings used to construct the
Hund’s case (c¢) potentials, as well as the fits can be found in paper I. In Table
4.1 we report the spectroscopic parameters r., D., and w, for these potentials.
The D, is computed with respect to the O(3P2)+O(3P,) dissociation limit
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Table 4.1: Spectroscopic parameters D, and w, (in cm™!) and r. (in ag) for
Hund’s case (a) and (c) 1311, o potentials. For the case (c) potentials we also
report the position r (in ag) of the barrier between the inner and outer well
and its height (in cm™1!) relative to the minimum of the outer well at r = r,.

Barrier
case Q Te D, we  r  Height
(a) 01,2 533 1204 925 -— —
(c) 0~ 5.27 100.0 91.7 4.73 73.0
(c) 1 5.37 164.6 83.0 4.72 109.0
(c) 2 5.36  192.0 854 4.79 79.4

(dotted line in Fig. 4.1) which lies 159 cm~! below the asymptotic value of the
ABO potentials. Note that in the Hund’s case (c¢) description local minima of
the 2 = 07,1, and 2 potentials correspond to the 1°II, o states. In Table 4.1
we also give the barriers to the inner well which supports the Herzberg states.

In Fig. 4.2 we show the r-dependent diagonal spin-orbit matrix element
Aq(r) = <13Hu,g|ffso|13nu7g>. In a Hund’s case (a) description the multiplet
splittings of the 1311, o components is determined by Aq(r) = A(r)AX =
A(r)( — 1). If the dominant configuration of the 1°II, state is 1s* 2s* 2po?
2pmd 2pm, 2po, one expects a regular multiplet, i.e. A(r) > 0 (see Table 30
in Ref. 2). Figure 4.2 shows that for r < 3.8 a¢ this is the case. However, for
larger internuclear separations, which are relevant for the 13IL, state (r ~ 5.5
ag), the ab initio calculation shows that such a simple description no longer

fem™

_ ! ! ! ! !
802 3 4 5 6 7 8

r [ao]

Figure 4.2: The diagonal spin-orbit matrix elements (1311, o|Hso (r)[1°T1,.q),
for Q =0, 1, and 2.
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Figure 4.3: Bound state calculations for the 1311, vibrational levels where the
rotational part of the Hamiltonian was ignored. From left to right approximate
Hund’s case (a), approximate Hund'’s case (c), full coupled calculation, coupled
calculation with scaled 1°II, potential, coupled calculation where both the
1311, and Herzberg potentials are scaled, experimental results, with our model
rotational constant for the highest level (see text) and our new assignment,
and original experimental results with original assignment.

applies.

4.3.2 Rotationless levels

In Fig. 4.3 we show the results of all our bound state calculations in which
the rotational part of the Hamiltonian was ignored. At the right hand side of
the figure we show the levels observed by Jenouvrier et al. and the original
assignment.

case (a) When we treat the 131, state in the Hund’s case (a) approximation
described in the theory section we find the levels shown in the first column of
Fig. 4.3. Note that the zero of energy in this plot corresponds to the O(®Py)
+ O(®P,) dissociation limit and hence these approximate Hund’s case (a)
“bound” levels may have a positive energy up to 159 cm~'. As expected, we
find an inverted multiplet in the Hund’s case (a) approximation.

case (c) We also approximated the bound levels by solving one-dimensional
vibrational problems employing the Hund’s case (¢) potentials. The results
are shown in the second column in Fig. 4.3. Note that the {2 components
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Arbitrary units

R [ao]

Figure 4.4: Vibrational wave functions for the 13Hu’g (v) levels calculated in
the Hund'’s case (c) approximation.

of the 1311, o are not equally spaced, in contrast with the Hund’s case (a)
description. In the Hund’s case (c) description the 1°II,(v) states can mix
with the Herzberg states by tunneling through the barrier between the inner
and outer wells in the potentials. In Fig. 4.4 we plot the vibrational wave
functions corresponding to the five case (c) energy levels shown in Fig. 4.3.
Clearly the v = 0 states are sufficiently well localized in the outer well to allow
an unambiguous assignment. The 1°T1, 1(1) level lies also below the (Q = 1)
barrier. The ) = 2 barrier is lower and the 131, 2(1) level lies above this
barrier, and is rather strongly mixed with the A’ 3A,, 2(12) level.

Coupled calculation In the third column of Fig. 4.3 we show the results of
a fully coupled calculation. Since we still left out the rotational part of the
Hamiltonian, Q is a good quantum number. These levels are computed by
taking all electronic Hund’s case (a) basis functions for a specific value of Q
[see Egs. (4.2) and (4.3)], combining them with the sinc-DVR basis functions
[Eq. (4.11)] to describe the vibrational motion [Eq. (4.12)] and diagonalizing
Heoul + Hso + Hyyp, in this basis. Again, mixing with the Herzberg states
occurs, so we had to inspect the wave functions to assign the levels. Compared
to the case (c) approximation only small shifts occur. In particular, the v =
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0, Q = 0 level shifts from 0.8 cm™! below the v = 1, Q2 = 1 level to 7 cm™!
above it.

4.3.3 New assignment

We are now in a position to make a first comparison between our computed lev-
els and the experimentally observed levels. Although Jenouvrier et al. assumed
a regular Hund’s case (a) they had to assign the lowest observed perturbations
to a Q # 0 1311,(0) level because the A’ 3A,, 2(12) state was involved (and 3A,
does not couple with 3IIy). Hence we assume that our lowest two levels, with
v = 0 and Q = 2,1 correspond to the lowest two observed states. In Sec. 4.3.6
we will show that reversing the (v = 0) Q = 1 and Q = 2 assignment is not
at all inconsistent with the observations. The next two observed 131, levels
had a distinctly smaller rotational constant and were assigned v = 1, which is
consistent with the ordering of the computed levels. However, we find that the
lowest v = 1 1%II, level has Q = 2 instead of Q = 0. In the experiment, the
lowest v = 1 level causes perturbations in both the Fi; and F5. components
of the A3ZI71(11) states, which is consistent with our ) = 2 assignment.

For the highest observed 1°II, level, which was assigned v = 1, = 2 by
Jenouvrier et al., only one perturbation [of the J = 14 F3p A3X7(11) level]
was observed, and hence no direct determination of its rotational constant
was possible. The assignment is only logical if one assumes a regular Hund’s
case (a) for the v = 1 state. As we will see below, this observed (J = 14)
perturbation can be very well explained by our v = 0, Q = 0 level which lies
just above the v = 1, 2 = 1 level. Assigning this J = 14 perturbation to a v =
0 level instead of a v = 1 level results in a different (J = 0) term value because
the rotational constants of v = 0 and v = 1 states are different. In Sec. 4.3.6
we will show how this new assignment leads to a new “observed” term value
for the 1°IL, o- (0) level. In column 6 of Fig. 4.3 we show the experimental
data with the adapted 1°II,, o- level.

4.3.4  Adjusting the 1311, curve

In the experiment information about the 13II, levels is obtained from a char-
acteristic pattern of perturbations in a plot of the term values of the observed
(Herzberg) levels as a function of J(J + 1) (see Fig. 4 in Ref. 19). In order
to validate our assignment we construct in Section 4.3.6 a similar plot using
computed RVE levels (Fig. 4.5). In order to allow a meaningful comparison
between experiment and theory it is important that the perturbations between
the highly vibrationally excited Herzberg states and the 13II, states occur at
(approximately) the same value of J. Clearly, such a near perfect agreement
between ab initio results and experiment is very difficult to achieve. Therefore,
before we include the rotational part of the problem, we adjust the potentials
slightly in order to shift the vibrational levels closer to the observed positions.
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Table 4.2: Position of the 1311, o (v) levels with different combinations of «
and 7 in the adapted 1311, potential energy curve. Experimental data for
13Hu70 (0) is given between parentheses because it depends on the erroneous
experimental assignment as v = 1.

D,

« To ldHu’Q(O) 1&1'-[“’1(0) 151_.[“’2(1) ].dHu,l(].) 1dHu70_ (O)

Experiment 106.3 84.1 57.5 39.5 (23.5)
1.5655  0.00 119.7 94.7 59.5 42.1 37.1
1.5655 0.13 114.4 89.2 55.6 39.0 36.5
1.5655  0.26 101.5 83.0 51.3 35.6 35.8
1.3246 —0.693 101.0 82.5 51.0 35.4 35.1
Original curve 152.8 125.9 80.6 66.4 59.3

First, since our calculated 1311, levels lie somewhat too deep and the v =
0 / v = 1 separation is somewhat too large, we add a simple two-parameter
repulsive term exp[—a(r — 79)] to the 1311, ABO potential. In Table 4.2
we show the energies of the 1%II, o(v) levels for four combinations of a and
ro, together with the experimental results and the results for the unadjusted
potential (which were already shown in Fig. 4.3). Since the result with a =
1.5655 and r¢y = 0.13 gives agreement with all experimental data to within a
few cm™! we did not attempt further optimization of the parameters. The
results with (o, rg) = (1.5655,0.26) and (1.3246,—0.693) show that similar
results can be obtained with different combinations of a and ry. We chose to
use a = 1.5655 above o = 1.3246 because a larger « yields a smaller relative
change in the short-range part of the potential when inducing an equal change
in position of the bound levels. Note furthermore that for the 13Hu70(0) level
the difference between calculated and experimental level position is 36.5 — 23.5
= 13 cm ™! if we take the original data from the Jenouvrier paper. However,
using our model to derive the J = 0 level from the observed J = 14 level the
agreement becomes much better: 36.5 — 32.4 = 4.1 cm™".

4.3.5 Scaling the Herzberg curves

In the next step we adjusted the three Herzberg ABO potentials (A4’ 3A,,
A3 E, '3y according to

VneW(,r,) = fVErtV[TO + (7‘ - rO)fhor}~ (419)

Since the computed rotational constants of the lowest Herzberg vibrational
levels were already in very good agreement with experiment (better than 0.7
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Table 4.3: Term values with respect to the dissociation limit, D, for the
high-lying Herzberg vibrational levels. Calculated levels are coupled state
calculation, where rotation has been neglected.

Calculated
Level Orig. curve 1°IL, scaled All scaled Exper.!?
A’ 3N, (12) 111.3 104.9 168.7 175.3
A" 3N, (11) 321.8 321.3 404.8 397.9
A'3A,1(11) 211.3 210.8 292.1 279.8
A% (11) 54.0 56.4 112.2 108.5
APyE o (11) 39.8 42.2 97.5 95.6
B, (19) 40.4 36.5 61.0 67.0
B, (18) 95.4 82.9 123.5 130.2
'y o(17) 170.8 163.9 240.3 242.6

%, see Paper 1) we took, for each curve, ry equal to the expectation value of r
for the lowest vibrational level. This ensures that the scaling has a negligible
effect on these rotational constants. The vertical scaling fyet was chosen to get
exact agreement with experiment for D, in the Hund’s case (¢) approximation.
Finally, fuor was varied until the highest vibrational levels were in agreement
with experiment to within 6 cm™!. In Table 4.3 we report the D, for several
high lying Herzberg vibrational levels for the original curves as well as the
adjusted curves, together with the experimental data (taken from Ref. 19).
Note the influence of the scaling of the 131I,, ABO curve on the Herzberg levels:
the A’ 3A, and ¢'Y;, levels go up and the A3%} levels go down, resulting in a
reversal of A3E;0, (11) and 012;0, (19). The parameters are given in Table
4.4. Because of the mixing of the Herzberg states with the 13II, states the
latter are slightly altered by the change in the Herzberg potentials, as shown
in the fifth column of Fig. 4.3.

Table 4.4: Parameter values used in the adaptation of the Herzberg Coulombic
potential energy curves to experiment, according to Eq. (4.19).

State fvert To fhor

A"3A, 1.01906 2.878636  0.9855
A3YF 1.01751 2.892466  0.9845
cyy 1.02091 2.8880295 0.9800
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4.3.6  Rotational energy levels

In Fig. 4.5 we plot the RVE energy levels as a function of J(J +1). The levels
were calculated with the two-step procedure described in Sec. 4.2.2, employing
the scaled 1°II,, and Herzberg ABO potentials and taking into account the ro-
tational Hamiltonian of Eq. (4.5). The threshold for selecting basis functions
in the second step of the calculation was set t0 Eihresh = 24.2 cm™! above
the O(®P2) + O(3P,) dissociation limit. The dimension of the resulting basis
ranges from 59 for J = 0 (only £ = 0 states) via 275 for J = 3 (all {2 compo-
nents) to 205 for J = 19. In changing Eipresnh from 19.2 cm™! to 24.2 em ™1,
2, 15, and 19 extra basis functions were selected for J = 0, 3, and 19, and
all bound level positions changed less than 0.028 cm™!, so we expect to be at
least converged up to 0.02 cm™!. To reduce the slopes of the lines 0.15.J (J +1)
has been subtracted from all term values in Fig. 4.5 (exactly as in Fig. 4 of
Ref. 19). The dissociation limit is represented by the dotted line.

There is good agreement between Fig. 4.5 and the experimental results (Fig.
4 in Ref. 19). Our calculated 'Y (18,19) levels are about 7 cm™! too high
and the 1311, (0) levels are about 6 cm~! too deep. As a result the calculated
perturbations of the Herzberg levels occur at values of the rotational quantum
number J that differ at most about 2 with experiment.

The selection rule for spin-orbit coupling is AQ = 0. We observe that
perturbations between same-{) states are larger than for states with different
Q quantum number. The latter are — in our Hamiltonian — only coupled via
ﬁr(c‘,]ts) [Eq. (4.7)]. Note that the most visible effect is to shift down the Fif
component of the A3E1Jf’1 (11) level via first order coupling with the ABE;O,
(11) F3ys levels. A similar shift does not occur for the A3E:71 Fy. level since
there is no A3E;O state of e parity (compare the two dash-dot lines in Fig.
4.5).

A AQ = 0 perturbation occurs at J = 14, 15 (16, 17 in the experiment)
between the 1311, 2(0) and A’ 3A,, 2(12) states. In the original assignment of
Jenouvrier et al. this was a AQ = 1 perturbation [1°I1,1(0) — A’ 3A,2(12)].
In Fig. 4.5, however, we find that the perturbation between A4’ 3A,, 5(12) and
1%11,,.1(0) (around J = 17) is negligible. Similarly, the perturbation between
A?’Zz’l(ll) and 1311, 1(0) around J = 9, 10 (11, 12 in the experiment) was a
AQ = 1 perturbation in the original assignment.

The solid lines in Fig. 4.5 represent fits for the J-dependent term values of
the 5 perturbing 1311, levels:

Tya(J) = —Dyo+ ByaJ(J +1) = DyalJ(J + 1)) (4.20)

The dashed lines represent similar fits for the Herzberg levels. The parameters
are given in Table 4.5, together with the experimental results. Centrifugal
distortion parameters l~)v,g were not reported in Ref. 19, probably since the
observed range of J values for each state was too limited to extract a reliable
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Figure 4.5: Calculated RVE energy levels (x marks) lying less than 120 cm~' below the dissociation limit (dotted
line). For clarity, 0.15J(J + 1) cm™! was subtracted from the term values. Solid lines are fitted values T, q(J) =
—Dyq+ ByaJ(J+1)— D, q[J(J + 1)]? for the 1311, levels, and dashed lines are the same fits for the Herzberg levels.
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Table 4.5: Spectroscopic parameters for 1°II,, bound states. Experimental
data for the 13Hu’07 (0) level is given between parentheses because this data
depends on the erroneous experimental assignment of this level as v = 1.

Lovel Duo Bug BEL()) J  Duo
Cale. Exp. Lit2 Calc. Exp. 10%cm ™!
13Hu72(0) 112.6 106.3 96.9 0.2329 0.221 0.2268 16 2.23
13Hu71(0) 89.0 84.1 76.9 0.2333 0.226 0.2319 11 1.05
131_[”72(1) 59.5  57.5 54.7 0.2267 0.165 0.2090 13 9.71
13Hu71(1) 39.2 39.5 38.0 0.1911 0.170 0.1863 16 1.78
13I1,0(0) 37.8 (23.5) 30.2 0.2265 (0.175) 0.2215 14  1.84

%For 1311, potential from Ref. 18.

value. Note that the Dgn—12 dissociation energies agree to within 6 cm™!

with experiment and that for v = 1 the agreement is even better. For the
1311, o- (0) level there seems to be a discrepancy of 14.3 cm™!. In our calcula-
tion the crossing of the 131, o- (0) with A?’E;O,(ll) Fs¢ level occurs at J =
13. Jenouvrier et al. observed a perturbation of the J = 14, F3; component of
the A3EIO, (11) level. They assigned this perturbation to the 13I1, 2(1) level.
However, no further perturbations arising from this “13II, 2(1)” state were ob-
served and hence the reported rotational constant of 0.175 cm ™! was derived
from observations of other v = 1 1311, states via the Hund’s case (a) model
[Eq. (31) in Ref. 19]. Furthermore the reported dissociation energy of 23.5
cm~! was derived by extrapolating the observed J = 14 term value using the
rotational constant of 0.175 cm™!. However, with our assignment of the per-
turbation to the 13Hu707 (0) level, extrapolating to J = 0 using our rotational
constant By = 0.2265 cm~" and distortion constant Do = 1.84-107 cm ™!
we arrive at an experimental Dg ¢ of 32.4 cm™!, which is in good agreement
with our calculated value of 37.8 cm™!.

Our calculated rotational constants are somewhat too large. However, in
the experiment the centrifugal distortion constants were neglected. Therefore,
we also computed effective rotational constants (Table 4.5)

B (J) = Bug — DyaJ(J +1) (4.21)
for J values in the region of the dominant perturbations. The agreement with
these effective rotational constants is within about 2 to 3 standard deviations,
again with the exception of the 13IL, o (0) level.

In Table 4.5 we also report (in the column marked “Lit.”) results of a
calculation employing a literature'® potential energy curve for the 131, state
(and all other potentials and couplings from our own scaled results). Since this
is a calculation where the rotational Hamiltonian was neglected, we have no
rotational and distortion constants in this case. We see that the vibrational
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Table 4.6: Spectroscopic parameters for the three ab initio ABO potential
energy curves under comparison.

Curve R.(ag) we(em™)  D.(ecm™1)
Literature (Ref. 18) 5.6426  65.4072 191.9923
From Paper I 5.3328 92.5180 279.5888

Present, adjusted 5.4991 85.2712 223.6329

levels lie too high, from 9.6 cm™! for 1311, 2(0) to 1.5 em™! for 1311, 1(1),
an accuracy comparable with our adjusted 13II, potential energy curve. In
Table 4.6 we give spectroscopic parameters for the three 1311, ABO potential
energy curves. We see that the parameters for the literature curve and the
present adjusted curve differ by a fairly large amount, though the final level
positions are of a reasonably good quality for both curves. This indicates the
importance of the spin-orbit coupling in this recoupling region. In paper I
we showed that the original unscaled ABO states yield better spectroscopic
results for the Herzberg states than the literature curves from Ref. 18. We
would therefore expect the original curve to be better for the 13II, state also,
but it is not. The original curve was calculated employing an equally good
(in the long range, » > 7.5 ag) or better (in the short range, r < 6.5 ag)
one-electron basis than the literature curve, and both curves were calculated
on the multireference configuration interaction (MRCI) plus size consistency
correction level of theory. Therefore we tentatively suggest that the internal
contraction scheme of the MOLPRO MRCI program, employed in the calcula-
tion in paper I, is not as good as uncontracted MRCI for this weakly bound
Van der Waals-like state, though in general the internal contraction scheme
gives good results for chemically bound systems.

4.4  Summary and conclusions

In addition to the three Herzberg states, there are five ungerade states in
O3 that correlate with the O(3P) + O(3P) dissociation limit. We calculated
all rotational-vibrational-electronic bound states up to J = 19 supported by
these potentials, taking into account spin-orbit and rotational couplings. We
neglect the homogeneous spin-electronic (L*SF /2ur2) and the L-uncoupling
operator (LEJF /2ur?), but we kept the S-uncoupling (S*JF /2ur?). Ab initio
potentials and SO couplings were available from our previous study.

In a recent spectroscopic study of the Herzberg bands perturbations were
found in the A3} (v = 11), !X (18, 19), and A’ 3A,,(12) levels. Assuming a
regular Hund’s case (a) multiplet for the 1311, state, these perturbations were
assigned to the 1°IL, 1(0), 1311, 2(0), 1311, 0(1), 1°IL, 1(1) and 1311, 2(1) lev-
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els. Our calculations yield a new assignment of the perturbing levels, namely
1311, 2(0), 13111 (0), 131, 2(1), 1311,1(1), and 13IL, o- (0). This new assign-
ment is consistent with the experimental data, and better than the original
assignment, because all the large perturbations are now explained by large A€}
= 0 spin-orbit couplings, and the smaller perturbations by smaller AQ = +1
spin-rotation couplings. The calculated diagonal 1311, SO coupling is negative
for r > 4 ag so one expects to find an inverted multiplet for the 13II, state,
which has an r, ~ 5.3 ag. In this region the SO couplings are comparable
in size to the Coulomb splittings between the eight ungerade states and a
pure Hund’s case description is not possible. An approximate Hund’s case (c)
description is in reasonable agreement with the more exact calculations.

We also slightly scaled the Herzberg potentials and adjusted the 13IL, po-
tential by adding a small repulsive term. In this way we achieved agreement
with the experimentally observed perturbing levels to within 7 cm™!. Replac-
ing the ab initio potential from Ref. 12 by the potential from Ref. 18 gave a
similar good agreement (in combination with the scaled Herzberg potentials).

Our calculated rotational constants of the 13I1,, levels are slightly too large,
but still agree with experiment within 2-3 standard deviations (see Table 4.5),
except for the level we assigned as 1°I1, o- (0). This level was originally as-
signed as 1°II, 2(1) and we show that the reported rotational constant is an
artifact of this incorrect assignment. We also compute rotational distortion
constants and show that they are not negligible for the higher rotational levels
that were observed experimentally.

Appendix: Basis functions and rotational Hamiltonian

The recipes for computing rotational Hamiltonian matrix elements for Hund’s
case (a) and (c) basis functions can be found in several text books.?!:2%24 The
rules can be derived taking into account the normal and anomalous commuta-
tion relations of the appropriate rigid rotor angular momentum operators. This
method was introduced by Van Vleck? for non-linear molecules. For linear
molecules the derivation is more difficult since two-angle embedded rotation
operators have complicated commutation relations.?%2?6 The problem arises
because a linear molecule only uniquely defines a BF z-axis. It was shown by
Hougen?® that the familiar results can be obtained by the introduction of an
extraneous rotation angle. This leads to an isomorphic Hamiltonian, for which
only some of the eigenvalues and eigenfunctions correspond to the physical so-
lutions. An analogous problem occurs in the study of Van der Waals complexes
when a two-angle embedded BF frame is chosen. In an effort to avoid the iso-
morphic Hamiltonian in that case alternative derivations were presented, one
starting with Cartesian coordinates and applying the chain rule?” and one
employing the Podolsky form of the Laplacian.?® Both derivations require a
somewhat ad hoc rewriting of the Hamiltonian in terms of angular momentum
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operators to arrive at the familiar results and electron spin was not considered.

Here we present a new derivation which only requires elementary angular
momentum theory and which does not involve the isomorphic Hamiltonian.
Although we take the present Oy system as an illustration, our derivation is also
completely rigorous for half-integer spin and the application to Van der Waals
complexes should be transparent. Furthermore we present a compact and
rigorous derivation of the inversion symmetry behavior of the basis functions.
Because several phase conventions have been used in the literature?” great care
is required when applying text book formulas in combination with ab initio
data.

The present approach was inspired by the discussion of angular momentum
theory in Chap. 3 of the book by Biedenharn and Louck.3?

4.5.1 Basis Functions

The coordinates of the unit vectors that define the BF axes with respect to
the space fixed (SF) frame are given by [Eq. (2.37) in Ref. 30]

le2 ey " eZ"] = R(a, 8,0) = Rz(a) Ry (5)
cosacosf3 —sina cosasinf (4.22)
= |sinacos cosa sinasing|,
—sin 3 0 cos 3

where o and ( are the spherical polar coordinates of the diatomic internuclear
axis with respect to the SF frame. We define two-angle embedded Hund’s case
(a) basis functions as

2J+1

T Diio (0, 5.0 R(e, B,0)[(L)ASS; r)sp. - (4.23)

(L) ASETMQ;r) =

where we introduced the rotation operator in the active convention

R(Oé, 67 O) = RZ(Q)RY(ﬂ) = exp( ZaJ elec, Z) exp(fiﬂjesig:,Y)' (424)

The total electronic angular momentum operator is defined as J elec =L +
~SF
S . The electronic wave functions calculated in paper I for the O atoms on

the SF Z-axis are denoted here as |(L)ASY; r)sp. Applying the rotation op-
erator to these functions yields the BF electronic wave functions. The nuclear
rotational part of the wave function is given by the Wigner D-matrix, which is

30,31 From here on we will write D%g}?

also defined in the active convention.
instead of D J)*(a B,0)R (a (3,0) and suppress the parametric r dependence

of the electronic wave functions for compactness.
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4.5.2 Action of SF angular momentum operators on basis func-
tions

The space fixed electronic angular momentum operators transform under nu-
clear rotation as [see Eq. (3.42) of Ref. 30]

R, 8,000 R (0, 3,0) = BT (1, 3,0)J e = Jpee- (4.25)

We have [f/fF7SfF] =0, [J
AEF for all SF angular momentum operators, where €;;, is the Levi-Civita ten-
sor and summation over repeated indices is assumed. From these commutation
relations and Eqgs. (4.25) and (4.22) we obtain

SF D(J)*(a,ﬂ,O)] = 0, and [AfF7AfF} = i€k

elec,i’

jgfczD%;R = D%‘R {— sin ﬂjgéz}X + cos ﬂjeslelzz} , (4.26)

2SF I)* A D*p i ?SF . 3SF . 3 7SF
Jelec,:l:Dgwgl R= Dl(wzl Re™" |:COS ﬂ‘]elec,X + ZJelec,Y + sin ﬂJelec,Z:| ) (427)
o ~SF ~SF . ..

and similarly for L~ and S . Throughout this paper we define raising /lower-

ing operators as A4 = Ax +iAy.
~SF

The angular momentum operator [ associated with the rotation of the

nuclei is the usual one-particle angular momentum operator acting on the polar

angles o and f3, as defined in Eq. (3.106) of Ref. 30. Its action on DE\;R)* (a, 3,0)

can be derived using the action of standard rigid rotor rotational operators

L(a, B,7) [Eq. (3.101) of Ref. 30] on a three-angle D-matrix D%* (o, B,7) and
the relations

D%g; (o, 3,0) = Dg\jg(a, 3, v)e_m” (4.28)
N A 0
[SF — pSF 4 ;898 9 42
X LY +i sin 8 0y (4.29)
~gp  agp  .Sina O
- < 4,
ZY [’Y + Zsinﬂ a,y ( 30)
5 = £3F. (4.31)
The result is
157, D7 (o, 3,0)] = MD§75 (o, 3, 0) (4.32)
+ia
> * * (& *
[liFv Dj(\‘djzl (a, 8,0)] = cx(J, M)Dg\jztl,ﬁ(av B,0) — QMD%S)I (o, 3,0),
(4.33)

S
where ¢y (J, M) = [J(J+1)— M (M + 1)]Y/2. The action of [ ¥ on the rotation
operator R(a, 3,0) follows from differentiation of R(«, ,0) with respect to «
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and 3
[I57, o, 8,0)] = R(a, 8,0) [sin 8J5E x — cos BISE 4] (4.34)

rop . , - s cos? 3 .
[lSF7 R(Oé, /87 0)] = R(Oé, /87 O)eiux |:_ COS ﬁ‘]geF(;,X + ZJS;;Y + F;JSI;FC,Z} .

(4.35)

This yields

157, DSty R = MDY R+ D B [sin IS5 x — cos pISE ;| (4.36)

(57, DS R] = e (JM)DS)) o R

* 5 tio 0 5 .2 cos? 3 -
+ Dy Re* g~ oAl x F iy + WJCS]CFC*Z] . (4.37)

Combining ZSF = zs

" +J Zi yields
JEF DSy RI(L)ASS)sr = MDS 1y RI(L)ASS)sr (4.38)
JET DS RI(L)ASS)sp =

. R . eiia R
{ci(J, MDY o R+ DS R [Jikh.z - 9] } |(L)ASS)sF.
(4.39)

Thus the familiar standard results are only obtained when all [(L)ASY)sp are
eigenfunctions of Jéglch 5 with eigenvalue A + ¥ equal to €2, so that the second
term in Eq. (4.39) vanishes. We chose our basis functions to have this property,

and hence we have

JZFL)ASSIMQ) = M|(L)ASSJMQ) (4.40)
(J3)(L)ASSIMQ) = J(J 4 1)|(L)ASTTMQ). (4.41)

4.5.3 Action of BF angular momentum operators on basis func-
tions

To derive the matrix elements for the nuclear rotational kinetic energy, we will

have to look at the action of BF operators on the basis functions. We define
.BF BF .BF ~BF
BF operators J ,I ,L ,and S by

A" = R (a,8,0)4°". (4.42)
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From the transformation property (4.25) we have

L R(e,8.0) = R(a, $,0L”" and §°" R(e, 3,0) = R(a, 5,0)8"", (4.43)
and, using [f/?F,DE\}[]g;] = [S'lBF,D%g] =0 we find
LEF|(L)ASZIMQ) = A|(L)ASSIMQ), (4.44)
SEF(L)ASZIMQ) = S|(L)ASTIMQ), (4.45)
SBFL)ASSIMQ) = ¢+ (S, %)|(L)ASE + 1T MQ). (4.46)

Even though the electronic states are not eigenfunctions of (ﬁBF )2 we still have
ﬁiFLSTL)ASEJMQ> = D%gR]iiFKL)ASE)gF. Substituting the expressions
for [” into Eq. (4.42) gives [ZF =0 and
jBE _ i 0 " 9
+ sinfBda ~ 98"

(4.47)

Using the relations between lEF and the rigid rotor BF operators [Eq. (3.122)
in Ref. 30], and Eq. (4.28) we find

IBF DS (a0, 8,0) = e (L Q) Dy 5 (0, 4,0) — Qcot DY (a, 4,0), (4.48)
IBF R(a, 8,0) = R(a, 3,0) [_Jggc,i + cot gjggz} , (4.49)
yielding

17D R = ep (1) D5y B+ DY R{—J5E & + cot 8 [J5E 2 — | }.

[S)

(4.50)

We finally obtain
JEF|(LYASSIMQ) = Q|(L)ASTJIMQ) (4.51)
JEBFI(L)ASSIMQ) = ¢ (J,Q)|(L)ASTTMQ F 1). (4.52)

4.5.4 Rotational Hamiltonian
The Hamiltonian for the nuclear rotational kinetic energy is
N 1 /o) 2 1 i 2 . 2 . 2
Hoop = (ZSF) _ <JSF> (LSF> (SSF)
T 22 2ur? + +

I}sing the (jrthongnality of RA(a,B, 0) we can derive that [LBF, ﬁfF] = i€k
LF and [SPF, SPF] = i€, S¢F . Furthermore

[Rij(a, 3,0), LPT] = [Rij(a, 8,0), SEF] = 0,
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and thus
~BF 1 (ippapp | iBF ABF iBF ABF
-B :—(AJr BZ" + AZT BY >+Az B; (4.54)

A 2 .SF .SF ASF .SF ~SF ASF
for the inner products (SSF) , L -J ,S -J ,andL -S . Since
lgF = 0 we have ng = ﬁgF + §§F, and we can rewrite the rotational
Hamiltonian as Eq. (4.4), where we dropped the BF label on the BF operators,
and used small z, and superscript 4+ for BF components, in accordance to the
notation of Lefebvre-Brion.2!

4.5.5 Parity label

The space fixed inversion operator ¢ acts on both nuclear and electronic co-
ordinates. AItAcommutesAwitlAl all SF angular momentum operators, it has the
properties iji =1land i = it, and its action on the polar angles o and 3 is
given by 1ai! = o+ and i3i' = 7 — 3. Its action on the Wigner D-matrix is
given by
iDU (v, 8,0)it = expliM {0 (m — B) = exp(—irJ) D) 0
tDyq (o, ,0)" = expliM (o + m)]dy o (7 — 8) = exp(—inJ) Dy, " (a, 3,0),
(4.55)
where we used Egs. (3.67) and (3.75) of Ref. 31 in the second step. To derive
the action of ¢ on the rotation operator we first observe that from Eq. (4.25)

we have
Ry(n)Jy R, () = —Jy (4.56)

and hence A . . .
Ryz(n)Ry (=B)R}, (1) = Ry (3). (4.57)
Using this relation one can show that

iR(a, B,0)i" = Rz(a)Rz(m)Ry (—B)Ry (1) = R(a, B, O)RY(T")RZ(_T‘(')' )
4.58
With the use of

Rz (—m)|(L)ASS)sr = explin(A + )]|(L)ASS)sr
and [Rz(—),i] = 0 we derive
i|(L)ASSIMQ) =

exp|—in(J — Q)]D{)" o (a, B,0)R(a, 8,0) Ry (n)i|(L)ASE)sp.  (4.59)

Thus, to work out this expression we only have to apply Ry (77)% to [(L)ASY)sr,
which is the electronic wave function in the space-fixed frame as obtained from
the ab initio calculation. Since [i,Lz] = [i,Sz] = 0, we find that ¢ does not
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change the value of € in the ket |(L)ASY)sp. SF inversion does not act on spin
coordinates, i.e., 1|S¥)sp = |SX)sr, and kets can be rotated with a Wigner
D-matrix, so Ry (m)i|SE)sr = Sy |S)sp DG (0, 7,0) = (—1)5~3|S—)gp.
For the spatial part we have Ry (7)i|(L)A)sp = 6(XZ)|(L)A)sr, where 6,
(XZ) denotes reflection in the SF XZ plane. For one-electron orbitals de-
scribed by a spherical harmonic we have 6,(X2)|I\) = (—1)*[l — )), and
for a many-electron ket |(I;)LA) consisting of Clebsch-Gordan coupled one-
electron kets we find 6,(X2Z)|(I;)LA) = (—1)2:4HLHA ()L — A).  For a
diatomic molecule L is not a good quantum number, but a state that is
asymptotically %, will be ©* for finite R also. All our states are asymp-
totically O(®P) + O(®*P), with four p and four s electrons per atom. Thus
5o(XZ)|(L)N)se = (—1)2+A|(L)—A)se, vielding

Ry (m)i|(L)ASE)sp = (—1)S7ZHLHA (L) = AS—%)sr,
and finally
| (L)ASEIMQ) = (—1)7HE=5| (L)~ AS—ST M —Q). (4.60)

For our ungerade states (—1)~% is odd.*

The 10 isotope has nuclear spin I = 0. Hence, from the Pauli principle
for bosons, it follows that the spatial part of the nuclear wave function must
be symmetric under space fixed inversion. Thus, for the ungerade electronic
states of 10 160 only odd parity wave functions are allowed.
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Chapter 5

Ab initio calculation of the intensities of the
Herzberg 1, 11, and III bands of O

Abstract

We present an excitation mechanism for three spectroscopic sys-
tems of oxygen, the electric dipole-forbidden transitions Herzberg
L A3SF — X3Zg_, Herzberg 11: ¢'X;, «— X3Zg_, and Herzberg
II: A’3A, «— X®%, which are of atmospheric interest. The
mechanism is based on ab initio potential energy curves, spin-orbit
couplings, and orbit-rotation couplings. Pathways through sev-
eral intermediate states are included: 32; (1 state), 3Hg, 1Hg,
3%, (2 states of each symmetry), and ®II, (3 states). The cal-
culations are tested against experimental results [M.-F. Mérienne
et al., J. Mol. Spectr. 202, 171 (2000)] for integrated line cross-
sections of the Herzberg bands, for J up to 20. The intensity of
the Herzberg I system originates from positive interference of 311,
and ®II, intermediates with further positive interference from 3,
for the stronger branches, and negative interference for the weaker
ones. The agreement for the (2-0) band is almost perfect. The
Herzberg II system involves destructive interference between 1Hg
and 3II, intermediates, the larger contribution is from 1Hg. For
this system the agreement with experiment is very good for low
vibrational bands [(4-0)], but calculated intensities are too low for
high v'(~ 10 — 17), probably due to a too repulsive inner wing of
the Herzberg potentials. The intensity of the Herzberg III system
is caused by 3II, and 31_[9 intermediate states. The agreement be-
tween experimental and calculated intensities is reasonably good
for most branches, but not for branches where orbit-rotation in-
teraction through 3II; is important. An extra intermediate state
of 3II, symmetry might be needed to describe the Herzberg III
intensity mechanism better.

97
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5.1 Introduction

The O5 molecule has six bound electronic states below its first dissociation
limit. They are, in order of increasing energy, the ground state X 32; two
more gerade states a' A, and b! E;r, and three ungerade states, c'X;, A’ 3A,,
and A3YF. All transitions between these six states are forbidden in the electric
dipole approximation. Transitions from the ground state to the three ungerade
states become allowed when spin-orbit and orbit-rotation interactions with
other (intermediate) states are taken into account. These transitions are known
as the Herzberg transitions, they are numbered according to their intensity.
Herzberg I, II, and III correspond to A3Y}«— X3E;, Y e— X3Z;, and
A BN, — X 3Zg_ respectively.

Exact knowledge of the mechanisms by which these transitions obtain their
intensity is important in atmospheric photochemistry, where there is still dis-
cussion on the total Herzberg continuum cross-section.”? Buijsse et al.! calcu-
lated continuum cross-sections using the effective transition moments adopted
by them. These were based on experimental line oscillator strengths, extrapo-
lated into the continuum and partly on ab initio calculations by Klotz and Pey-
erimhoff.? These cross-sections are consistent with the corresponding discrete
oscillator strength densities, as is required by the principle of continuity across
a dissociation limit.* However, the total Herzberg continuum cross-section
measured by Amoruso® is ~ 13 % lower than the Herzberg I cross-section of
Buijsse, based on extrapolation of the discrete spectrum.

The excitation mechanism is also important for a correct description of
oxygen photodissociation. The photofragment fine structure branching ratio,
angular distribution and alignment depend on and thus give indirect informa-
tion on the excitation mechanism. Branching ratios and angular distributions
were measured by Buijsse et al.' In previous work® we calculated these, em-
ploying ab initio potentials and couplings, semiclassical dynamics, and the
semi-empirical excitation model of Buijsse. The agreement between theory
and experiment is not yet perfect. A full quantum dynamical scattering cal-
culation of the photodissociation of Oy in the Herzberg continuum, employing
our potentials and couplings and the ab initio excitation mechanism from this
chapter is in progress.

Our excitation model consists of several pathways. Each pathway is an elec-
tric dipole allowed transition from the ground state to the Herzberg state via
an intermediate state that is a perturber of either the ground or the Herzberg
state through spin-orbit or orbit-rotation coupling. Electric dipole transitions
between perturbers of ground and Herzberg states have not been considered.
Klotz and Peyerimhoff® performed ab initio calculations of electronic transi-
tion moments for the Herzberg transitions. They did not include orbit-rotation
interactions, which means they do not have a pathway for the {2 = 3 subband
of the Herzberg III system. Furthermore they do not give separate transition
dipole moment matrix elements and spin-orbit coupling matrix elements, but
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only the R-dependent electronic transition moments (which are the absolute
values of products of spin-orbit coupling and transition dipole). Therefore
the information on the relative phases of the pathways is lost. This phase
information is needed in the calculation of photofragment angular distribu-
tions and alignment. Our electronic transition moments compare very well
with those of Klotz and Peyerimhoff, when we include the same intermediate
states. However, we will show that orbit-rotation interactions and at least one
more intermediate state of 3II, symmetry is needed to describe the intensity
in the Herzberg systems.

To test our ab initio excitation model, we calculate intensities for the
bound-bound transitions in the Herzberg bands. Many studies of the in-
tensities of these bands have been performed, photographic measurements,
and also with modern techniques as cavity-ringdown spectroscopy and Fourier
transform spectroscopy (FTS). We compare our calculated results with the
most recent FTS results. Yoshino and coworkers performed FTS, and pre-
sented integrated line cross-sections on the (4,0) — (11,0) bands of Herzberg
L7 the (7,0) — (16,0) bands of Herzberg II,% and on the (6,0) — (10,0) Q = 1
subbands and (5,0) — (11,0) Q = 2 subbands of Herzberg I11. Mérienne et al.'?
present extended FTS measurements of integrated line cross-sections on the
Herzberg I (0,0) — (11,0), Herzberg II (2,0) — (19,0), and Herzberg III (2,0) —
(12,0) bands. They present data for higher rotational quantum numbers, and
on more branches. They also present data on the {2 = 3 subband of Herzberg
I11.

The outline of this chapter is as follows. In the next section we explain the
theory used to calculate ab initio integrated line cross-sections. Sec. 5.3 gives
all computational details. The results are presented and discussed in Sec. 5.4,
where we also compare them with experiment, and finally a conclusion is given
in Sec. 5.5.

5.2  Theory

5.2.1 Excitation model

As has been explained in the introduction, the excitation model consists of
several intermediate states, of different symmetries: 32; (1 state), 3Hg7 1Hg,
3%~ (2 states of each symmetry), and 1L, (3 states). The gerade intermediate
states couple with the ground state, through spin-orbit or orbit-rotation inter-
actions, and have an electric-dipole allowed transition to one or more Herzberg
states. There is a dipole transition from the ground state to the ungerade in-
termediate states, which perturb the Herzberg states, again through spin-orbit
and orbit-rotation couplings. Bellary and Balasubramanian'! found that thir-
teen independent moments are needed to describe a general 3¥* «— 3%F
transition. In the case of Herzberg I, England et al.'?> were able to repro-
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Figure 5.1: Pathways included in the present excitation mechanism for the
Herzberg I transition. All  components are listed, wiggly arrows indicate
an allowed electric dipole transition, solid double-headed arrows indicate spin-
orbit coupling, and dashed double headed arrows indicate orbit-rotation cou-

pling.

duce the measured line strengths with only six independent moments, with
the main sources of intensity from 3%, 3Hg, and 3II, intermediates. The
electronic pathways in our excitation mechanism for the Herzberg I transition
are shown in Fig. 5.1. The pathways have been split per intermediate state
symmetry. There are no direct pathways from the ground state to Herzberg
I through the 'II, intermediate state, this state has only direct pathways to
¢!, and contributes only indirectly through the spin-orbit coupling between
A3YF and 'Y, . Watson showed in a general treatment of 13 «— 3% transi-
tions that only one moment suffices to describe the intensity of the Herzberg
II system, and that the intermediate states are of 'II, and °II, symmetry.
The number of pathways from the ground state to ¢! is much smaller than
for the Herzberg I transition, see Fig. 5.2. Only 1Hg71 and 3Hu70 intermedi-
ate states contribute directly to the intensity of Herzberg II, with spin-orbit
coupling. Other pathways can only contribute through spin-orbit coupling of
'S with A3YF. In general six moments are needed to describe the inten-
sity in a 3A «— 3% transition,'® one parallel and five perpendicular, where
the parallel moment is zero in first order. The perpendicular moments arise
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Figure 5.2: Pathways included in the present excitation mechanism for the
Herzberg II transition. Dipole transitions and couplings are coded in the same
way as in Fig. 5.1

3
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Figure 5.3: Pathways included in the present excitation mechanism for the
Herzberg III transition. Dipole transitions and couplings are coded in the
same way as in Fig. 5.1

from interactions with 3Hg and 311, intermediates. Huestis et al.'* found that
the Herzberg III transition is ~ 99% perpendicular, which justifies our first-
order description. The direct pathways for the Herzberg III transition taken
into account in the present excitation mechanism are all through 3Hg and *II,,
intermediate states. They are shown in Fig. 5.3.

5.2.2 Integrated line cross-section

Assuming zero population of the excited states, the integrated line cross-section
for an absorption from initial state i to final state f is given by Eq. (14-3) of
Bunker and Jensen'®

o= —— | My (5.1)
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Here wy; is the energy difference between initial and final state, c is the speed of
light, E; the energy of the initial state, k the Boltzmann constant, 7' the tem-
perature, Z the total partition function of the ground state, exp(—F;/kT)/Z
the Boltzmann factor of the initial state, and My; the transition dipole matrix
element between initial and final state. The total angular momentum quan-
tum number J and its space-fixed projection M are good quantum numbers
in both initial and final state and we have [Eq. (14-5) of Ref. 15]:

1 . .
Mpf =5 32 WM fASELIM P (52)
MM'm
The three components m = —1,0,1 of the transition dipole moment matrix

element are related by the Wigner-Eckart theorem. Using the orthogonality of
37 symbols,'® we can write

IMpi|* = > (M flag" | T M), (5.3)
MM’

The partition function is given by

Z =Y (2] + 1)e Fosn/T, (5.4)
v,J,N

where the summation runs over all vibrational levels v and rotational levels
(J,N), with rotational angular momentum quantum number N. The factor
2J 4+ 1 accounts for the degeneracy of the levels with total angular momentum
J. Nuclear spin statistics for °0O (a boson with nuclear spin I = 0) dictate
that the total wave function is even under exchange of the nuclei Pag, where
Pap = 7 - 1, and 7 is electronic inversion, and 1 is total (electrons and nuclei)
space-fixed inversion. The rotational and vibrational part of the wave function
do not depend on the electronic coordinates, the phase of a wave function
under 7 is given by the gerade/ungerade label, this phase is +1 for X 329’.
The vibrational wave function depends only on the distance R, and is thus
even under i. The parity of the rotational part of the wave function is (-1)N
and space-fixed inversion amounts to body-fixed reflection in the xz-plane for
the electronic part, which has a phase of —1 for a ¥~ state (and +1 for XT).
The phase of the total wave function under Pap is thus equal to the parity
for gerade states. The parity of a rotational level (J, N) in the X 32; ground
state is given by p = (—1)V*!, and all odd-parity (p = —1) levels are missing.
Thus only odd N levels exist, and for each J, N may have the values J —1, J,
or J + 1. These three components are usually labeled'” Fy, Fy, and F;. The
parity of a component is designated with a subscript e/f, with e meaning
+ parity at J = 0, and f for — parity at J = 0. Thus we have Fj. and F3,
components for even J and Fyy for odd J.
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5.2.3 Hamiltonian

To evaluate the transition dipole matrix element needed in the calculation of
integrated line cross-sections, we have to calculate the wave functions for the
initial and final bound states. These wave functions are eigenfunctions of the
total unperturbed, time-independent Hamiltonian

H= ﬁcoul + ffso + Hyp, + I:Irotv (5.5)

where lffcoul is the usual Coulombic Hamiltonian in the clamped nuclei approx-
imation and I:[SO is the Breit-Pauli spin-orbit Hamiltonian.'® The nuclear
radial kinetic energy is
Ao 192

vib — _ﬂﬁﬁ 9
with g the reduced mass and R the internuclear distance. The nuclear rota-
tional Hamiltonian is expressed in two angle embedded body fixed operators,
as in our previous work,?°

(5.6)

'} _i 72 72 T2 12 32 Q2
Hrot - QMR[(J Jz)+(L Lz)+(S Sz)

+ (LTS8~ + L 8% —(LYJ- + L=JY) —(StJ-+ 8 J%)], (5.7)

where i = ﬁ —i—L—i—S , E is the angular momentum associated with the nuclear
end-over-end rotation, L is the electronic orbital angular momentum, and S is
the electron spin. In a diatomic molecule L is not a good quantum number, but
generally the expectation value of 12 is only weakly R-dependent for a given
electronic state.2!’ Thus the L? term induces only a shift in the electronic
energy of a given electronic state of the order of L(L +1)/2uR?, which is very
small compared to the difference in electronic energies of the ground and final
Herzberg states. We neglect this contribution. The spin-rotation term (3 +j )
gives rise to intra-state coupling, needed to describe the F} and F3 components
of the states X®¥_ and A®Y} correctly. The orbit-rotation term (L*JF) is
one of the interactions giving intensity to the Herzberg bands, the intensity of
the = 3 subband of the Herzberg III transition comes in first order solely
from orbit-rotation interactions. The LESF rotational terms couple states
that are also coupled by spin-orbit coupling. Although these rotational terms
are smaller than the spin-orbit coupling, they are included in the present work.

To reproduce the ground state energies exactly, i.e. within 0.1 cm™! for .J
up to 30, we included also the phenomenological spin-spin and spin-rotation
Hamiltonian®* for the ground X*X; state,

. 2 .
Hgg = §A0(3S,? - 5%, (5.8)

Hyxs = N -8 = o | J.S

n
+
DN | =
n
+
S
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=
95}
()
‘o
L



104 Chapter 5: Transition intensities of the Herzberg I, II, and III bands

with A\ = 1.98475070 cm ! and po = —8.425368 x 1073 cm 1.

5.2.4 Bound state wave functions

In accordance with the variational principle wave functions are obtained by
diagonalization of Eq. (5.5) in a basis. For a basis we use two angle embedded
parity adapted electronic-rotation Hund’s case (a) functions with parity p as
defined in our previous work?®

1
|mASEJIMQp; R) = [[mASEIMQ; R)
2(1 + 5/\,05270)

+p(—1)’|m — AS —SJM — % R)] . (5.10)

The + combination applies to basis functions for gerade electronic states, and
the — to ungerade functions. We have

2J +1
47

ImASSJIMSQ; R) = D% (v, 3,0)|mASY; R)pr, (5.11)

where o and [ are the polar angles of the diatomic internuclear axis with
respect to the space fixed frame, D(]\‘/[JQ( ,3,0) is a rotational wave function
for total angular momentum J and projections M and 2 of J on the space fixed

and body fixed z axis, respectively The body fixed electronic wave functions

are given by |mASY; R)gr = R(a, )|mASZ R)sr, where [mASY; R)sr are

the ab initio calculated elgenfunctlons of Heou and R(a, 8,0) = e~iedz =8y

is the rotation operator that transforms the space fixed functions mto body
fixed functions. The m label is used to distinguish between different Hund’s
case (a) states with the same A and S.

The vibrational motion is treated by a sinc-function discrete variable rep-
resentation (sinc-DVR).?3 The orthonormal radial basis functions ¢, (R) =
(R[n) = (1/v/A)sinc[r(R — R,)/A] are localized on the grid points R, =
Ry + nA, where sinc(xz) = sin(z)/z. The rotational-vibrational-electronic
(RVE) basis functions used in the expansion of the bound state wave func-
tions are products:

|[mASEIMQpn) = ImASEJIMQp; RY¢, (R). (5.12)

The functions [mASEJMQ; R) are eigenfunctions of the body fixed angular
momentum operators J? JZ,S' Sz, and LZ, with eigenvalues J(J + 1), Q,
S(S +1), 3, and A respectively. In the evaluation of rotational Hamiltonian
matrix elements we also use (n|(2uR?)~tn’) = 6, n/(2uR2). Matrix elements
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for the step up/step down angular momentum operators follow from

SEIFIMASSIMQ; R) = c1(S, %)ex (J, Q)|mASE + 1JMQ + 1; R), (5.13)
LEJF|mASSIMS; R) =

S e (L OLE iy smmasn(RIMA £ 1S2IMQ+ 13 R),  (O14)
L*SF|mASSIMS; R) =
D (S DLE \ L gsimass (R)m/A £ 1% F LTMQ; R), (5.15)
where
L nt1ssmass(R) = sp(m/A £ 1S5 RIL*|[mASY; R)sp (5.16)

is the ab initio calculated R dependent L¥ matrix element and c4(j,m) =
ViG+1) —m(m £ 1).

Bound eigenstates of the total Hamiltonian are calculated in three steps.
In the first step we diagonalize Heow+ Hso + Hiyor in a basis of parity adapted
electronic-rotation functions [Eq. (5.10)]. This diagonalization is performed for
each point of the radial grid that is required for the calculation of vibrational
wave functions, yielding Hund’s case (c¢) potential energy curves and electronic
eigenfunctions for each grid point. For the gerade (ground) state, the radial
grid runs from R = 1.42 to 3.4, with a spacing of 0.045 ag; the grid for the
ungerade (Herzberg) states starts at R = 1.6 ag, ends at 12 ag, also with a
spacing of 0.045 ag. Thus the first 41 points of the ungerade grid coincide with
points 5 — 45 of the gerade grid.

In the second step Hyi, +V; is diagonalized for each of the Hund’s case
(c) potentials V; from step 1. This yields vibrational wave functions as linear
combinations of sinc-functions. The total wave function for a bound level in
the i-th Hund’s case (c) potential (which may be the ground state, or one of
the Herzberg potentials), with vibrational quantum number v, rotational state
(J, M), and parity p may then be written as

yivdMp Z Z C:,{XSEQ(RnﬂmASE‘]MQp’ R> XiLvan(R)a (517)
n m,N\,S,3,Q

where ¢/% oo (R,,) is the coefficient of the rotational-electronic basis function
|mASEJMQp; R) in the i-th electronic eigenfunction at R = R,,, and x!’ is
the value of the vibrational wave function in this grid point.

The potential energy curves of and the spin-orbit and orbit-rotation cou-
plings with the intermediate states have only been calculated for R between
2.0 and 2.6 ag, in steps of 0.1 ag, the region where the ground state vibrational
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wave function is localized. Extrapolation of these quantities for all sinc-grid
points up to R = 12 ag is not possible, therefore we excluded the intermediate
states from the calculation of the Hund’s case (¢) potentials. Vibrational wave
functions calculated with sinc-DVR are zero outside the grid by definition. In
the calculation of the transition dipole moment matrix element, only the grid
points common to both sinc-grids have to be included. In the third step we
recalculate the electronic eigenfunctions for these grid points, now including
the intermediate states.

5.2.5 Transition dipole matrix elements

From Eq. (5.3) we have

Mpl> = 37 IMparanr =3 (057N EF g M2 (518

M M’ M M’

Substituting Eq. (5.17) for the initial and final state wave functions, and em-
ploying the orthonormality of the sinc-DVR basis functions yields

Mpniner =3 3 S X e g (Rn)

n o mA"S" m A S’
nrolt QO

< /A S,E J M Q/p R |,UJ ( n)|m”AHS”E//J"M"Q//p//;Rn>

1”11

XX R sorzmeyr (Bu). (5.19)

The space fixed dipole operator ji5F is given in body fixed operators by

ST =" i D) (a, 8,0). (5.20)

k

The electronic transition dipole moment can be evaluated from the parity
unadapted basis functions

< /| ASF|\IJ”> = < /A/S/E/J/M/Q/; Rn|ﬂ§F(Rn)\m”A”S”E"J"M"Q"; Rn>

Z VI +1)(2J7 + 1)

/ /Dﬁ%/ ,0)D{Y* (ar, B,0) DS )%, (@, B, 0) sin Bdad
a=03=0
% BF< /ASZ |ABF( n)|m//A//S//E//>BF
(5.21)
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From the electronic part we have a selection rule A’ = k + A” and ¥/ = X"
Thus we have —Q' + k + Q = 0, and we may write

/ / DY (0, B,0) DY (o, B,0) DYk (e, 8,0) sin fdad 3

a=0 =0

1 *
=5 / / / Dg\‘j/gl,( .3, ’y)Dé}c) (o, 8,v)D M//Q,, o (v, B,7) sin Bdad Bdry
a=0 B=0~=0
o J/ 1 J// J/ 1 J//
= 47T(_1)M @ (Q, k Q//) <M/ 0 M//) ’ (522)

where we used Appendix V of Brink and Satchler?* in the last step. This
results in

1) ASF i sam (I 1IN\
@I = (g ) M 629

where the M-independent part of (¥/|aSF|¥”) is given by

— o (1
My g =Y /(2] +1)(27" +1)(-1)7*° (Q, L Q,,)
k
X BF< /A/S/E|ABF( n)‘mHANS”ZN>BF- (5.24)

All rotational-electronic basis states involved in a particular bound state have
the same J and M value, and the M-dependence is thus equal for all terms
in the summation in Eq. (5.19). This M-dependence can be taken out of the
summation, to yield

Jo1 g\
2 __

M M

iv fv J/ ’ J// 2 —
E Xn Xn E E : m’A’S’E’Q’ R ) m”A”S“E“Q”(RH)M‘I’C‘I’”
n m! AN'S" m'A' S’

»rQl QO

(5.25)

Basically, the transition dipole moment matrix element is an integral over R
of the product of initial and final state vibrational wave functions times the R-
dependent electronic transition dipole moment matrix element. Due to the use
of sinc-function DVR for the radial basis, the integral becomes a summation
over the part of the radial grid that is included in both initial and final state
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vibrational calculation. The orthogonality of 35 symbols [Appendix I of Ref.
24] can be used to find

g1 g\ 1

MM’

5.3 C(Calculations

5.3.1 Ab initio potential energy curves

All ab initio calculations have been performed with the MOLPRO computer pro-
gram package.?® We calculated potential energies for the intermediate states in
the range of R from 2.0 ag to 2.6 ag, with a spacing of 0.1 ag. Potential energies
were calculated on the complete active space self consistent field plus internally
contracted multireference configuration interaction (CASSCF+MRCI) level of
theory, with a one-electron basis consisting of the uncontracted s, p,d, and f
orbitals from the augmented correlation consistent polarized valence quadru-
ple zeta (aug-cc-pVQZ) basis.?® The calculation of the properties was by the
use of the same one-electron basis. The spin-orbit integrals module can only
handle uncontracted gaussian basis functions with [ < 3.

The orbitals were optimized with the state-averaged CASSCF?"28 method,
and adapted to D symmetry using the LQUANT option from MOLPRO. A
separate state-averaged calculation was performed for each intermediate state
symmetry, with equal weights for all states included. Each calculation included
the ground state, all intermediate states of the symmetry under consideration,
and the Herzberg states which have excitation pathways through the present
intermediate state symmetry. The active space was selected to include the Os
valence space, and one (o-type) or two (7%, w¥-type) extra (diffuse) orbitals, to
describe the Rydberg intermediate states. The symmetry of the extra orbitals
depends on the symmetry of the intermediate state. The 1s orbitals were
fully optimized, but kept doubly occupied in all configurations. Table 5.1
lists all details for all calculations. There are two calculations for the 3II,
intermediates, one for the excitation pathways through (A3X|4[3I1,) and one
for pathways via (A’ A, ||*I1,). The difference in absolute energies of the *II,
states between the two calculations is less than 30 cm ™!, except at the crossing
of Rydberg and valence state, which is somewhat sharper in the calculation
with A3 . Orbitals for the 3II; intermediates have been taken from the
calculation with A3, These orbitals were subsequently used in an internally
contracted MRCI calculation of the potential energies, including single and
double excitations from all CAS configurations. We applied the Pople size
consistency correction.?’
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Table 5.1: Details of the orbital optimization for intermediate state potential
energies. The active space consists of the Oy valence orbitals, plus one orbital
of the mentioned symmetries. The Herzberg states included in the state-
averaging are listed, as well as the included number of intermediate states
and their major electronic configurations.

Inter- Number Extra Herzberg Major configuration
mediate of states orbital  states
311, 3 Ou A’%F Valence: 20 20, 30, 1w, 1m, 30,
s 20(27 202 30, 173 17
A 3A, 20g 20, 302 17t 17r§

Rydberg: 20% 202 30% 17} 1wy 4oy,

3% 2 mo,my  AYS Valence:  20; 207 30, 1w, 1w,
Rydberg: 20?] 202 30% Ind 1wy 2m,
32; 1 .y A3Er  Valence: 203 202 303 17 17r§ 27y,
311, 2 og A’SF Valence: 20 20, 30, 1, 17,
Rydberg: 20% 207 302 17, 17y 4oy
311, 2 o4 A'?A,  Valence: 207 207, 30, 1w, 1m,
Rydberg: 20% 202 303 17} 1wy 4oy,
11, 2 og 'Y, Valence: 20} 207, 30, 1m, 17,

Rydberg: 20% 202 303 Ind 1w, 4oy,

5.3.2  Ab initio property matrix elements

Spin-orbit (Hgo), electronic orbital angular momentum step up/down (L¥),
and transition dipole moment matrix elements are calculated from wave func-
tions on the state averaged CASSCEF level of theory. The one-electron basis
and the states taken in the averaging are the same as for the energy calcula-
tions. The active space is again the Oy valence space plus one extra orbital of
the symmetries mentioned in Table 5.1. For the calculation of properties we
enlarged the active space with four orbitals of ¢4, symmetry, to include the
most important dynamic correlation effects.

Fortran routines for the evaluation of property matrix elements are avail-
able upon request.?° For the spin-orbit coupling we supply a routine to evalu-
ate the fits for the reduced spin-orbit matrix elements sp(mASY; R||Hso(R)||
m/A'S'Y; R)srp. Using the Wigner-Eckart theorem, the matrix elements are
given in terms of these reduced matrix elements as

sr(mASY; R|Hso (R)|m'AN'S'Y; R)sp =

w(S 18 :
(-1)° E(z f 2/) sr(mASY; R||Hso (R)||m'A'S'S'; R)sp,  (5.27)
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where k = X —3'. We define only reduced matrix elements for states with A >
0. In Ref. 31 we presented a relation for reduced spin-orbit matrix elements for
states with negative A in the case where the asymptotic L quantum number
is known:

(L) = AS|| Hsol|(L') = A'S") = (=) (L)AS| | Hsol (L')A'S"). (5.28)

This relation can also be used in the present case, also for the states where we
do not have an asymptotic L quantum number. The phase relation between
the negative-A and positive-A component has been chosen so that the above
relation holds, for the asymptotic L values given in Table 5.2.

5.3.3 Diabatization

Potential energy curves and properties have been calculated at different levels
of theory. The crossing point of Rydberg and valence intermediate states may
shift between CASSCF and MRCI. To obtain smooth potentials and properties
as function of R we diabatized the intermediate states. We have only one
(valence character) 323‘ intermediate state, so in this case the diabatic state
is by definition equal to the adiabatic one.

For 3%, 3II,, and 'II, we have two states, one of Rydberg and one of
valence character. In these cases the diabatic states are defined by a 2 x 2
orthogonal transformation of the adiabatic states

v __[cos¢p —sing) |¥
|:\I];:| diab N <Sin¢ Cos ¢ ) [\IJ;:| adiab’ (5.29)

where the diabatization angle ¢ depends on R. The diabatization angle is
optimized so that the resulting diabatic potential energies can be fitted with
a minimal residue to Morse curves (the diagonal potentials) and straight lines
(for the off-diagonal diabatic potentials). The diabatization procedure is

1. Calculate initial diabatization angle in all grid points by diagonalization
of the second moments of the electron density (>, 27 + y?, where i runs
over all electrons) on the basis {¥1, Us}adiab-

2. Calculate initial diabatic energies in all grid points.

3. Fit Morse curve / straight line to diabatic energies by (non)linear least
squares procedure, this yields the initial residue.

4. Calculate a new diabatization angle in the grid points by diagonalization
of the fitted diabatic potentials. This gives the inverse transformation of
Eq. (5.29).

5. Calculate new diabatic energies from the ab initio adiabatic energies and
the new diabatization angle.
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6. Fit new diabatic potentials, yielding a new residue.
7. Repeat steps 4 — 6 until the residue is at minimum.

This procedure was applied to both the CASSCF and MRCI states. The MRCI
diabatic energies were fitted as potentials. The CASSCF diabatization angle
was used to transform the property matrix elements, which were calculated at
the CASSCF level, into diabatic properties. To illustrate the diabatization pro-
cedure we plot in Fig. 5.4 the diabatization angle [panel (a)] and off-diagonal
potential energy [panel (b)] for the diabatization of the two 3% intermediate
states. The optimization procedure for the diabatization angle does not change
the R-dependence of this angle very much. The off-diagonal potential becomes
a smoother function of R. There is some difference between the CASSCF and
CI results. The avoided crossing (in the adiabatic calculation) is sharper at

Diabatization angle

T2

318

w4

8

2 2.2 24 2.6
Offdiagonal potential

_002 T T T
[CAs N
—-0.03f T 1
-0.04 < n
-0.05f < n
b
—-0.06 b) : :
2 2.2 2.4 2.6

Figure 5.4: The diabatization angle ¢ in panel (a) and off-diagonal potential
[panel (b)] for the diabatization of the two intermediate states of *¥, symme-
try. Dashed lines: initial values from diagonalization of second moments, solid
lines: final optimized values. CASSCF results are marked +, CI results have
o marks.
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the CI level of theory. This is reflected in the diabatization angle, which goes
faster from 0 to 7/2 as a function of R, and in the off-diagonal potential, which
is smaller. The crossing is localized where the derivative of the diabatization
angle is maximal, this is at a smaller value of R for the CI results.

We have taken three ®II, intermediate states into account. One of them,
the lowest at R = 2.0 ay, is clearly of Rydberg character. This state crosses
with the lowest valence state. The third 3II, state that we calculated has
valence character in the 2 — 2.6 ag region and does not cross the other 3II,
states. The potential and properties involving this third 3II, state are rather
smooth as a function of R, and the 3II, states are diabatized by choosing the
third diabatic state equal to the third adiabatic state, and diabatizing the first
and second 3II,, state using the procedure described above.

5.3.4 Fitting

To calculate bound states and transition intensities, we need to interpolate the
calculated diabatic potential energies for the intermediate states, the transition
dipole matrix elements, and the spin-orbit and L interaction matrix elements.
Therefore, we fitted the diagonal diabatic energies to Morse curves

V(R) = De {1 — exp[-B(R — Ro)]}* + Vaq (5.30)

in a nonlinear least squares fit, with equal weights for all grid points. In
this fitting procedure, the dissociation energy D, and the potential energy
for R — oo, Vo, are treated as linear parameters. The exponent 8 and the
minimum Ry are non-linear parameters.

The diagonal potential energy for the third diabatic 3II, state yielded un-
physical results (negative 3) when fitted with the functional form of the Morse
curve, as it looks more like a straight line. We fitted it with a second degree
polynomial in R. The off-diagonal diabatic potentials were fitted with a linear
function of R, as mentioned above. The property matrix elements (reduced
spin-orbit, transition dipole and L matrix elements) were also fitted with a
first or second degree polynomial in R.

5.3.5 Fortran implementation of ab initio results

We supply a fortran implementation (available upon request3®) of the fits of the
diabatized potential energy curves (diagonal and off-diagonal), reduced spin-
orbit matrix elements, orbit-rotation matrix elements, and transition dipole
matrix elements. The routines for the potential energy curves are

subroutine diabatic_potentials (R, i, E)
subroutine diabatic_offdiag_potentials (R, i, j, E)

with input parameters the internuclear distance (real*8 R) and the state se-
quence number (integer i for the diagonal potential energies, and integer
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Table 5.2: State sequence numbers and asymptotic values for the L quantum
number.

State Seq. no. Asymptotic L value
X?%, (ground) 14 1
¢y, (Herzberg 1II) 2 1
A’ 3A,, (Herzberg I11) 3 2
A3%F (Herzberg 1) 5 0
1 311, 9 2
2 311, 10 2
3 311, 11 2
Rydberg 3%, 12

Valence *%;, 13

32; 15

Rydberg 3Hg 16 1
Valence 311, 17 1
Rydberg 1Hg 18 2
Valence I, 19 2

i, j for bra and ket state in the off-diagonal routine). All electronic states have
been given sequence numbers, which are specified in Table 5.2. The energy (in
atomic units) is returned in the output parameter real*8 E. The diagonal po-
tentials routine yields for sequence numbers 1 to 8 the potential energy curves
calculated in Ref. 31, with the original numbering of states. For the ground
state (number 14) the routine yields the potential energy curve from Babb et
al.3233

The calling sequence to the spin-orbit routine is
subroutine spinorbit (R, i, j, A)

where real*8 R is again the internuclear distance and integer i, j are the
bra and ket state sequence numbers. The value of the reduced matrix element
(i||Hso(R)||5) is returned in the output parameter real*8 A. For bra and ket
state sequence numbers < 8, this routine yields the reduced spin-orbit matrix
elements from Ref. 31.

For the evaluation of Lii’j = (i|L*|j) we have three routines

subroutine Lplus (i, j, Lambda_i, Lambda_j, or_number)
subroutine Lminus (i, j, Lambda_i, Lambda_j, or_number)
subroutine orbit_rotation_polynomials (R, or_number, A)

The first two have as input parameters the sequence numbers of bra and ket
states (integer i, j) and the A quantum numbers of bra and ket (integer
Lambda_i, Lambda_j), and yield the number of the R-dependent orbit-rotation
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matrix element (integer or_number) that has to be evaluated. The third
routine evaluates this matrix element, at given internuclear distance R (real
*8 R). The result is returned in real*8 A.

For the transition dipole matrix elements

tinsia; = BF (1A ZﬂEFUAj)BF (5.31)
k

we have again two routines:

subroutine dipole_moments
+ (i, j, Lambda_i, Lambda_j, dip_num, factor)
subroutine dipole_polynomials (R, dip_num, A)

The first (setup) routine calculates the sequence number of the R-dependent
transition dipole matrix element (integer dip_num) to be evaluated, given the
bra and ket sequence numbers and A quantum numbers. It also calculates the
factor (real*8 factor) with which the R-dependent matrix element has to
be multiplied to yield fi;4, ja,. The second routine calculates the R-dependent
transition dipole matrix elements.

5.3.6 Bound state and intensity calculations

The diabatized fitted ab initio results have been used subsequently in a MAT-
LAB program to evaluate the integrated line cross-sections. The program starts
with the calculation of Hund’s case (c¢) potential energy curves, performs sinc-
DVR to calculate vibrational wave functions, and calculates electronic eigen-
functions for the sinc-DVR grid points common to initial and final states. The
partition function Z for the ground state formally includes a sum over all
rotation-vibration levels. The contribution of a level decreases exponentially
when the energy of the level increases. We included only v = 0 and 1, and
J = 0 up to 50 in the numerical calculation of Z. The transition dipole mo-
ment matrix elements and integrated line cross-sections are evaluated from the
bound state wave functions.

5.4 Results and discussion

5.4.1 Ab initio potential energy curves

In Fig. 5.5 we show all diabatized potential energy curves used in the present
calculations. Thin solid lines drawn over the full range of R represent the
ground and Herzberg states. The ground state v = 0 and the v = 6 Herzberg
IT vibrational wave functions are also indicated. The intermediate states are
only drawn in the region where they were calculated, which coincides with
the region where the ground state vibrational wave function is localized. The



5.4. Results and discussion 115

0.5

[E,]
oMo
(&) N

o
N

Potential Energy
o
il

1.75 200 225 250 275 3.00
R [ao]

Figure 5.5: Diabatized potential energy curves for all electronic states included
in the intensity calculations. The ground and Herzberg states are marked with
their names, the intermediate states are only shown between 2.0 and 2.6 ag.
The v =0 X°%, and v =6 'S vibrational wave functions are also plotted.

Herzberg potential energy curves cross the intermediate state curves at R < 2.2
ag. As we did not diabatize the electronic-rotational basis states after inclusion
of all electronic-rotational couplings, the electronic eigenfunction coefficients
c;'{ﬁ sn0(Rn) may vary rapidly as a function of R at the crossings, after inclu-
sion of the couplings with the intermediate states in the third step of the bound
state calculation. The R-dependent electronic transition dipole moment ma-
trix element will also vary rapidly with R in this region. The transition dipole
moment matrix element is an integral over the product of both vibrational wave
functions, multiplied by the R-dependent electronic transition dipole moment
[the summation over n in Eq. (5.19)]. Since the Herzberg state vibrational
wave functions are localized at larger R, and are almost zero for these small
R values, this adiabatic approximation does not affect the calculated total
transition dipole matrix elements and integrated line cross-sections, as we will
show later.

In Fig. 5.6 we show the results of the diabatization process for the two states
of 3% symmetry. In the upper panel (a), we show the adiabatic energies (x
marks) and the resulting diabatic potential energy curves (solid lines). For
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Figure 5.6: Diabatization of the two 3% intermediate states. The upper
panel (a) plots the adiabatic energies with x marks, and the diabatic diagonal
potentials as solid lines. The lower panel (b) gives the offdiagonal potential

easier comparison with literature semi-empirical results,?* the zero point of
energy is at the minimum of the ground state potential, the energy units are
electron volt. The lower panel (b) shows the off-diagonal diabatic potential
energy curve. Li et al.3® performed in 1992 ab initio MRD-CI calculations in
a smaller one-electron basis, with 17 reference configurations, they diabatized
their states by diagonalization of ), x? + y2, two components of the electric
quadrupole tensor, in the same way as the initial guess for the diabatization
in the present work has been constructed. Their diagonal diabatic potentials
are shown in Fig. 1 of Ref. 35, they do not present the off-diagonal potential
curve. Lewis et al. give semi-empirical potential energy curves in Fig. 1 of
Ref. 34. They report a constant off-diagonal potential matrix element of 0.500
eV between the valence and lowest Rydberg state.

In Tables 5.3 and 5.4 we compare some features of our potentials with lit-
erature results. The R values of the minimum in the Rydberg curve and of
the Rydberg-valence crossing are in good agreement. The excitation energies
in the present calculation are about 0.3 eV (3 %) larger than in the semi-
empirical results. The excitation energies calculated by Li are about 0.5 eV
larger than the semi-empirical results at R = 2.0 ag, but they agree very well
at R = 2.6 ag. Thus the shape of our present potentials resembles the shape of
the semi-empirical results, whereas the calculation by Li gave a different shape.
The separation between the two adiabatic potentials at the Rydberg-valence
crossing is equal to twice the absolute value of the off-diagonal potential be-
tween the diabatic states at the crossing. The sign of the off-diagonal potential
depends on the sign of the wave functions, which is arbitrary.
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Table 5.3: Features of the Rydberg minimum and the Rydberg-Valence cross-
ing of 3%, potentials. Comparison of our present curves with ab initio results
from Li et al.?> and semi-empirical results from Lewis et al.>* R values are in
ag and energies in eV.

Minimum in Rydberg Rydberg-Valence crossing

R \%4 Adiabatic R \%4
separation
Li 2.15 9.54 1.12 2.25  9.68
Present 2.11 9.58 1.39 222  9.74
Lewis 2.19 9.3 1.0 2.23  9.45

The diabatization process for the states of I, symmetry is shown in Fig.
5.7. The potential energies are again in electron volt, with respect to the
minimum in the ground state potential. Since the third diabatic state was
chosen to be equal to the third adiabatic state, there is only one off-diagonal
potential matrix element, between the first and the second diabatic 311, state.
After comparison of our first two diabatic states with the semi-empirical results
in Fig. 3 of Ref. 34, we see that our excitation energies differ again by about 3
% from the semi-empirical results. Our off-diagonal potential matrix element
is again about 30 % larger. Diabatization of the 'II, and 3II, yields similar
results, for these symmetries no experimental results are available.

5.4.2 Ab initio properties

The reduced spin-orbit matrix elements (i||Hso(R)||j) are shown in Fig. 5.8,
labeled with (4, 7), where i and j are the state sequence numbers from Table
5.2. In panel (a) we show matrix elements between A3} (j = 5) and ungerade
intermediate states, panel (b) presents matrix elements between the ungerade
intermediate states and A’ 3A,, or ¢!X; (j = 2 or 3), panel (c) lists matrix
elements between *I1,(i,j = 9,10,11) and °II, (i,j = 16,17) intermediate
states and the matrix elements between the ground state XX (i = 14) and

Table 5.4: Values for 3%, potentials

R=20 R=26
Rydberg Valence Rydberg Valence
Li 10.0 14.2 11.1 7.0
Present 9.85 13.47 11.42 6.91

Lewis 9.45 ~ 13 11.1 ~ 6.8
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Figure 5.7: Diabatization of the ®II, intermediate states. See the caption of
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Figure 5.8: Reduced spin-orbit matrix elements (i||Hso(R)||j) are labeled as
(i,4), where i and j are the state sequence numbers from Table 5.2. The energy
units are mE},.
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Figure 5.9: Transition dipole matrix elements (i, j) = ptia, ja, With A;, A; >0
in atomic units.

gerade intermediate states are shown in panel (d). It can be noted that spin-
orbit matrix elements involving an intermediate state of Rydberg character
(numbers 9, 12, 16, and 18) and a valence (ground or Herzberg) state are
always small. Spin-orbit matrix elements between ground/Herzberg states
and valence-character intermediate states are much larger. Furthermore we
note that the spin-orbit matrix elements of the third diabatic 3II, state (nr
11) are larger than the matrix elements of the second diabatic state, nr 12. The
diagonal matrix elements (i*TI||Hso(R)||*I1) in panel (c) are large, whereas
the off-diagonal matrix elements (i3T1|| Hso (R)||j°TI) are generally almost zero,
indicating the success of Rydberg - valence separation in the diabatization. The
only large matrix element of this type is between the second [seq. number 10]
and third [number 11] diabatic 3II,, state, which have both a valence character.
This is caused by the choice of the third diabatic state being equal to the
third adiabatic state. At small R the second and third adiabatic ®II, states
have only a small energy separation, and this choice does not yield a perfect
diabatization. This causes a large off-diagonal spin-orbit matrix element, and
a strong R-dependence of the spin-orbit matrix elements involving the second
or third diabatic 3II,, state.

The diabatized transition dipole matrix elements are shown in Fig. 5.9. The
matrix element g, ja;, with A;, A; > 0 is labeled as (i, ). In the left panel
[(a)] the transition dipole matrix elements from gerade intermediate states to
the Herzberg states are plotted, and in the right panel [(b)] the matrix elements
between the ground state and the ungerade intermediate states. Transition
dipole matrix elements involving the Rydberg 1Hg and 3Hg states [numbers
18 and 16 respectively] are again small, but the matrix elements involving the
Rydberg 31, and 33, states [numbers 9 and 12] are comparatively large (0.18
and 0.34 a.u. at R = 2.3 ag respectively). These values are in good agreement
with the semi-empirical results in the lower panels of Figs. 3 and 1 of Ref. 34,
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Figure 5.10: L+ matrix elements.

which yield approximately 0.2 and 0.3 respectively. The matrix elements for
the transitions from the ground state [number 14] to the lowest valence *II,
and 3% states [numbers 10 and 13] compare also very well with the semi-
empirical results: 0.03 and 0.72 in the present calculation, and 0.05 and 0.8 in
Ref. 34, respectively.

Fig. 5.10 plots the calculated L* matrix elements. The matrix elements for
the first two diabatic 3II, states are again small in the Franck-Condon region
(around 2.5 ap), and intensity through 3IT, intermediates comes from the third
state, which has large matrix elements.

5.4.3 Effective electronic transition dipole moments

A previous ab initio study of the electronic excitation mechanism of the Herz-
berg systems was performed by Klotz and Peyerimhoff? (KP). To further test
our calculations, we compare our results with theirs. They calculated effective
electronic transition moments for the transitions between the three low-lying
gerade electronic states of Og(X3Zg_, a'A,, and blZ;‘) and the three ungerade
Herzberg states. The initial and final states were obtained as a perturbation
expansion of the eigenfunctions of ﬁCOul + Hso, using MRD-CI wave func-
tions as zero-order -HCoul solutions. The nuclear vibration and rotation were
not taken into account. KP included intermediate states of the following sym-
metries: '11,(2), 311,(2), Ay, 3%, 'L, (2), 3IL,(2). Their effective electronic
transition moments are given by the master equation

B <a|ffso\k a|Hso|k (I|Hgo|b)
uaﬂb—%: Ab,, +Z Ap RIS (5:32)
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Table 5.5: Effective electronic transition moments for spin-orbit transitions
from the ground state to the Herzberg states, in 10~% atomic units. Compar-
ison between present results and results from KP.> The column headed “all
states” gives results where all intermediate states have been included, and the
column headed “without 3 3I1,” presents the results when the third diabatic
311, intermediate state was omitted from the calculation.

Transition Present calculation Ref. 3
all states without 3 °IL,
Ul: 012;0, — XgE;il 0.12 2.54 2.06
U3: A'3A,0 — X3E;i1 0.02 3.61 3.30
Ub: A" 3A,1 — X3E;O+ 0.04 3.60 3.35
U8: A3Eii1 — X3E;O+ 5.24 2.56 2.37
U9: A5t — X384, 9.47 9.47 9.88
Ul2: A3%F 0 — X394, 5.32 2.50 2.44

where k,[ runs over all states included in their calculation. All transitions
from the ground state to the Herzberg states are listed in Table 5.5, with
the numbering from KP. As the only mechanism for intensity in the = 3
subband of the Herzberg III transition is orbit-rotation interaction through 311,
intermediate states, Klotz and Peyerimhoff do not have a transition from the
A’ 3A, 3 to the ground state. Using our potential energy curves and spin-orbit
matrix elements, we also calculated effective electronic transition moments for
the KP transitions. We also ignored the nuclear rotation and vibration. Table
5.5 compares our results with results from Klotz and Peyerimhoff, who included
only 2 intermediate states of 3II,, symmetry. Our transition moments compare
very well with theirs if we include only the first (lowest) two diabatic IL,
states. After inclusion of the third state we see an almost complete cancellation
of the effective transition dipole moment for transitions Ul, U3, and U5 to
c'¥; and A’ 3A,. This cancellation is caused by destructive interference of
different pathways contributing to the transitions. For transitions U8 and U12
we have positive interference, the transition moment becomes a factor of 2
larger. Intermediate states of 3II, symmetry do not play a role in transition
U9, which is mainly spin-orbit coupling via 33, this transition moment does
not change upon inclusion of 3 3II,.

5.4.4 Intensities of the Herzberg I bands

In Fig. 5.11 we plot the calculated and experimental'” intensities for all branch-

es of the Herzberg I (2-0) band, versus the initial state rotational quantum

number N”. The units of the integrated line cross-sections are 10726 cm?
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molecule™ em™!

. The lower vibrational bands are so weak that the experi-
mental data has only one significant digit. We will show later that the calcu-
lated wave functions for higher vibrational levels in the final state are localized
at slightly too large R, resulting in line cross-sections that are too small. The
branches are labeled 4 B;;, where A and B represent AN = N’ — N” and
AJ = J — J"” respectively. A and B are letters, where O, P, ), R, and
S stand for AN, AJ = —2,—1,0,1, or 2. The subscripts ¢ and j represent
the F' component in final and initial state respectively. The experimental and
theoretical results are in good agreement, only the weak branches © Py3 and
9 Ry, do not agree very well. The branches for which experimental data is not
available (°Q13, °Q31, and ®R3s) are predicted to be very weak, ©Q3; and
9@Q31 weaker than detectable (< 10727 ¢cm? molecule™ ¢cm™?!) in the current
experimental setup. The line forms for the other branches are reproduced
very well, note for instance the ©Pjy, with a maximum at low N” = 5, and
the ?Q2y which looks strange at first sight. This branch seems to have two
competing mechanisms contributing to its intensity, we will come back to this
later.

For the N” = 9 line of the ®Q;; branch, Fig. 5.12 plots the R-dependent
electronic transition dipole moment matrix element in panel (a), the initial
and final state vibrational wave functions X“’” with 7 = XBEg_ (Fie),v" =0
and x/*" with f = A3%F(Fy;),v’ = 2 in panel (b), and the product of vibra-
tional wave functions and R-dependent electronic transition dipole moment
matrix element in panel (c¢). In panel (c) all sinc-DVR grid points are plotted.
The transition dipole moment matrix element My ; with f = A3YF(Fip), 0" =
2,J' =10 and i = X3E;(Fle)7v” = 0,J” = 10 is then given by the sum
over all grid points of panel (c) [divided by v/3 because of the summation
over the M quantum numbers in Eq. (5.25)]. As has been pointed out before,
the electronic transition dipole moment is a smooth function of R, except for
small R where the Herzberg potentials cross the intermediate state potentials.
At this small R, the final state vibrational wave function is almost zero, thus
this has a negligible influence on the total transition dipole moment matrix
element. The product of the vibrational wave functions is localized between
R = 2.35 and 2.65 ag, with a maximum at R = 2.5 ag. We therefore analyze
the electronic transition dipole moment matrix element at R = 2.5 ag. All
pathways contributing to the electronic transition dipole moments were visu-
alized in Fig. 5.1. This showed that we expect the most important pathways
to be through 3II,, ?’Hg7 and 3% intermediate states. In Table 5.6 we list
all contributions CL{EIS,E,Q,(R,L = 2.5)0;]::ﬁl,/,s,,2,,9,,(Rn)l\/\j\p/,q,u(Rn) [See Eq.
5.25] to this matrix element. The first column lists the electronic rotation
basis function ¥” for the initial state (J” = 10), the second column the final
state basis function ¥’ (with J = 10). The third column gives the coefficient
= ci;],/,/ﬁ/,/,s,,z,,g,, (R, = 2.5) of basis function ¥ in the initial state wave
function, and the fourth column the coefficient ¢/ of ¥ in the final state.
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Figure 5.12: R-dependence of the components of the transition dipole matrix
element My; with f = ASSf (Fip),v" = 2,J" =10 and i = X% (Fi.),v" =
0,J” = 10. In panel (a) the electronic transition dipole moment matrix ele-
ment, in panel (b) the initial and final state vibrational wave functions, and
in panel (c) the product of these three components.

The sixth column is the product of columns 3, 4, and 5: the contribution to
the R-dependent electronic transition moment matrix element. The last col-
umn assigns all contributions to a pathway (intermediate state symmetry and
coupling type). The table is sorted by pathway, and per pathway sorted by
magnitude of the contribution. The F; component of the 3% initial and final
state is a mixture of both parity-adapted 2 = 0 and €2 = +1 basis states, and
thus all Q components of initial, final, and intermediate states shown in Fig.
5.1 may contribute to the total line strength. In the case of Q = 0 or &1 3II
intermediate states (gerade and ungerade), both spin-orbit and orbit-rotation
couplings contribute, the two mechanisms cannot be separated because of the
mixed € in initial and final state. In the case of 3II, intermediate states, the
coupling mechanism must be orbit-rotation (AQ = 1). The contribution of
the 3II, orbit-rotation pathways are about a factor five to ten smaller than
the mixed spin-orbit and orbit-rotation contributions through the 2 = 0 and
1 components. The spin-orbit coupling is thus probably dominant in these
mixed pathways. The contribution of the Rydberg type intermediate states is
generally one to two orders of magnitude smaller than the contributions via the
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Table 5.6: All contributions to the electronic transition dipole moment matrix
element for the N” = 9 line of the ®Q1; branch of the (2-0) Herzberg I band,
at R = 2.5 ag. Powers of 10 have been indicated in parentheses: 9.4(—4)
denotes 9.4 - 1074,

V2 v’ c f (U'|pSF|W")  contrib.  pathway
X%s,, 3, 0.718 9.4(—4)  —071 —4.8(—4) 5, (so,0r)
X35, 3o  0.696 1.0(-3)  —0.50  —3.7(—4)

X35, 2%, 0718 —9.6(—5) 0.15 —1.0(-5)
X8, 2o  0.696 —1.3(—4) 0.11  —9.7(—6)
X35, 1%L, 0696 —13(=5)  —0.59 5.2(—6)
X%, 1’ 0.718 5.6(—6) —0.84  —3.4(—6)
X35, 3.z  0.696 2.1(-4)  —-050 —7.2(=5)  °M,(or)
X35, 2%, 0696 —3.3(—5) 0.10  —2.4(—6)
X35, 1’y 0696 —7.0(=7)  —0.59 2.8(—7)
X35, Val’s., 0696 —1.1(-3) 027 —1.9(—4) 3% (s0)
X35, Ryd’S,; 0696 —1.6(—4) 0.16 —1.8(—5)

5N, ARET, 14(—4) 0.781 0.07 7.1(=6) 3% (s0)
Val’lly o ASSY,  1.8(-3) 0.781 —~0.55 —7.8(—4) 3TI,(so,0r)
Val’lly;  ASSY,  14(-3) 0.624 —0.78  —7.0(—4)

Ryd’Il, o A%Sf, —4.6(—5) 0.781 —-0.03 1.2(—6)
Ryd’Il,; A%Sf, 1.5(—5) 0.624 —0.05 —4.2(=7)
Val’lly o A3SY,  2.6(—4) 0.781 —0.54  —1.1(—4) 3T, (or)
Ryd*Ily, A’%f,  7.5(-5) 0.781 —0.03  —1.9(—6)
Val’Il, o A’ 3A,1 1.8(=3) 1.3(—4) —0.77  —1.9(=7) 3, (so,o0r)
Val’ll,; A'3A,o 1.4(=3) 3.9(=5)  —0.77 —4.3(-8)
Ryd®Il, o A’ 3A, 1 —4.6(—5) 1.3(—4) 0.08 —4.8(—10)
Ryd’M,; A’ 3A,» 1.5(-5) 3.9(-5) 0.08 4.6(—11)
Val’ll,» A'3A,3 2.6(—4) 3.6(-6)  —0.75 —7.1(—10) >II,(or)
Ryd®Tl,» A'3A,3 7.5(—-5) 3.6(—6) 0.08 2.1(—11)
Val'll,, 'S, —83(—4) —3.7(-2) 0.85 2.6(—5) 11, (so)
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valence type intermediate states. This is expected, since all property matrix
elements involving Rydberg states are smaller. Note that the electronic wave
function for the final state contains also small components of the Herzberg
I (') and I (A’ 3A,) basis functions, these states also have a minor
contribution to the transition dipole moment matrix element. Note also that
all important contributions to the intensity in this ®@Q;; branch have positive
interference: they are all negative, and thus add up to a negative transition
dipole moment matrix element. The only positive contributions are weak and
come from the 322‘ intermediate state and the pathway through 'II, (which
has ¢'%  as final state).

In Table 5.7 we show, for all thirteen branches predicted by Herzberg,3¢
the contributions of the different pathways to the electronic transition dipole
moment matrix element at R = 2.5 ag. For each branch, the most intense
calculated line has been selected. For some branches we present contribu-
tions for two lines, one at low and one at high rotational angular momentum
quantum number. The most important pathways are through spin-orbit cou-
pling of A3 with 3%, spin-orbit and orbit-rotation coupling of A3X} with
*11,, and spin-orbit (and orbit-rotation) coupling of X3% with °II;. The
contributions of spin-orbit (and orbit-rotation) through 3II, and 3II, inter-
mediate states have the same sign in all branches. In the strongest branches
(PQ11, ?Rya, P39, @Ra3, Y Pyy) the contribution of spin-orbit coupling with
3% has the same sign as the 3Il-intermediates contributions. In the weaker
branches (QQ33, OP127 OP23, SRzl, SR32, Ong, Sle) the 32; pathway has
destructive interference with the 3II pathways. The influence of rotation on
the intensity mechanisms is clearly visible in the ®Qqs branch, which has no
spin-orbit contribution of 3II intermediates. The integrated line cross-section
has a shoulder as function of rotational quantum number N, indicating two
competing mechanisms. At low rotation (N = 1) the dominant contribution
is spin-orbit coupling of A3X [ with 3% . At higher rotation (N” = 11) this
spin-orbit coupling becomes less important, due to the 35 symbol (_JS;/ é ngl/; ),
which has a value of 0.4082 at J” = J' = 1 and 0.0181 at J” = J = 11.
However, the contribution of orbit-rotation coupling of A3¥} with 311, and
X 329_ with 311, becomes much larger with increasing rotation. The intensity
mechanism for the ©Qqo branch thus changes from spin-orbit coupling at low
N" to orbit-rotation at high N”’. The same effect is visible in the ©Q;5 and
SQ31 branches. In these branches we have destructive interference between
3II spin-orbit and ®¥; spin-orbit pathways at low rotation and between 3II
spin-orbit and 3II orbit-rotation at high rotation.

The discrepancies between calculation and experiment for the Herzberg I
system are largest for the weakest branches with experimental cross-sections
< 10725 cm? cm ™! molecule™!. The experimental uncertainty is also largest
for the weakest lines.!® Mérienne et al. estimate the uncertainty to be about
6% for intense lines (10~2% cm? cm ™! molecule™!) to 30% for weak lines (1027
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Table 5.7: Contributions of all pathways to the electronic transition dipole moment matrix element for all branches of
the Herzberg I (2-0) band (in 1075 a.u.).

Branch “Q1, 9Qa2 Q33 YRia OPsy @Rz “Py; “Pis 9P SRoy "Ry 9Q13 5Qs1
N = 9 1 11 7 9 9 9 9 5 9 7 9 3 13 1 15

Path

wE:AmOuOQ —86.9 0 0 42.6 —35.1 —-334 31.8 31.2-21.7 26.6 33.0-29.8 —9.5-10.8 —12.7-24.0
wﬂﬁmo@ 74 -0.7 =-31.8 —2.7 85 —-36 —-1.1 —-14 1.6 1.3 1.1 —-6.8 0.7 9.8 0.3 124
wMUM —21.3—-110.1 —37.5—-20.8 —220.6 —162.4 192.9 197.2 168.6 —181.6 —186.1 177.0 56.8 19.8 21.2 144
wMUM 0.7 3.6 1.2 0.7 7.3 54 —6.4 —6.5 —5.6 6.0 6.2 =59 -19 —-0.7 -0.7 —-0.5
wﬂm Amoaoﬁv —147.4 0 0 76.2 —48.3 —64.8 48.1 64.9-32.6 40.2 66.7—-60.3—-17.5-19.4 —20.6 —34.4
wmmAva —11.1 —-1.1 —47.1 —4.0 2.0 1.6 6.5-114 —-1.7 88 —6.3 —1.6 1.1 14.7 0.4 18.7
:Hm 2.7 0 0 =29 2.6 34 0 0 1.7 0 0 3.2 —-0.9 -3.1 1.8 4.1
Total —270.7 —108.2 —115.3 89.1 —283.6 —253.9 271.7 274.0 110.5 —98.8 —85.4 75.8 289 104 —-10.3 —9.3
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cm? cm~! molecule™!). The discrepancies are somewhat larger than the ex-

perimental uncertainty, but small enough to conclude that our ab initio cal-
culations are of good quality, and that we elucidated the mechanism by which
the Herzberg I system gains intensity. As all intermediate states contribute to
all branches, it is not possible to attribute the observed discrepancies to one
or several potential energy curves or coupling matrix elements.

5.4.5 Intensities of the Herzberg II bands

The experimental'® and calculated integrated line cross sections for the (v’,0)

Herzberg II bands (with v/ = 4,10,17) are plotted in Fig. 5.13. Again the
agreement between calculation and experiment is good, especially for low vi-
brational quantum number v’. For higher vibrational quantum numbers, the
calculated intensities are too small compared to the experiment. All four calcu-
lated branches show a smooth dependence on the rotational quantum number
N", with a maximum at N = 7 or 9. The number of pathways from the
ground state to ¢'Y; is much smaller than for the Herzberg I transition. In
Fig. 5.2 we showed that only 1Hg71 and 3Hu)0 intermediate states contribute
directly to the intensity of Herzberg II. Table 5.8 lists the contributions to the
electronic transition dipole moment matrix element, for the N” = 9 lines of the
branches of the (4-0) Herzberg II band. The intensity mechanism is generally
equal for all four branches, destructive interference between spin-orbit coupling
of I, with X®%; and spin-orbit coupling of *IT,, with ¢'X;. The pathway
labeled 311, (so,or) is dominantly the direct spin-orbit coupling of 3II, o with
¢'¥7 and has also some small contributions of spin-orbit and orbit-rotation
couplings of ®IT,, with A3, These contributions cannot be separated, there-
fore the formal labeling is (so,or), but practically orbit-rotation does not play
an important role in Herzberg II transition. There is also a small contribu-

Table 5.8: As Table 5.7 for all branches of the Herzberg II transition.

Branch ER EQ PQ Fp

N = 9 9 9 9
Path
I, —685 —728 67.9 —7122
3, (so,or) 37.0 382 —374  39.0
311, (or) 0.0 —00 00 00
3 (so,0r) —4.6 —6.7 3.3 —438
311, (or) 0.0 —00 00 —0.0
3y 01 -00 00 0.1
323‘ 0.0 0.0 -0.0 -0.0

Total -36.3 —41.4 33.7 -—-38.0
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Figure 5.13: Integrated line cross-sections (in 1072% ¢cm? molecule™! ¢cm™1) for
the four branches of the Herzberg II transition, (4-0), (10-0) and (17-0) bands,
plotted versus initial state rotational quantum number N”.
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tion of a pathway of spin-orbit coupling of X®% " with ®II,, and a subsequent

perpendicular dipole transition to A3E+O, Wthh has a component of 0.06 in
the electronic wave function. The R-dependent electronic transition dipole
moment matrix elements are equal for all vibrational bands of the Herzberg
II transition, because the R-dependent electronic wave functions are equal.
Thus, the disagreement in the integrated line cross-sections for higher vibra-
tional levels must be caused by the vibrational wave functions for these higher
vibrational levels. The Franck-Condon overlap is between the outer tail of
the ground state vibrational wave function and the inner tail of the Herzberg
vibrational wave functions (Fig. 5.12). The calculated Franck-Condon over-
lap being too small for high v" means that the inner classical turning point
is located at too large R, which is caused by a too repulsive inner limb of
the Herzberg potential energy curves. A shift inwards over 1 sinc-DVR grid
point (a distance of 0.045 ag) of the Herzberg II vibrational wave functions for
v’ = 10 — 17 enlarges the Franck-Condon overlap with the ground state v" = 0
wave function by a factor of 1.5, and thus enlarges the line cross-sections by a
factor of 1.52 = 2.25. Thus a relatively small change in the potential energy
curve for the Herzberg states can yield much larger line cross-sections for high
vibrational levels.

5.4.6 Intensities of the Herzberg I1I bands

The integrated line cross-sections for the (7-0) band of the Herzberg III tran-
sitions are plotted in Figs. 5.14 (2 = 1 subband), 5.15 (2 = 2 subband), and
5.16 (2 = 3 subband). The general agreement between calculation and experi-
ment is slightly less good for the Herzberg I1I transition than for the Herzberg
I and II. The 2 = 3 subband of the Herzberg III transition is substantially
less intense than the Herzberg I and II transition. Higher vibrational bands
are more intense than lower bands, due to a more favorable Franck-Condon
overlap. Therefore we analyze the (7-0) band in detail. In the previous section
we concluded that the inner limbs of our Herzberg potential energy curves are
somewhat too repulsive, causing our calculated integrated line cross-sections
to be too small. The v/ =7 A’ 3A,, vibrational level lies between the v’ = 10
and v’ = 11 levels of ¢! ¥, . The calculated integrated line cross-sections for the
Herzberg II (10-0) band are about a factor of 1.5 to 2 too small. We can thus
expect our calculated cross-sections for the Herzberg III (7-0) band to be too
small by about the same amount. Most branches of the 2 = 1 and 2 subbands
are indeed slightly too weak, but all branches of the {2 = 3 subband, and some
of the 2 = 1 subband are too weak by a much larger factor. To analyze this
discrepancy between calculation and experiment, we list the contributions of
the different pathways to the R-dependent electronic transition dipole moment
matrix elements in Tables 5.9, 5.10, and 5.11. Our excitation mechanism for
the Herzberg III transition is shown in Fig. 5.3. The major contributions come
from the direct pathways through ®II intermediate states. The 1Hg, 32;, and



5.4. Results and discussion 131

R,
Ry
12— 4 T T 25T
—e— calc
10 3 —— exp 20}
8l
151
6 2t R
10r
4
1t |
2t 50
P addda
1 7 13 19 25 1 7 13 19 25 1 7 13 19 25
Q Q Q
Ry Qs Py
—o— calc —6— calc —6— calc
6 —— exp | 4 —— exp i —x— exp
101
4[¢ 3
2r 1 5 |
2l ]
1 7 13 19 25 1 7 13 19 25
P o
P2 Py
12— 0.2 5 LI s s
—6— calc
10r L —— exp J
0.15f 4 P
sl
3
6 0.1
2
4k
0.05 b
ok —o— calc 1r
—— exp
1 7 13 19 25 1 7 13 19 25 1 7 13 19 25

Figure 5.14: Integrated line cross-sections (in 10725 cm? molecule™! em=!) for
the Q = 1 subband of the Herzberg III (7-0) band.

Table 5.9: As Table 5.7 for all branches of the Q) = 1 subband of the Herzberg
IIT transition.

Branch “R3; TR3 FQs1 “Rss Qs 9Ps1 TQss TPy 9P
9

N = 7 13 7 9 13 7 15 9
Path
3, (so,or) —43.2 20.8 66.4 —41.5 0 —-36.6 44.4 0.3 —35.2
311, (or) —3.2 87 =35 3.3 —34.7 3.7 3.7 —25.7 3.9
3T, (so,or) 85.7 —16.9 —114.1 74.0 19.6 746 —95.3 13.7 60.4
311, (or) 0.1 —294 —-0.1 —-0.1 39.6 0.0 0.1 283 -0.0
3% 0.0 0.0 0.0 —-0.0 0.0 —-0.0 -0.0 -0.0 0.0
BEj -0.0 —-0.0 -0.0 0.0 —-0.0 0.0 0.0 0.0 —-0.0
1H'g 0 0.0 0.0 0 0 0 —-0.0 —-0.0 0

Total 39.5 —16.7 —=51.3 357 245 343 —472 165 29.1
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Figure 5.15: As Fig. 5.14, for the Q) = 2 subband.

Table 5.10: As Table 5.7 for all branches of the 2 = 2 subband of the Herzberg
1IT transition.

Branch “Ro; TRy FQa “Roy Qo PPy TQas TPy Py
N" = 7 5 9 5 7 9 7 9 9
Path
3HU(SO,OI“) —15.9 0.4 26.8 —6.6 0 -—15.0 11.2 1.0 —10.0
3Hu(or) —-33.0 —41.6 41.8 29.2 50.6 —25.7 —34.7 —-33.5 228
3Hg(so,or) 89.7 79.3 —125.1 —44.7 —-98.6 T74.1 47.7 64.5 —27.1
oI

or) -13 —-1.3 2.0 0.3 25 —-10 -06 -2.5 0.5
3y 0.0 0.0 0.0 —-0.0 0.0 -00 -0.0 —-0.0 0.0
323‘ -0.0 —-0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 —-0.0
11, 0 0.0 0.0 0 0 0 -0.0 0.0 0

Total 39.6 369 -—544 —21.8 —45.5 324 237 29.6 —13.8
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Figure 5.16: As Fig. 5.14, for the 2 = 3 subband.

Table 5.11: As Table 5.7 for all branches of the Q) = 3 subband of the Herzberg
IIT transition.

Branch Ri1 TRy BQui “Riz “Qi2 ®Pii PQiz TPi2 9P
N"= 13 13 15 13 13 15 15 15 15
Path
31_[“(80,01") —4.5 0.2 7.7 =31 0 —4.4 4.9 0.3 -=-3.0
3Hu(or) —23.7 —-30.6 33.6 199 352 —20.2 —28.3 —25.7 16.5
3Hg(so7or) 20.0 16.2 —30.1 —-5.7 —189 17.9 7.1 1377 —4.1
3Hg(0r) 26.2 33.7 =375 —22.0 —39.1 223 31.5 283 —18.3

3% 0.0 0.0 0.0 —-0.0 0.0 -0.0 -0.0 -0.0 0.0
323’ -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 —-0.0
11, 0 —-0.0 -0.0 0 0 0 0.0 -0.0 0

Total 18.0 19.6 —26.3 —11.0 —22.8 15.7 153 16.5 —8.9
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3% have only direct transitions to A3 and !X, these pathways hardly
contribute. All branches have destructive interference between SHQ and 511,
pathways. The contribution of 3Hg is larger than the contribution from 3II,.
The 311, (so,or) and ®II, (or) pathways may have destructive or constructive
interference. The contribution of *II, (so,or) is always large. In the branches
where the calculation compares well with experiment, the contribution of *II,
(or) is small. When the contribution of 3II,(or) is large, it has always positive
interference with 3II,(so,or), and the calculated integrated line cross-section
is too small by at least a factor of 5 in these branches. Since we need three
intermediate states of 3II, symmetry to explain the intensity mechanism of
the Herzberg I and II transitions, we suspect that also at least one extra II,
state is needed to explain the mechanism of the Herzberg III transition. This
extra state has probably a considerable L* matrix element with A3YF and
A’ 3A,. Tts effect on the Herzberg II transition will be negligible. Its effect
on the Herzberg I transition intensities will be smaller than on the Herzberg
III transition, since Herzberg I has also major contributions from 3%, I,
3%, and °II,. The interference of *II,; and °II, is constructive in the case
of Herzberg I, thus one extra ?’Hg intermediate state will have a much smaller
relative effect there.

5.5 Conclusion

We presented an excitation mechanism for the Herzberg transitions in Os. It is
based on ab initio calculated potential energy curves, and spin-orbit and orbit-
rotation coupling matrix elements. We included intermediate states of 3%,
11, 'y, I, and X} symmetry. A previous theoretical study® of these
excitation mechanisms included only spin-orbit couplings, comparison of our
spin-orbit results with these previous results shows good agreement when we
include only two intermediate states of II, symmetry. The test of our excita-
tion mechanism on integrated line cross-sections of the Herzberg bands shows
that a third 3II, intermediate state is needed to account for the experimentally
observed line strengths. The Herzberg I system is the most complicated of the
three, it has thirteen branches, which vary in strength by more than one order
of magnitude. It gains intensity by positive interference of II, and 3II,, inter-
mediates with constructive interference of 3%, in the stronger branches and
destructive interference with 3% in the weaker ones. The four branches of
the Herzberg II system gain their intensity mainly through 'II, intermediates,
with destructive interference of ®II, intermediate states. The intensity of the
Herzberg III system is caused by 3II, and 31_19 intermediates, which interfere
destructively in this system. The agreement between theory and experiment
is not as perfect for Herzberg III as it is for Herzberg I and II, especially for
branches where orbit-rotation through °II; is important. An extra *II, inter-
mediate state might be needed to complete the description of the excitation
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into the Herzberg III state.
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Summary

The atmosphere consists for about 20 % of oxygen molecules. These molecules
protect us from harmful solar ultra-violet radiation through several mecha-
nisms. Absorption of light by oxygen in the 240 — 200 nm spectral region is
known as the Herzberg continuum, associated with the excitation of ground
state oxygen to the three states A3Y[, 13 and A’ 3A,,. In the lower strato-
sphere 90 % of the photodissociation of oxygen molecules is caused by these
Herzberg transitions. The oxygen atoms produced in this way may react with
other Oz molecules and form ozone, which also protects us from UV radiation.

The excitation of Oy in the Herzberg continuum, which is electric dipole
forbidden, is a complicated process, since many electronically excited states
and spin-orbit and orbit-rotation couplings amongst them are involved. The
subsequent photodissociation process that determines the fine structure dis-
tribution and polarization of the atomic fragments also involves many states
and couplings, in particular for large O—O distances. In 1998 a photoabsorp-
tion model was constructed by Buijsse et al. that can be used to calculate
the photoabsorption cross sections in the Herzberg continuum as a function
of wavelength. This model was validated by advanced experiments in which
so called fine structure resolved anisotropy parameters were determined. The
model used by Buijsse et al. to describe the experiments was based on a
simplified description of the mechanisms.

In this thesis we provide a comprehensive theoretical description and high
level ab initio and dynamical calculations of the relevant mechanisms. Since
several of the electronically excited states involved support bound states for
which spectroscopic data is available we used all the available opportunities to
check the correctness of our models and the quality of our calculations.

In Chapter 2 we present the calculated potential energy curves for a set of
05 excited states, spin-orbit couplings, and the radial derivative couplings that
are required in the description of the photodissociation mechanism of O in the
Herzberg continuum. The potentials and couplings in the bound region of the
Herzberg states are tested by computation of vibrational energies, rotational
constants and multiplet splittings and comparison with spectroscopic data.
The potentials are accurate to better than 1 % and the errors in the spin-orbit
couplings are not more than a few percent.
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In Chapter 3 these potentials and couplings are used in a semiclassical cal-
culation of the photodissociation process. We find good agreement with exper-
imental results for the atomic fine structure distribution but only qualitative
agreement for the angular distribution. We find that fragment polarization,
ignored by Buijsse et al., may affect the results. Also details of long range
Coulomb and spin-orbit interactions are important.

In this long range region, at an internuclear separation of about 5.5 ag,
one of the electronic states involved, the 13II, state, has a shallow minimum
(= 200 cm 1), that supports two bound vibrational levels. These levels cause
perturbations in the Herzberg rotational-vibrational-electronic states that have
been observed. In Chapter 4 we employ our potentials and spin-orbit couplings
to compute these perturbations. We find that the 13II, state is highly mixed
and we provide a new assignment of the perturbing 1311, levels.

In Chapter 5 we present a fully ab initio study of the excitation mechanism.
We present ab initio calculations of ten electronically excited intermediate
states and couplings that give intensity to the Herzberg transitions. We test
our results against experimental data on the Herzberg bands. We calculate
integrated line cross-sections for all branches in the Herzberg transitions, and
compare these results with experiment. The agreement is very good, especially
for the Herzberg I and II transitions.

In this thesis we studied almost all aspects of the Herzberg transitions,
both in the bands and in the continuum. Only possible coherence effects in
the photodissociation were not investigated. This would require a full quantum
scattering calculation, for which all ingredients are presented in this thesis.



Samenvatting

De atmosfeer bestaat voor ongeveer 20 % uit zuurstofmoleculen. Deze mole-
culen beschermen ons op verschillende manieren tegen gevaarlijke ultraviolette
straling. Absorbtie van UV-licht met een golflengte van 240 tot 200 nm door
zuurstof staat bekend als het Herzberg-continuum. Deze absorptie veroorzaakt
de excitatie (overgang) van grondtoestand O naar de drie toestanden A3%}
'S en A’ 3A,. In de onderste laag van de stratosfeer wordt 90 % van de foto-
dissociatie van zuurstofmoleculen veroorzaakt door deze Herzberg-overgangen.
De zuurstofatomen die op deze manier ontstaan kunnen met andere Oy mole-
culen reageren tot ozon, dat ons ook beschermt tegen UV-straling.

De excitatie van Og in het Herzberg-continuum, verboden in de elektrische
dipool-benadering, is een gecompliceerd proces. Deze complexiteit komt door-
dat er veel elektronisch aangeslagen toestanden met veel onderlinge spin-baan-
en baan-rotatiekoppelingen bij betrokken zijn. Het fotodissociatieproces dat
volgt op de excitatie bepaalt de verdeling over de fijnstructuurniveaus en de
polarisatie van de atomaire fragmenten. Bij de fotodissociatie zijn ook weer
veel andere toestanden en koppelingen betrokken, in het bijzonder voor grote
0-0O afstanden. In 1998 hebben Buijsse et al. een fotoabsorptiemodel ge-
construeerd, dat gebruikt kan worden om de fotoabsorptiedoorsneden in het
Herzberg-continuum te berekenen als functie van de golflengte. Zij hebben
dit model gevalideerd met geavanceerde experimenten, waarin ze zogeheten
fijnstructuur-opgeloste anisotropie-parameters bepaald hebben. Het model dat
Buijsse et al. gebruikten om de experimenten te beschrijven, was gebaseerd op
een vereenvoudigde beschrijving van de mechanismen achter de excitatie en de
dissociatie.

In dit proefschrift geven we een uitgebreide theoretische beschrijving van
de relevante mechanismen en presenteren we ab initio elektronenstructuur- en
dynamicaberekeningen van zeer hoog niveau. Enkele van de elektronische po-
tentialen die een rol spelen in al deze mechanismen bevatten gebonden rotatie-
vibratieniveaus waarvoor experimentele spectroscopische gegevens beschikbaar
zijn. We hebben deze gegevens waar mogelijk gebruikt om de correctheid van
onze modellen en de kwaliteit van onze berekeningen te toetsen.

In Hoofdstuk 2 presenteren we berekende potentiaalcurven voor een aan-
tal aangeslagen O toestanden, spin-baankoppelingen en het radiéle afgeleide
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koppelingsmatrix-element. Deze grootheden zijn nodig in de beschrijving van
het fotodissociatiemechanisme van Oy in het Herzberg-continuum. De po-
tentialen en koppelingen worden in het gebonden gebied van de Herzberg-
toestanden getest door vibratie-energieén, rotatieconstanten en multipletsplit-
singen te berekenen en te vergelijken met spectroscopische metingen. De on-
nauwkeurigheid van de potentialen is minder dan 1 %; de fouten in de spin-
baankoppelingen zijn niet groter dan een paar procent.

In Hoofdstuk 3 worden deze potentialen en koppelingen gebruikt in een
semiklassieke berekening van het fotodissociatieproces. Voor de atomaire ver-
deling over de fijnstructuurniveaus vinden we een goede overeenstemming met
experimentele resultaten. Voor de hoekverdeling is de overeenstemming alleen
kwalitatief. We vinden dat de polarisatie van de fragmenten, die verwaar-
loosd is door Buijsse et al., de resultaten kan beinvloeden. Ook details in de
Coulomb- en spin-baaninteracties op grotere O—O afstand zijn belangrijk.

Dit lange-afstandsgebied bevindt zich bij een internucleaire afstand van
ongeveer 5.5 ag. Een van de toestanden, de 13II, toestand, heeft in dit ge-
bied een ondiep minimum (&~ 200 cm™!), dat twee gebonden vibratieniveaus
bevat. Deze niveaus veroorzaken verstoringen in de Herzberg rotatievibratie-
elektronische toestanden die ook experimenteel zijn waargenomen. In Hoofd-
stuk 4 gebruiken we onze potentialen en koppelingen om deze verstoringen uit
te rekenen. We vinden dat de 13II, toestand een erg gemengd karakter heeft
en we geven een nieuwe toekenning van de verstorende 13IL, niveaus.

In Hoofdstuk 5 presenteren we een volledige ab initio studie van het exci-
tatiemechanisme. We beschrijven ab initio berekeningen van tien elektronisch
aangeslagen intermediaire toestanden en koppelingen die intensiteit aan de
Herzberg-overgangen geven. We berekenen excitatiedoorsneden, geintegreerd
over de lijnen van alle “branches” in de Herzberg-overgangen en vergelijken
deze met gemeten waarden. De overeenstemming is erg goed, in het bijzonder
voor de Herzberg I en II overgangen.

Hiermee hebben we bijna alle aspecten van de Herzberg-overgangen bestu-
deerd, zowel in de banden als in het continuum. Alleen mogelijke coherentie-
effecten in de fotodissociatie hebben we niet onderzocht. Hiervoor zou een
volledig quantummechanische verstrooiingsberekening nodig zijn. Alle ing-
rediénten die nodig zijn voor een dergelijke berekening zijn te vinden in dit
proefschrift.
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