1 Green’s symmetrical theorem

In Cartesian coordinates (z!,...,2™) Green’s symmetrical theorem reads
/ UV - VV2U)AV = /(uvv - VVU) - dS, (1)
1% S
where U = U(z!, ..., 2") and V(z!,...,2") are arbitrary (complex) functions that

are at least twice differentiable, and S is a surface enclosing the region V. Let the
surface S be defined by
R(z*,... ;2" =C. (2)

Let the coordinates ¢',...,¢" ! be orthogonal to R, i.e., let the fundamental tensor
for the coordinate system (R, q!,...q" ') be block diagonal:

gR7qi:gqi7R:O,Z':L...,nfl. (3)
Thus, for the determinant (g) of the fundamental tensor we have
ai,05 - (4)

For the surface element of integration dS we have

9 =9R,R

1 1 e
ds = ng%% |2dq' .. .d¢" !, (5)

where the components n; of the normal n to the surface are given by

__or
T 9t

(6)

For the length of n we have (using Einstein summation convention, and the inverse
fundamental tensor for Cartesian coordinates gV = §%)

. 1 1 _1
In| = (nig”n;)? = (¢"™™)7 = gp%. (7)
Combining the last four equations we find
ds = ng%dq1 Codg L (8)

We can now write the first surface term in tensor form

/uvv -dS /un A(VV)g2dq"...dg" " (9)
S S

OV
Un;g¥ =——g2dq'...dg" 1 10
/S nig? 5-59%dq” ... dg (10)

Note that the factor n;g% % is a scalar and we can write it in the new coordinate
system

(', 2") = (R¢ty.. . g™ Y (11)
for which the fundamental tensor is block diagonal and for which we have
OR
g =— =0} 12
nie = =0} (12)
giving
v av 8V
Lot _ = RRi. 1
nl g 8.13-7/ g 8R ( 3)
Thus Green’s symmetrical theorem can be written as
9] 0 1
UV?Y — VVU)dV :/ U=V —V—U)g" g2dg" ... .dg" " 14
| WV = [ U5y =V ek . dg (14)



2 The Wronskian

We define the Wronskian

0 d ;
wu,y ;/ U—V - V—Up " g2dg"...dg" ! 15
u,v) S( R R T (15)

where ;1 = gr, g, and the kinetic energy operator

h?_,
—— 1
5V (16)

T

Introducing bracket notation without complex conjugation in the bra,
Uw) = / Uvav (17)
%

we can write Green’s symmetrical theorem as

U|H — E|V) — (V|H — E|U) = —%ZW(L{,V) (18)

In order to expand the functions ¢ and V we introduce and orthogonal set of
functions ¢;(q) on S

. di(q)d;(a)dg’ ...dg" " = & (19)

The function &/ can now be expanded as
UR,q) =Y n?g 1¢i(a)ui(R) (20)

and similarly for V. Substituting these expansions into the expression for the Wron-
skian gives
0

@uz(R) (21)

WU, V) = Zi:ui(R)aizvi(R) —v;(R)
Note that the term involving the derivative of /ﬁ g*i cancels. In vector notation
f=[fi(R)... fa(R)" (22)
we get
W(f, g) =WU,V) =flg — g (23)
3 Properties of the Wronskian

The Wronskian depends on the functions &/ and V and on the choice of the surface S.
Suppose the functions f and g are solutions of the following second order differential
equations

62
62
ﬁg = W(R)& (25)
then
8 T _n nT
apVwg) = ug' —uTg (26)
— WTWg— (Wu)Tg (27)
= u"'Ww-whg (28)



Thus, if W = W7, then W(u, V) is constant.
The Wronskian is bilinear and anti-symmetric

W(u,v) = —-W(v,u) (29)
W(Z uiCi,Zdej) = ZCiW(ui,Vj)dj (30)
i J ,J
4 Matrix notation
Let U denote the matrix
U=[u...u,l, (31)
where each column defines a function. The associated n functions are denoted as
the row vector U = {Us,...,U,}. Defining a Wronskian matriz for two sets of
functions
W(U,V);; =W(U,;, V) (32)
we can write
W(U,v)=UTv' - U"v. (33)
This gives
W(U, V) = -W(V,U)" (34)
and
W(UP,VQ) = PTW(U,V)Q (35)

if P and Q are constant matrices. Note that
W(U,U) =-W(U,U)" (36)

only implies that the diagonal of this Wronskian is zero, and but not necessarily
the entire matrix.
We also define a matrix of integrals

UITV)ij = U|TIV). (37)
In matrix notation Green’s theorem becomes
. . I
UITV) — ((VITU)" = —5 WU, V) (38)
We will call the sets of functions {i,V} canonical if

W(U,U) = W(V,V)=0 (39)
WU, V) = d (40)

and ¢ # 0. If {U,V} is canonical then {{A~T,VA} is also canonical.

5 K, S, and T matrices
Let F and G be sets of real functions with
W(F,F) =W(G,G)=0 (41)

and

W(F,G) =1 (42)

The general form of the wave function is

U =U+VE (43)



with {{/,V} canonical and
WU, V) = cgl

The definitions of the K, S, and T matrices are
Uy = F+GK

Vg = (F—iG)+ (F+iG)S = F(I+8) + G(—il +iS)
Up = F+(F+iG)T=FI+T)+GT

The Wronskians are

Cxg = 1
cs = 27
cr = 1

In general we can write
U =(U+VE)X

where {U, V} is a canonical set. We can solve for the matrix E as follows:

WU, ¥) = WU,V)EX
W, T) = WOV,UX

thus,
E=WU,V)"'W(U, )X}

together with
X = WU, V) TW(V, D)

and the fact that {U/,V} is canonical gives
E=-WU, V)WV, ¥) L.

Substituting the definitions of the K, S, and T matrices gives

K = -WFV)WVG,U)!
S = -W(F —iG,V)W(F +iG, )" !
T = -W(F VW +iG, )L

For a set of wave functions given by

U =FA +GB
this yields
K = BA™!
S = (A-iB)(A+iB)!
T = B(iA-B)!

We can use these expressions to write down the following relations:

(I—iK)(I+iK)™*
I+2T

= i(S-I)(S+1n!
iT(I+T)!

= KGWI-K)!
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6 Properties derived from Wronskian relations

Let {U, V} be canonical. Then from

U'u -uUTu=0 (70)
if follows that
Uu'u' =U"Uu (71)
which gives
(Uutu)r =u'u (72)
and
UuHr=v'u! (73)
These relations also hold for V.
Multiplying
UV —UTV = ¢pl (74)

from the right with V~! and from the left with with U~7, taking the transpose
and using the above symmetry relations gives

VVI=UU"'+cgv7TU! (75)
Multiplying Eq. (74) from the right with V~=1U gives
UTVVlU - UTU =¢pV~IU (76)
which shows that
viu)y'=v-'u (77)

7 The log-derivative matrix

Let
¥ =U+VE (78)
then
v =YU¥ (79)
i.e.
U +VE=Y(U+VE). (80)
This equation can be solved for E:
E=—-(V -YV) YU -YU) (81)

To show that a symmetric Y matrix leads to a symmetric E matrix we can rewrite
this equation as follows:

E=-V}(VV'!-Yv)}(UU!'-Y)U. (82)

Substituting Eq. (75) gives
E = - VY{VVI_-Y){(VVI-Y-cpVTUHU (83)
= -V il-cg(VV'!I-Y)'VTU U (84)
VU - cpgVH Y - V'V iy T (85)

In particular, with
0=G +iF (86)
we have

K = -G'F-G Y Y-G'Gg ) lg7” (87)
S = o0'o*r-2i07(y-00H o " (88)
T = 0'F-0(Y-o0ohH'to 7" (89)



8 Properties of K, S, T, and Ymatrices

Let
UV=U+VE+T

where {U,V} is a canonical set and
WU, r)=ww,1)=0
Assume that ¥ is a solution of Schréodinger equation
[H— E|¥ =0.

Since
2

(WIH — B[W) — (W|H — E|W)T = —%W(‘I’, v)

we have

W(T, ) =0

(92)

(93)

(94)

Using the fact that {{, V} is canonical and the Wronskians involving I" are zero this

gives
E=ET.

Thus, the K, S, and Tmatrices are symmetric. Also, since
Y =0yt

it follows that the log-derivative matrix must be symmetric.
If, in addition, we assume the potential to be real, we can also use

[H — E]U* =0

and consequently
W(T*, ) = 0.

Applying this relation to K matrix boundary conditions gives
K-K' =0

thus, since the K matrix is symmetric, it must also be real.
For S matrix boundary conditions we find

S'Ss =1
and for T matrix boundary conditions we find
2T T+ T+ T =0
which can be rewritten to

I+2T) (1+2T) =1

(95)

(100)

(101)

(102)

This last result agrees with the relation between the T and S matrices that was

found earlier.



9 Canonical transformations

The real matrices C and D define a canonical transformation of the set {F,G} by

F = FC+GD (103)

g ~FD +GC (104)
if

cfc+D'D =1 (105)

c'D-D'Cc = 0 (106)

These conditions are equivalent to the condition that C + ¢D is unitary, i.e.,
(C+iD)I(C+iD) =1 (107)

which is equivalent to the condition that the real matrix

C -D
e 2] -
is orthonormal. Note that
(C+iD) ' =c? —iDT (109)

If {F,G} is canonical it follows that {F,G} is canonical and that

W(F,G) = W(F,G). (110)
In supermatrix notation the transformation is given by
— = C -D
Fa-1rd|p & | (111)
and the inverse is P
Fa-F9| G o | (12)

A canonical transformation of {F,G} induces a transformation in A and B via
the definition

UV=FA+GB=FA+GB (113)
Thus we find
A = c'A+D'B (114)
B -DTA+C'B (115)
and its inverse
A = CA-DB (116)
B = DA+CB (117)

If we substitute these expressions into Egs. (61) and use the unitarity of the matrices
C +iD we can derive

K = (D+CK)(C-DK)" (118)
S = (C-iD)S(C” —iD") (119)

and the inverse relations

= (-DT +C'K)(CT +D'K)! (120)
= (CT +4iDT)S(C +iD) (121)
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10 Construction of canonical transformations

We will look for a canonical transformation that gives K = 0 or, equivalently S = I.
The transformation will not be unique, since if {C,D} satisfies these conditions,
the transformation {C’, D’} with

c = CQ (122)
D = DQ, (123)

where Q is orthogonal, is also canonical and satisfies the same conditions. The
condition S =1 gives
S = (C; —iDy)(CT —iDT) (124)

Below we will show that S, which is symmetric and unitary, has a symmetric unitary
square root, thus we can take

C = Re(S?) (125)
D = —Im(S?). (126)
To prove that this symmetric square root exists we use the following theorem

Theorem 1 A complex symmetric unitary matriz S has a spectral decomposition

S =QAQ” (127)
where Q is real and orthogonal and A is diagonal
Proof: let

S=8S,+:1S; (128)

where S, and S; are real and symmetric. From the unitarity of S it follows that S,
and S; commute, thus they must have a common set of eigenvectors Q,

S, Q = QA, (129)
S:.Q = QA (130)

From this it follows that
S = Q(A, +iA)QT (131)

q.e.d.
To avoid the use of complex matrices we can can start with the eigenvalue
decomposition of the K matrix, i.e.,

K = QAQT (132)
and substitute this into the relation between the S and K matrices
S = I-iK)I+:K)™* (133)
= QI-iNQTQI+iNQT]! (134)
= QI —iNIT+iA)'QT (135)
= QI —iN*TI+AH1QT. (136)

We can now compute the square root analytically and we find
C = QI+A»):qQT (137)
D = Q(I+A?»:AQ7. (138)

Since canonical transformations are determined up to an arbitrary orthonormal
multiplication from the right we can also use

C = QI+A*" (139)
D = Q(I+A?)zA. (140)
One may substitute these expressions into Eq. (120) to verify that K = 0.



