
Fermi's Golden Rule for bound-
ontinuumtransitionsG.W.M. VissersFebruary 21, 20021 Notational details, de�nition of fun
tionsDe�ne the inprodukt between two fun
tions �(x) and  (x) ash�j i = Z dx��(x) (x); (1)the fun
tion 'x(x) as 'x(x0) � Æ(x� x0); (2)and the shorthand notation jxi � j�xi. Then, for arbitrary fun
tion  hxj i = Z dx0'�x(x0) (x0) =  (x): (3)The jxi are orthonormal hxjx0i = 'x0(x) = Æ(x� x0) (4)and form a 
omplete basis of the Hilbert spa
e, sin
e for arbitrary � and  Z dxh�jxihxj i = Z dxhxj�i�hxj i = Z dx�(x)� (x) = h�j i; (5)so that R dxjxihxj = 1̂.De�ne the fun
tions jki by their 
oordinate representation:hxjki = 1p2�eikx: (6)These fun
tions are orthonormal due tohkjk0i = Z dxhkjxihxjk0i = Z dxhxjki�hxjk0i = 12� Z dxei(k0�k)x = Æ(k � k0):(7)1



Furthermore, they also form a basis for the Hilbert spa
e, sin
eZ dkjkihkj = Z dk Z dxjxihxjki Z dx0hkjx0ihx0j= 12� Z dk Z dx Z dx0jxieik(x�x0)hx0j= Z dx Z dx0jxiÆ(x � x0)hx0j = Z dxjxihxj = 1̂: (8)And �nally, the jki are eigenkets of the momentum operator p̂. Postulate [x̂; p̂℄ =i�h1̂, then hxj[x̂; p̂℄x0i = (x � x0)hxjp̂x0i = i�hhxjx0i = i�hÆ(x � x0), whi
h has assolution hxjp̂x0i = �i�hrÆ(x � x0). Thenhxjp̂ki = Z dx0hxjp̂x0ihx0jki = � i�hp2� Z dx0[rÆ(x� x0)℄eikx0= � i�hp2� Z dx0Æ(x � x0)reikx0 = �hkp2� Z dx0Æ(x� x0)eikx0 = �hkp2� eikx= �hkhxjki; (9)and sin
e the jxi form a 
omplete basis, we 
an write p̂jki = �hkjki.Extending this to three dimensions, we de�nejri � jxijyijzi; (10)and similarly jki � jkxijkyijkzi: (11)Hen
e, we gethrjr0i = hxjx0ihyjy0ihzjz0i = Æ(x� x0)Æ(y � y0)Æ(z � z0) = Æ(r� r0) (12)and hrjki = hxjkxihyjkyihzjkzi = 1p8�3 eik�r: (13)The jki form of 
ourse again a 
omplete spa
e, sin
eZ dkjkihkj = Z dkxjkxihkxj Z dkyjkyihkyj Z dkz jkzihkz j = 1̂1̂1̂ = 1̂: (14)The three dimensional jki are of 
ourse eigenfun
tions of the momentum oper-ator in all dire
tionsp̂�jki = �hk�jki � = x; y; z ) p̂jki = �hkjki: (15)In spheri
al 
oordinates (k; �k ; �k) the volume element dk = k2dkdk̂, and sin
eEk = �h2k22� ) dEk = �dEkdk � dk = �h2k� dk ) k2dk = �k�h2 dEk; (16)2



the 
ompleteness 
ondition readsZ dEkdk̂�k�h2 jkihkj = 1̂: (17)Thus, if we de�ne jk̂Eki �r�k�h2 jki; (18)we have an energy normalized fun
tion, for whi
hZ dEkdk̂jk̂Ekihk̂Ekj = 1̂; (19)and hk̂Ekjk̂0E0ki = �pkk0�h2 hkjk0i = �pkk0�h2 Æ(k � k0)= �pkk0�h2 1k2 Æ(k � k0)Æ(k̂� k̂0)= �pkk0�h2k2 2k0Æ(k2 � k02)Æ(k̂� k̂0)= k0pk0kpk Æ(Ek �E0k)Æ(k̂ � k̂0) (20)Of 
ourse, the energy normalized fun
tions are also eigenfun
tions of the threedimensional momentum operator:p̂jk̂Eki = �hkjk̂Eki: (21)2 S
attering wave fun
tionConsider a time-dependent HamiltonianĤ(t) = T̂ + V̂ (t); (22)where the time dependen
y is 
aused solely by the pertubation V̂ (t). Assumethe system is initially in a bound eigenstate of T̂ :T̂ jii = �h!ijii: (23)The energy normalized 
ontinuum fun
tions jk̂Eki are also eigenfun
tions of T̂ ,sin
e T̂ jk̂Eki = p̂22� jk̂Eki = �h2k22� jk̂Eki � �h!kjk̂Eki: (24)De�ne the time-dependent kets ji; ti and jk̂Ek; ti by the time evolution of jiiand jk̂Eki: ji; ti � e�i!itjii and jk̂Ek; ti � e�i!ktjk̂Eki (25)3



The total wave fun
tion j (t)i must obey the S
hr�odinger equationi�h ddt j (t)i = Ĥ(t)j (t)i: (26)De�ne the new kets j e (t)i by propagating the total wave fun
tion ba
k in timewith T̂ : j e (t)i � eiT̂ t=�hj (t)i: (27)Theni�h ddt j e (t)i = eiT̂ t=�h(�T̂ )j (t)i+ eiT̂ t=�hĤ(t)j (t)i = eiT̂ t=�hV̂ (t)e�iT̂ t=�hj e (t)i(28)Integrating both sides from 0 to t givesi�h(j e (t)i � j e (0)i) = Z t0 eiT̂ t0=�hV̂ (t0)e�iT̂ t0=�hj e (t0)idt0; (29)and sin
e j e (0)i) = j (0)i = jiij e (t)i = jii � i�h Z t0 eiT̂ t0=�hV̂ (t0)e�iT̂ t0=�hj e (t0)idt0: (30)Using �rst order pertubation theory, the ket j e (t0)i is repla
ed by its initialvalue jii, so that the s
attering part of the wave fun
tion is given byj (1)(t)i = e�iT̂ t=�h Z t0 eiT̂ t0=�hV̂ (t0)e�iT̂ t0=�hjiidt0 (31)We 
an expand the s
attering wave fun
tion in terms of the energy normalizedfun
tions jk̂Ek; ti as j (1)(t)i = Z dEkdk̂fk̂Ek (t)jk̂Ek; ti; (32)and sin
ehk̂Ek; tj (1)(t)i = Z dE0kdk̂0fk̂0E0k(t)hk̂Ek; tjk̂0E0k ; ti= Z dE0kdk̂0fk̂0E0k(t)k0pk0kpk Æ(Ek �E0k)Æ(k̂ � k̂0) = fk̂Ek(t);(33)
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the expansion 
oeÆ
ents are given byfk̂Ek(t) = � i�h Z t0 hk̂Ek; tje�iT̂ t=�heiT̂ t0=�hV̂ (t0)e�iT̂ t0=�hiidt0= Z t0 he�i!ktk̂Ekje�iT̂ t=�heiT̂ t0=�hV̂ (t0)e�i!it0 iidt0= Z t0 he�iT̂ t0=�hei(T̂��h!k)t=�hk̂EkjV̂ (t0)e�i!it0iidt0= Z t0 ei(!k�!i)t0hk̂EkjV̂ (t0)iidt0: (34)In the ele
tri
 dipole approximation, the perturbation is given byV̂ (t) = E0e � �̂ 
os!t = E02 e � �̂(ei!t + e�i!t); (35)so that the expansion 
oeÆ
ients be
omefk̂Ek(t) = � iE02�h hk̂Ekje � �̂ii Z t0 ei(!ki+!)t0 + ei(!ki�!)t0dt0= �E02�h hk̂Ekje � �̂ii �ei(!ki+!)t � 1!ki + ! + ei(!ki�!)t � 1!ki � ! � : (36)Applying the rotating wave approximation, only the se
ond (resonant) term
ontributes, so thatfk̂Ek(t) = �E02�h hk̂Ekje � �̂iiei(!ki�!)t � 1!ki � != E0t2i�h hk̂Ekje � �̂iiei(!ki�!)t=2 � e�i(!ki�!)t=22i(!ki � !)t=2 ei(!ki�!)t=2= E0t2i�h hk̂Ekje � �̂ii sin
[(!ki � !)t=2℄ei(!ki�!)t=2: (37)3 Photodisso
iation 
ross se
tionThe transition probability per energy interval Pk̂Ek(t) for a transition from theinitial state to a s
attering state jk̂Ek; ti is given byPk̂Ek(t) = jhk̂Ek; tj (t)ij2 = jfk̂Ek(t)j2= E20t24�h2 jhk̂Ekje � �̂iij2 sin
2[(!ki � !)t=2℄: (38)Using the following representation for the Æ fun
tionÆ(x) = limt!1 t� sin
2[xt℄; (39)5



we get that the transition probability for large enough t is given byPk̂Ek(t) = �E20t2�h2 jhk̂Ekje � �̂iij2Æ(!ki � !): (40)The transition rate kk̂Ek is the time derivative of the transition probability, sothat kk̂Ek = �E202�h2 jhk̂Ekje � �̂iij2Æ(!ki � !): (41)Note that within this approximate model the transition rate is 
onstant in time.Consider a thin sli
e of area A and width dz in the sample. The mole
ule densityis �, so that the number of mole
ules in the sli
e is �Adz. The energy absorptionper disso
iating mole
ule is �h!ki, and the number of absorbing mole
ules pertime sli
e dt is kk̂Ekdt, so that the total energy 
hange dS in the sli
e is givenby dS = ��Adzkk̂Ekdt�h!ki: (42)By de�nition this is equal to the the volume of the sli
e, times the 
hange inenergy density dW , so thatdWdt = ���E20!ki2�h jhk̂Ekje � �̂iij2Æ(!ki � !); (43)and sin
e W = E20=2�o this isdWdt = ���W!ki�h�0 jhk̂Ekje � �̂iij2Æ(!ki � !): (44)Using the relations dWdt = dIdz and W = I
 ; (45)where 
 is the speed of the moving photon, we getdIdz = ���!ki�h�0
 jhk̂Ekje � �̂iij2Æ(!ki � !)I (46)so that the photodisso
iation 
ross se
tion �(!) would be�(!) = �!ki�h�0
 jhk̂Ekje � �̂iij2Æ(!ki � !): (47)However, sin
e ex
itation with an exa
t energy di�eren
e �h! is impossible, weintegrate over Ek to get the partial photodisso
iation 
ross se
tion for a transi-tion in dire
tion k̂: �(!) = �!�0
 jhk̂Ekje � �̂iij2: (48)
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