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1 Notational details, definition of functions

Define the inprodukt between two functions ¢(z) and ¢ (z) as

wwzfmwmwn 1)

the function ¢, (z) as
pa(2') = d(z — '), (2)
and the shorthand notation |z) = |¢,). Then, for arbitrary function

(ali) = [ de'er (@) = (o). 3)
The |z) are orthonormal
(ol = oo (2) = b(z — 2 (4)
and form a complete basis of the Hilbert space, since for arbitrary ¢ and ¢
[ dstintalor = [ astaloy o) = [ @ro@rv@ = @l 6)
so that [ dz|z)(z| = 1.

Define the functions |k) by their coordinate representation:
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These functions are orthonormal due to

(kK'Y = /dx<k|x>(x|k’) = /dx(x|k>*(x|k’> = %/dxeﬂk’*k)z =d(k — k).
(7)

(x|k) = etk (6)




Furthermore, they also form a basis for the Hilbert space, since

/dk|k><k| :/dk/dx|x)(x|k)/dx'(k|x')(m'|
= i/dk/dx/dx'|x>eik(9”_9”l)<x'|
/daz/daz|az z—2 a:|—/da:|a: i (@®)

And finally, the |k) are eigenkets of the momentum operator p. Postulate [z, p] =
ihl, then (z|[Z,plz’) = (x — ') {z|pz') = ih(z|z') = ihdé(x — '), which has as
solution (z|pz') = —ihV(z — :U’). Then

dz'[Vé(z — 2')]e’

(zlph) = / ' (alpay{a k) = F

hk .
zkz — d (S zkm — ikx
/ o \/ﬁe
— Tk :n|k 9)

and since the |z) form a complete basis, we can write p|k) = hk|k).

Extending this to three dimensions, we define

r) = [2)|y)l2), (10)
and similarly
k) = [ka)|ky)|E=). (11)

Hence, we get

(rfr') = (z|2')(yly) (=) = 0(z — 2")o(y —y')o(z — 2') = d(r = 1) (12)

and

(1K) = (aka) (yky) (2] is) = —— e (13)
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The |k) form of course again a complete space, since

/ﬁmwmp:/dkm k|/dkm k|/dkm

The three dimensional |k) are of course eigenfunctions of the momentum oper-
ator in all directions
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>
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(14)

Dalk) = ko k) a =z,y,2 = plk) = ik|k). (15)

In spherical coordinates (k, ¢, 0x) the volume element dk = k2dkdf<, and since

h2k2

E. =
k 2

— dEy, (16)

dE 1k k
= dE, = < k) H

dk = =2k = Kk =
ak = 12



the completeness condition reads

/dEkdk“k k| =1. (17)

ke = [0, (18)

we have an energy normalized function, for which

Thus, if we define

/dEde|ﬁEk)(12Ek| =1, (19)
and
(kB |k E}) = “ﬁa«u& é’?s(k ~K)
= “h‘/—fTﬁsuc ENo(k — k')
- “ﬁ%'a( —E?)o(k — &)
= kk*/\; (Ep — Ep)6(k — k') (20)

Of course, the energy normalized functions are also eigenfunctions of the three
dimensional momentum operator:

plkE;) = hk|kEy). (21)

2 Scattering wave function
Consider a time-dependent Hamiltonian
H(t)=T+V(t), (22)

where the time dependency is caused solely by the pertubation V(t). Assume
the system is initially in a bound eigenstate of T":

T)iy = hawli). (23)

The energy normalized continuum functions |k Ey) are also eigenfunctions of 7',

since )
h k2 .
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TIkEy) = §—M|kEk> KB = e REL). (24)
Define the time-dependent kets [i;#) and |kEk;t) by the time evolution of |i)
and |kEy):

list) = e”™it|i) and |kEy;t) = e |kE}) (25)




The total wave function |¢(¢)) must obey the Schrédinger equation
o d A
ih— ¢ (8)) = H(#)[(2))- (26)

Define the new kets [1h(t)) by propagating the total wave function back in time

with T _ B
[9(8)) = e T (1)) (27)
Then

ih%l@(t)) = e M=) () + e T H @) (1)) = e TV (1) T3 1))

(28)
Integrating both sides from 0 to ¢ gives
~ ~ t el ~ el ~
(| (2)) — [4(0))) = /0 TV (t)e T M (¢))dt (29)
and since [¢5(0))) = [¢(0)) = i)
~ i [t s~
[p(8)) = 1i) = ﬁ/ TV (e T/ (t")dt (30)
0

Using first order pertubation theory, the ket |J(t’ )) is replaced by its initial
value [i), so that the scattering part of the wave function is given by

' t sl A e arld
|¢(1) (t)) — efiTt/h/ eth /hV(tl)eszt /h|i>dtl (31)
0

We can expand the scattering wave function in terms of the energy normalized
functions |kEy;t) as

W) = [ dBudkfy, (0[KEw 1) (32)
and since

(KEw; 110 (1) = [ AEAR fy,p, (0(REws R By

EVE

= [ dELdK' fz, 1, () ——
[ ABLAR fiup (02

0(Ey, — Ep)o(k —K') = fip, (1),
(33)



the expansion coefficents are given by

; ¢ T ey ~ gl
i ()= —5 [ (KEytle T () T iy
0

t 7 crprgl A . ’
— / (67iwktEEk|€7iTt/heth /hV(tl)efzwit ’i)dtl
0

t . .
_ / <€_iTtl/h€i(T_hwk)t/hﬁEk |V(tl)€_iwitli>dtl
0

t
- / it (R |V (¢)i)de. (34)
0

In the electric dipole approximation, the perturbation is given by

A

E ) )
V(t) = Epe - frcoswt = 70e - ﬂ(eWt + eflwt), (35)

so that the expansion coefficients become

iE t , . ’
fip, (1) = 1273 (kEy|e - Nﬁ/ eilwnita)t’ o pilwni=w)t’ qy!
0
E, ellwnitw)t _ 1 gilwri—w)t _ 7
=—5 2 (kEye - fui) [ ot + o . (36)

Applying the rotating wave approximation, only the second (resonant) term
contributes, so that

i(wki—w)t -1
. — kE e - - =-
fie, (6 = ~ oo (R i) ——

FEot - ei(wki—w)t/Q _ e—i(wki—w)t/Q

— kE i(wki—w)t/Q
2ip, (KEkle - i) 2i(wri — w)t/2 ¢
E
- 20;5 (kEple - fui) sinc](wpi — w)t/2ei@mi=)t/2. (37)

3 Photodissociation cross section

The transition probability per energy interval Py g (t) for a transition from the

initial state to a scattering state |kEy; ) is given by

Py, (t) = [(kEy; tl0(0)* = |fie, (DI
E2 2
=2 |(kEy e - fui) | sinc?[(wp; — w)t/2]. (38)
Using the following representation for the § function
t 2
0(x) = tlggo—smc [x], (39)



we get that the transition probability for large enough ¢ is given by

TE2t, - N
Fip, (t) = WKkEHe )| * 0 (wgi — w). (40)
The transition rate kg, is the time derivative of the transition probability, so
that )
TE; | o~ Ny
s, = oo (KBile- ) 26(uni — w). (a1)
Note that within this approximate model the transition rate is constant in time.

Consider a thin slice of area A and width dz in the sample. The molecule density
is p, so that the number of molecules in the slice is pAdz. The energy absorption
per dissociating molecule is fiwy;, and the number of absorbing molecules per
time slice dt is kg g, di, so that the total energy change dS in the slice is given
by

ds = _pAde]}Ekdthwki- (42)

By definition this is equal to the the volume of the slice, times the change in
energy density dIW, so that
d E2wpi |«
d_Vf = —p 0 (KB fe - i) P (s — ), (43)

and since W = EZ /2¢, this is

dw TWwii |« Ny
G = PR KB i) 0w — ). (44)
Using the relations
dw  dI I
= ad W=- (45)

where ¢ is the speed of the moving photon, we get

dl TWEei A (2
-— = - kEg|e i — 1 4
14 EOC|< k| [L’L>| 5(&)]“ w) ( 6)

so that the photodissociation cross section o(w) would be

TWEi

o(w) = |(kEple - ui)|*6(wpi — w). (47)

" heoc
However, since excitation with an exact energy difference hw is impossible, we
integrate over Ej to get the partial photodissociation cross section for a transi-
tion in direction k:
TW, = a2
o(w) = —|(kEg|e - @ui)|°. (48)
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