
1 Green’s symmetrical theorem

In Cartesian coordinates (x1, . . . , xn) Green’s symmetrical theorem reads∫
V

(U∇2V − V∇2U)dV =

∫
S

(U∇V − V∇U) · dS, (1)

where U = U(x1, . . . , xn) and V(x1, . . . , xn) are arbitrary (complex) functions that
are at least twice differentiable, and S is a surface enclosing the region V . Let the
surface S be defined by

R(x1, . . . , xn) = C. (2)

Let the coordinates q1, . . . , qn−1 be orthogonal to R, i.e., let the fundamental tensor
for the coordinate system (R, q1, . . . qn−1) be block diagonal:

gR,qi = gqi,R = 0, i = 1, . . . , n− 1. (3)

Thus, for the determinant (g) of the fundamental tensor we have

g = gR,R|gqi,qj |. (4)

For the surface element of integration dS we have

dS =
1

|n|
n|gqi,qj |

1
2 dq1 . . . dqn−1, (5)

where the components ni of the normal n to the surface are given by

ni =
∂R

∂xi
. (6)

For the length of n we have (using Einstein summation convention, and the inverse
fundamental tensor for Cartesian coordinates gij = δij)

|n| = (nig
ijnj)

1
2 = (gR,R)

1
2 = g

− 1
2

R,R. (7)

Combining the last four equations we find

dS = ng
1
2 dq1 . . . dqn−1. (8)

We can now write the first surface term in tensor form∫
S

U∇V · dS =

∫
S

Un · (∇V)g
1
2 dq1 . . . dqn−1 (9)

=

∫
S

Unigij
∂V
∂xj

g
1
2 dq1 . . . dqn−1 (10)

Note that the factor nig
ij ∂V

∂xj is a scalar and we can write it in the new coordinate
system

(x1
′
, . . . , xn

′
) = (R, q1, . . . , qn−1) (11)

for which the fundamental tensor is block diagonal and for which we have

ni′ =
∂R

∂xi′
= δ1i′ (12)

giving

ni′g
i′j′ ∂V

∂xj′
= gRR ∂V

∂R
. (13)

Thus Green’s symmetrical theorem can be written as∫
V

(U∇2V − V∇2U)dV =

∫
S

(U ∂

∂R
V − V ∂

∂R
U)gR,Rg

1
2 dq1 . . . dqn−1. (14)
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2 The Wronskian

We define the Wronskian

W(U ,V) ≡
∫
S

(U ∂

∂R
V − V ∂

∂R
U)µ−1g

1
2 dq1 . . . dqn−1 (15)

where µ ≡ gR,R, and the kinetic energy operator

T̂ ≡ − h̄
2

2
∇2 (16)

Introducing bracket notation without complex conjugation in the bra,

〈U|V〉 ≡
∫
V

UVdV (17)

we can write Green’s symmetrical theorem as

〈U|Ĥ − E|V〉 − 〈V|Ĥ − E|U〉 = − h̄
2

2
W(U ,V) (18)

In order to expand the functions U and V we introduce and orthogonal set of
functions φi(q) on S ∫

S

φi(q)φj(q)dq1 . . . dqn−1 = δij (19)

The function U can now be expanded as

U(R,q) =
∑
i

µ
1
2 g−

1
4φi(q)ui(R) (20)

and similarly for V. Substituting these expansions into the expression for the Wron-
skian gives

W(U ,V) =
∑
i

ui(R)
∂

∂R
vi(R)− vi(R)

∂

∂R
ui(R). (21)

Note that the term involving the derivative of µ
1
2 g−

1
4 cancels. In vector notation

f = [f1(R) . . . fn(R)]T (22)

we get
W(f ,g) ≡ W(U ,V) = fTg′ − f ′Tg. (23)

3 Properties of the Wronskian

The Wronskian depends on the functions U and V and on the choice of the surface S.
Suppose the functions f and g are solutions of the following second order differential
equations

∂2

∂R2
u = W (R)u (24)

∂2

∂R2
g = W (R)g, (25)

then

∂

∂R
W(u,g) = uTg′′ − u′′Tg (26)

= uTWg − (Wu)Tg (27)

= uT (W −WT )g (28)
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Thus, if W = WT , then W(u,v) is constant.
The Wronskian is bilinear and anti-symmetric

W(u,v) = −W(v,u) (29)

W(
∑
i

uici,
∑
j

vjdj) =
∑
i,j

ciW(ui,vj)dj (30)

4 Matrix notation

Let U denote the matrix
U = [u1 . . .un], (31)

where each column defines a function. The associated n functions are denoted as
the row vector U = {U1, . . . ,Un}. Defining a Wronskian matrix for two sets of
functions

W(U,V)i,j ≡ W(Ui,Vj) (32)

we can write
W(U,V) = UTV′ −U′TV. (33)

This gives
W(U,V) = −W(V,U)T (34)

and
W(UP,VQ) = PTW(U,V)Q (35)

if P and Q are constant matrices. Note that

W(U,U) = −W(U,U)T (36)

only implies that the diagonal of this Wronskian is zero, and but not necessarily
the entire matrix.

We also define a matrix of integrals

〈〈U|T̂ |V〉〉ij ≡ 〈Ui|T̂ |Vj〉. (37)

In matrix notation Green’s theorem becomes

〈〈U|T̂ |V〉〉 − 〈〈V|T̂ |U〉〉T = − h̄
2

2
W(U,V) (38)

We will call the sets of functions {U ,V} canonical if

W(U,U) = W(V,V) = 0 (39)

W(U,V) = cI (40)

and c 6= 0. If {U ,V} is canonical then {UA−T ,VA} is also canonical.

5 K, S, and T matrices

Let F and G be sets of real functions with

W(F ,F) =W(G,G) = 0 (41)

and
W(F ,G) = I. (42)

The general form of the wave function is

Ψ = U + VE (43)
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with {U ,V} canonical and
W(U ,V) ≡ cEI (44)

The definitions of the K, S, and T matrices are

ΨK = F + GK (45)

ΨS = (F − iG) + (F + iG)S = F(I + S) + G(−iI + iS) (46)

ΨT = F + (F + iG)T = F(I + T) + GiT (47)

The Wronskians are

cK = 1 (48)

cS = 2i (49)

cT = i (50)

In general we can write
Ψ = (U + VE)X (51)

where {U ,V} is a canonical set. We can solve for the matrix E as follows:

W(U ,Ψ) = W(U ,V)EX (52)

W(V,Ψ) = W(V,U)X (53)

thus,
E =W(U ,V)−1W(U,Ψ)X−1 (54)

together with
X =W(U ,V)−1W(V,Ψ) (55)

and the fact that {U ,V} is canonical gives

E = −W(U ,Ψ)W(V,Ψ)−1. (56)

Substituting the definitions of the K, S, and T matrices gives

K = −W(F,Ψ)W(G,Ψ)−1 (57)

S = −W(F− iG,Ψ)W(F + iG,Ψ)−1 (58)

T = −W(F,Ψ)W(F + iG,Ψ)−1. (59)

For a set of wave functions given by

Ψ = FA + GB (60)

this yields

K = BA−1 (61)

S = (A− iB)(A + iB)−1 (62)

T = B(iA−B)−1 (63)

We can use these expressions to write down the following relations:

S = (I− iK)(I + iK)−1 (64)

S = I + 2T (65)

K = i(S− I)(S + I)−1 (66)

K = iT(I + T)−1 (67)

T = K(iI−K)−1 (68)

(69)
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6 Properties derived from Wronskian relations

Let {U,V} be canonical. Then from

UTU′ −U′TU = 0 (70)

if follows that
UTU′ = U′TU (71)

which gives
(U′TU)T = U′TU (72)

and
(U′U−1)T = U′U−1 (73)

These relations also hold for V.
Multiplying

UTV′ −U′TV = cEI (74)

from the right with V−1 and from the left with with U−T , taking the transpose
and using the above symmetry relations gives

V′V−1 = U′U−1 + cEV
−TU−1 (75)

Multiplying Eq. (74) from the right with V−1U gives

UTV′V−1U−U′TU = cEV
−1U (76)

which shows that
(V−1U)T = V−1U (77)

7 The log-derivative matrix

Let
Ψ = U + VE (78)

then
Ψ′ ≡ YΨ (79)

i.e.
U′ + V′E = Y(U + VE). (80)

This equation can be solved for E:

E = −(V′ −YV)−1(U′ −YU) (81)

To show that a symmetric Y matrix leads to a symmetric E matrix we can rewrite
this equation as follows:

E = −V−1(V′V−1 −Y)−1(U′U−1 −Y)U. (82)

Substituting Eq. (75) gives

E = −V−1(V′V−1 −Y)−1(V′V−1 −Y − cEV−TU−1)U (83)

= −V−1[I− cE(V′V−1 −Y)−1V−TU−1]U (84)

= −V−1U− cEV−1(Y −V′V−1)−1V−T (85)

In particular, with

0 ≡ G + iF (86)

we have

K = −G−1F−G−1(Y −G′G−1)−1G−T (87)

S = 0−10∗ − 2i0−1(Y − 0′0−1)−10−T (88)

T = −0−1F− 0−1(Y − 0′0−1)−10−T (89)
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8 Properties of K, S, T, and Ymatrices

Let
Ψ = U + VE + Γ (90)

where {U ,V} is a canonical set and

W(U ,Γ) =W(V,Γ) = 0 (91)

Assume that Ψ is a solution of Schrödinger equation

[Ĥ − E]Ψ = 0. (92)

Since

〈〈Ψ|Ĥ − E|Ψ〉〉 − 〈〈Ψ|Ĥ − E|Ψ〉〉T = − h̄
2

2
W(Ψ,Ψ) (93)

we have
W(Ψ,Ψ) = 0 (94)

Using the fact that {U ,V} is canonical and the Wronskians involving Γ are zero this
gives

E = ET . (95)

Thus, the K, S, and Tmatrices are symmetric. Also, since

Y = Ψ′Ψ−1 (96)

it follows that the log-derivative matrix must be symmetric.
If, in addition, we assume the potential to be real, we can also use

[Ĥ − E]Ψ∗ = 0 (97)

and consequently
W(Ψ∗,Ψ) = 0. (98)

Applying this relation to K matrix boundary conditions gives

K−K† = 0 (99)

thus, since the K matrix is symmetric, it must also be real.
For S matrix boundary conditions we find

S†S = I (100)

and for T matrix boundary conditions we find

2T†T + T† + T = 0 (101)

which can be rewritten to

(I + 2T)†(I + 2T) = I. (102)

This last result agrees with the relation between the T and S matrices that was
found earlier.
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9 Canonical transformations

The real matrices C and D define a canonical transformation of the set {F ,G} by

F = FC + GD (103)

G = −FD + GC (104)

if

CTC + DTD = I (105)

CTD−DTC = 0 (106)

These conditions are equivalent to the condition that C + iD is unitary, i.e.,

(C + iD)†(C + iD) = I (107)

which is equivalent to the condition that the real matrix[
C −D
D C

]
(108)

is orthonormal. Note that

(C + iD)−1 = CT − iDT (109)

If {F ,G} is canonical it follows that {F ,G} is canonical and that

W(F ,G) =W(F ,G). (110)

In supermatrix notation the transformation is given by

[F G] = [F G]

[
C −D
D C

]
. (111)

and the inverse is

[F G] = [F G]

[
CT DT

−DT CT

]
. (112)

A canonical transformation of {F ,G} induces a transformation in A and B via
the definition

Ψ = FA + GB ≡ F A + GB (113)

Thus we find

A = CTA + DTB (114)

B = −DTA + CTB (115)

and its inverse

A = CA−DB (116)

B = DA + CB (117)

If we substitute these expressions into Eqs. (61) and use the unitarity of the matrices
C± iD we can derive

K = (D + CK)(C−DK)−1 (118)

S = (C− iD)S(CT − iDT ) (119)

and the inverse relations

K = (−DT + CTK)(CT + DTK)−1 (120)

S = (CT + iDT )S(C + iD) (121)
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10 Construction of canonical transformations

We will look for a canonical transformation that gives K = 0 or, equivalently S = I.
The transformation will not be unique, since if {C,D} satisfies these conditions,
the transformation {C′,D′} with

C′ = CQ (122)

D′ = DQ, (123)

where Q is orthogonal, is also canonical and satisfies the same conditions. The
condition S = I gives

S = (C1 − iD1)(CT
1 − iDT

1 ) (124)

Below we will show that S, which is symmetric and unitary, has a symmetric unitary
square root, thus we can take

C = Re(S
1
2 ) (125)

D = −Im(S
1
2 ). (126)

To prove that this symmetric square root exists we use the following theorem

Theorem 1 A complex symmetric unitary matrix S has a spectral decomposition

S = QΛQT (127)

where Q is real and orthogonal and Λ is diagonal

Proof: let
S = Sr + iSi (128)

where Sr and Si are real and symmetric. From the unitarity of S it follows that Sr

and Si commute, thus they must have a common set of eigenvectors Q,

SrQ = QΛr (129)

SiQ = QΛi. (130)

From this it follows that
S = Q(Λr + iΛi)Q

T (131)

q.e.d.
To avoid the use of complex matrices we can can start with the eigenvalue

decomposition of the K matrix, i.e.,

K = QΛQT (132)

and substitute this into the relation between the S and K matrices

S = (I− iK)(I + iK)−1 (133)

= Q(I− iΛ)QT [Q(I + iΛ)QT ]−1 (134)

= Q(I− iΛ)(I + iΛ)−1QT (135)

= Q(I− iΛ)2(I + Λ2)−1QT . (136)

We can now compute the square root analytically and we find

C = Q(I + Λ2)−
1
2QT (137)

D = Q(I + Λ2)−
1
2 ΛQT . (138)

Since canonical transformations are determined up to an arbitrary orthonormal
multiplication from the right we can also use

C = Q(I + Λ2)−
1
2 (139)

D = Q(I + Λ2)−
1
2 Λ. (140)

One may substitute these expressions into Eq. (120) to verify that K = 0.
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