

Fermi's Golden Rule for bound-continuum transitions

G.W.M. Vissers

February 21, 2002

1 Notational details, definition of functions

Define the inprodukt between two functions $\phi(x)$ and $\psi(x)$ as

$$\langle \phi | \psi \rangle = \int dx \phi^*(x) \psi(x), \quad (1)$$

the function $\varphi_x(x)$ as

$$\varphi_x(x') \equiv \delta(x - x'), \quad (2)$$

and the shorthand notation $|x\rangle \equiv |\phi_x\rangle$. Then, for arbitrary function ψ

$$\langle x | \psi \rangle = \int dx' \varphi_x^*(x') \psi(x') = \psi(x). \quad (3)$$

The $|x\rangle$ are orthonormal

$$\langle x | x' \rangle = \varphi_{x'}(x) = \delta(x - x') \quad (4)$$

and form a complete basis of the Hilbert space, since for arbitrary ϕ and ψ

$$\int dx \langle \phi | x \rangle \langle x | \psi \rangle = \int dx \langle x | \phi \rangle^* \langle x | \psi \rangle = \int dx \phi(x)^* \psi(x) = \langle \phi | \psi \rangle, \quad (5)$$

so that $\int dx |x\rangle \langle x| = \hat{1}$.

Define the functions $|k\rangle$ by their coordinate representation:

$$\langle x | k \rangle = \frac{1}{\sqrt{2\pi}} e^{ikx}. \quad (6)$$

These functions are orthonormal due to

$$\langle k | k' \rangle = \int dx \langle k | x \rangle \langle x | k' \rangle = \int dx \langle x | k \rangle^* \langle x | k' \rangle = \frac{1}{2\pi} \int dx e^{i(k'-k)x} = \delta(k - k'). \quad (7)$$

Furthermore, they also form a basis for the Hilbert space, since

$$\begin{aligned}
\int dk |k\rangle \langle k| &= \int dk \int dx |x\rangle \langle x|k\rangle \int dx' \langle k|x'\rangle \langle x'| \\
&= \frac{1}{2\pi} \int dk \int dx \int dx' |x\rangle e^{ik(x-x')} \langle x'| \\
&= \int dx \int dx' |x\rangle \delta(x-x') \langle x'| = \int dx |x\rangle \langle x| = \hat{1}.
\end{aligned} \tag{8}$$

And finally, the $|k\rangle$ are eigenkets of the momentum operator \hat{p} . Postulate $[\hat{x}, \hat{p}] = i\hbar\hat{1}$, then $\langle x|[\hat{x}, \hat{p}]x'\rangle = \langle x|\hat{p}x'\rangle = (x-x')\langle x|\hat{p}x'\rangle = i\hbar\langle x|x'\rangle = i\hbar\delta(x-x')$, which has as solution $\langle x|\hat{p}x'\rangle = -i\hbar\nabla\delta(x-x')$. Then

$$\begin{aligned}
\langle x|\hat{p}k\rangle &= \int dx' \langle x|\hat{p}x'\rangle \langle x'|k\rangle = -\frac{i\hbar}{\sqrt{2\pi}} \int dx' [\nabla\delta(x-x')] e^{ikx'} \\
&= -\frac{i\hbar}{\sqrt{2\pi}} \int dx' \delta(x-x') \nabla e^{ikx'} = \frac{\hbar k}{\sqrt{2\pi}} \int dx' \delta(x-x') e^{ikx'} = \frac{\hbar k}{\sqrt{2\pi}} e^{ikx} \\
&= \hbar k \langle x|k\rangle,
\end{aligned} \tag{9}$$

and since the $|x\rangle$ form a complete basis, we can write $\hat{p}|k\rangle = \hbar k|k\rangle$.

Extending this to three dimensions, we define

$$|\mathbf{r}\rangle \equiv |x\rangle|y\rangle|z\rangle, \tag{10}$$

and similarly

$$|\mathbf{k}\rangle \equiv |k_x\rangle|k_y\rangle|k_z\rangle. \tag{11}$$

Hence, we get

$$\langle \mathbf{r}|\mathbf{r}'\rangle = \langle x|x'\rangle \langle y|y'\rangle \langle z|z'\rangle = \delta(x-x')\delta(y-y')\delta(z-z') = \delta(\mathbf{r}-\mathbf{r}') \tag{12}$$

and

$$\langle \mathbf{r}|\mathbf{k}\rangle = \langle x|k_x\rangle \langle y|k_y\rangle \langle z|k_z\rangle = \frac{1}{\sqrt{8\pi^3}} e^{i\mathbf{k}\cdot\mathbf{r}}. \tag{13}$$

The $|\mathbf{k}\rangle$ form of course again a complete space, since

$$\int d\mathbf{k} |\mathbf{k}\rangle \langle \mathbf{k}| = \int dk_x |k_x\rangle \langle k_x| \int dk_y |k_y\rangle \langle k_y| \int dk_z |k_z\rangle \langle k_z| = \hat{1}\hat{1}\hat{1} = \hat{1}. \tag{14}$$

The three dimensional $|\mathbf{k}\rangle$ are of course eigenfunctions of the momentum operator in all directions

$$\hat{p}_\alpha |\mathbf{k}\rangle = \hbar k_\alpha |\mathbf{k}\rangle \quad \alpha = x, y, z \quad \Rightarrow \quad \hat{\mathbf{p}}|\mathbf{k}\rangle = \hbar \mathbf{k}|\mathbf{k}\rangle. \tag{15}$$

In spherical coordinates (k, ϕ_k, θ_k) the volume element $d\mathbf{k} = k^2 dk d\hat{\mathbf{k}}$, and since

$$E_k = \frac{\hbar^2 k^2}{2\mu} \Rightarrow dE_k = \left(\frac{dE_k}{dk} \right) dk = \frac{\hbar^2 k}{\mu} dk \Rightarrow k^2 dk = \frac{\mu k}{\hbar^2} dE_k, \tag{16}$$

the completeness condition reads

$$\int dE_k d\hat{\mathbf{k}} \frac{\mu k}{\hbar^2} |\mathbf{k}\rangle \langle \mathbf{k}| = \hat{1}. \quad (17)$$

Thus, if we define

$$|\hat{\mathbf{k}}E_k\rangle \equiv \sqrt{\frac{\mu k}{\hbar^2}} |\mathbf{k}\rangle, \quad (18)$$

we have an energy normalized function, for which

$$\int dE_k d\hat{\mathbf{k}} |\hat{\mathbf{k}}E_k\rangle \langle \hat{\mathbf{k}}E_k| = \hat{1}, \quad (19)$$

and

$$\begin{aligned} \langle \hat{\mathbf{k}}E_k | \hat{\mathbf{k}}' E'_k \rangle &= \frac{\mu \sqrt{kk'}}{\hbar^2} \langle \mathbf{k} | \mathbf{k}' \rangle = \frac{\mu \sqrt{kk'}}{\hbar^2} \delta(\mathbf{k} - \mathbf{k}') \\ &= \frac{\mu \sqrt{kk'}}{\hbar^2} \frac{1}{k^2} \delta(k - k') \delta(\hat{\mathbf{k}} - \hat{\mathbf{k}}') \\ &= \frac{\mu \sqrt{kk'}}{\hbar^2 k^2} 2k' \delta(k^2 - k'^2) \delta(\hat{\mathbf{k}} - \hat{\mathbf{k}}') \\ &= \frac{k' \sqrt{k'}}{k \sqrt{k}} \delta(E_k - E'_k) \delta(\hat{\mathbf{k}} - \hat{\mathbf{k}}') \end{aligned} \quad (20)$$

Of course, the energy normalized functions are also eigenfunctions of the three dimensional momentum operator:

$$\hat{\mathbf{p}} |\hat{\mathbf{k}}E_k\rangle = \hbar \mathbf{k} |\hat{\mathbf{k}}E_k\rangle. \quad (21)$$

2 Scattering wave function

Consider a time-dependent Hamiltonian

$$\hat{H}(t) = \hat{T} + \hat{V}(t), \quad (22)$$

where the time dependency is caused solely by the perturbation $\hat{V}(t)$. Assume the system is initially in a bound eigenstate of \hat{T} :

$$\hat{T}|i\rangle = \hbar\omega_i |i\rangle. \quad (23)$$

The energy normalized continuum functions $|\hat{\mathbf{k}}E_k\rangle$ are also eigenfunctions of \hat{T} , since

$$\hat{T}|\hat{\mathbf{k}}E_k\rangle = \frac{\hat{p}^2}{2\mu} |\hat{\mathbf{k}}E_k\rangle = \frac{\hbar^2 k^2}{2\mu} |\hat{\mathbf{k}}E_k\rangle \equiv \hbar\omega_k |\hat{\mathbf{k}}E_k\rangle. \quad (24)$$

Define the time-dependent kets $|i; t\rangle$ and $|\hat{\mathbf{k}}E_k; t\rangle$ by the time evolution of $|i\rangle$ and $|\hat{\mathbf{k}}E_k\rangle$:

$$|i; t\rangle \equiv e^{-i\omega_i t} |i\rangle \quad \text{and} \quad |\hat{\mathbf{k}}E_k; t\rangle \equiv e^{-i\omega_k t} |\hat{\mathbf{k}}E_k\rangle \quad (25)$$

The total wave function $|\psi(t)\rangle$ must obey the Schrödinger equation

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = \hat{H}(t) |\psi(t)\rangle. \quad (26)$$

Define the new kets $|\tilde{\psi}(t)\rangle$ by propagating the total wave function back in time with \hat{T} :

$$|\tilde{\psi}(t)\rangle \equiv e^{i\hat{T}t/\hbar} |\psi(t)\rangle. \quad (27)$$

Then

$$i\hbar \frac{d}{dt} |\tilde{\psi}(t)\rangle = e^{i\hat{T}t/\hbar} (-\hat{T}) |\psi(t)\rangle + e^{i\hat{T}t/\hbar} \hat{H}(t) |\psi(t)\rangle = e^{i\hat{T}t/\hbar} \hat{V}(t) e^{-i\hat{T}t/\hbar} |\tilde{\psi}(t)\rangle \quad (28)$$

Integrating both sides from 0 to t gives

$$i\hbar (|\tilde{\psi}(t)\rangle - |\tilde{\psi}(0)\rangle) = \int_0^t e^{i\hat{T}t'/\hbar} \hat{V}(t') e^{-i\hat{T}t'/\hbar} |\tilde{\psi}(t')\rangle dt', \quad (29)$$

and since $|\tilde{\psi}(0)\rangle = |\psi(0)\rangle = |i\rangle$

$$|\tilde{\psi}(t)\rangle = |i\rangle - \frac{i}{\hbar} \int_0^t e^{i\hat{T}t'/\hbar} \hat{V}(t') e^{-i\hat{T}t'/\hbar} |\tilde{\psi}(t')\rangle dt'. \quad (30)$$

Using first order perturbation theory, the ket $|\tilde{\psi}(t')\rangle$ is replaced by its initial value $|i\rangle$, so that the scattering part of the wave function is given by

$$|\psi^{(1)}(t)\rangle = e^{-i\hat{T}t/\hbar} \int_0^t e^{i\hat{T}t'/\hbar} \hat{V}(t') e^{-i\hat{T}t'/\hbar} |i\rangle dt' \quad (31)$$

We can expand the scattering wave function in terms of the energy normalized functions $|\hat{\mathbf{k}}E_k; t\rangle$ as

$$|\psi^{(1)}(t)\rangle = \int dE_k d\hat{\mathbf{k}} f_{\hat{\mathbf{k}}E_k}(t) |\hat{\mathbf{k}}E_k; t\rangle, \quad (32)$$

and since

$$\begin{aligned} \langle \hat{\mathbf{k}}E_k; t | \psi^{(1)}(t) \rangle &= \int dE'_k d\hat{\mathbf{k}}' f_{\hat{\mathbf{k}}'E'_k}(t) \langle \hat{\mathbf{k}}E_k; t | \hat{\mathbf{k}}'E'_k; t \rangle \\ &= \int dE'_k d\hat{\mathbf{k}}' f_{\hat{\mathbf{k}}'E'_k}(t) \frac{k' \sqrt{k'}}{k \sqrt{k}} \delta(E_k - E'_k) \delta(\hat{\mathbf{k}} - \hat{\mathbf{k}}') = f_{\hat{\mathbf{k}}E_k}(t), \end{aligned} \quad (33)$$

the expansion coefficients are given by

$$\begin{aligned}
f_{\hat{\mathbf{k}}E_k}(t) &= -\frac{i}{\hbar} \int_0^t \langle \hat{\mathbf{k}}E_k; t | e^{-i\hat{T}t/\hbar} e^{i\hat{T}t'/\hbar} \hat{V}(t') e^{-i\hat{T}t'/\hbar} i \rangle dt' \\
&= \int_0^t \langle e^{-i\omega_k t} \hat{\mathbf{k}}E_k | e^{-i\hat{T}t/\hbar} e^{i\hat{T}t'/\hbar} \hat{V}(t') e^{-i\omega_i t'} i \rangle dt' \\
&= \int_0^t \langle e^{-i\hat{T}t'/\hbar} e^{i(\hat{T}-\hbar\omega_k)t/\hbar} \hat{\mathbf{k}}E_k | \hat{V}(t') e^{-i\omega_i t'} i \rangle dt' \\
&= \int_0^t e^{i(\omega_k - \omega_i)t'} \langle \hat{\mathbf{k}}E_k | \hat{V}(t') i \rangle dt'. \tag{34}
\end{aligned}$$

In the electric dipole approximation, the perturbation is given by

$$\hat{V}(t) = E_0 \mathbf{e} \cdot \hat{\boldsymbol{\mu}} \cos \omega t = \frac{E_0}{2} \mathbf{e} \cdot \hat{\boldsymbol{\mu}} (e^{i\omega t} + e^{-i\omega t}), \tag{35}$$

so that the expansion coefficients become

$$\begin{aligned}
f_{\hat{\mathbf{k}}E_k}(t) &= -\frac{iE_0}{2\hbar} \langle \hat{\mathbf{k}}E_k | \mathbf{e} \cdot \hat{\boldsymbol{\mu}} i \rangle \int_0^t e^{i(\omega_{ki} + \omega)t'} + e^{i(\omega_{ki} - \omega)t'} dt' \\
&= -\frac{E_0}{2\hbar} \langle \hat{\mathbf{k}}E_k | \mathbf{e} \cdot \hat{\boldsymbol{\mu}} i \rangle \left[\frac{e^{i(\omega_{ki} + \omega)t} - 1}{\omega_{ki} + \omega} + \frac{e^{i(\omega_{ki} - \omega)t} - 1}{\omega_{ki} - \omega} \right]. \tag{36}
\end{aligned}$$

Applying the rotating wave approximation, only the second (resonant) term contributes, so that

$$\begin{aligned}
f_{\hat{\mathbf{k}}E_k}(t) &= -\frac{E_0}{2\hbar} \langle \hat{\mathbf{k}}E_k | \mathbf{e} \cdot \hat{\boldsymbol{\mu}} i \rangle \frac{e^{i(\omega_{ki} - \omega)t} - 1}{\omega_{ki} - \omega} \\
&= \frac{E_0 t}{2i\hbar} \langle \hat{\mathbf{k}}E_k | \mathbf{e} \cdot \hat{\boldsymbol{\mu}} i \rangle \frac{e^{i(\omega_{ki} - \omega)t/2} - e^{-i(\omega_{ki} - \omega)t/2}}{2i(\omega_{ki} - \omega)t/2} e^{i(\omega_{ki} - \omega)t/2} \\
&= \frac{E_0 t}{2i\hbar} \langle \hat{\mathbf{k}}E_k | \mathbf{e} \cdot \hat{\boldsymbol{\mu}} i \rangle \text{sinc}[(\omega_{ki} - \omega)t/2] e^{i(\omega_{ki} - \omega)t/2}. \tag{37}
\end{aligned}$$

3 Photodissociation cross section

The transition probability per energy interval $P_{\hat{\mathbf{k}}E_k}(t)$ for a transition from the initial state to a scattering state $|\hat{\mathbf{k}}E_k; t\rangle$ is given by

$$\begin{aligned}
P_{\hat{\mathbf{k}}E_k}(t) &= |\langle \hat{\mathbf{k}}E_k; t | \psi(t) \rangle|^2 = |f_{\hat{\mathbf{k}}E_k}(t)|^2 \\
&= \frac{E_0^2 t^2}{4\hbar^2} |\langle \hat{\mathbf{k}}E_k | \mathbf{e} \cdot \hat{\boldsymbol{\mu}} i \rangle|^2 \text{sinc}^2[(\omega_{ki} - \omega)t/2]. \tag{38}
\end{aligned}$$

Using the following representation for the δ function

$$\delta(x) = \lim_{t \rightarrow \infty} \frac{t}{\pi} \text{sinc}^2[xt], \tag{39}$$

we get that the transition probability for large enough t is given by

$$P_{\hat{\mathbf{k}}E_k}(t) = \frac{\pi E_0^2 t}{2\hbar^2} |\langle \hat{\mathbf{k}}E_k | \mathbf{e} \cdot \hat{\boldsymbol{\mu}} i \rangle|^2 \delta(\omega_{ki} - \omega). \quad (40)$$

The transition rate $k_{\hat{\mathbf{k}}E_k}$ is the time derivative of the transition probability, so that

$$k_{\hat{\mathbf{k}}E_k} = \frac{\pi E_0^2}{2\hbar^2} |\langle \hat{\mathbf{k}}E_k | \mathbf{e} \cdot \hat{\boldsymbol{\mu}} i \rangle|^2 \delta(\omega_{ki} - \omega). \quad (41)$$

Note that within this approximate model the transition rate is constant in time.

Consider a thin slice of area A and width dz in the sample. The molecule density is ρ , so that the number of molecules in the slice is ρAdz . The energy absorption per dissociating molecule is $\hbar\omega_{ki}$, and the number of absorbing molecules per time slice dt is $k_{\hat{\mathbf{k}}E_k} dt$, so that the total energy change dS in the slice is given by

$$dS = -\rho Adz k_{\hat{\mathbf{k}}E_k} dt \hbar \omega_{ki}. \quad (42)$$

By definition this is equal to the the volume of the slice, times the change in energy density dW , so that

$$\frac{dW}{dt} = -\rho \frac{\pi E_0^2 \omega_{ki}}{2\hbar} |\langle \hat{\mathbf{k}}E_k | \mathbf{e} \cdot \hat{\boldsymbol{\mu}} i \rangle|^2 \delta(\omega_{ki} - \omega), \quad (43)$$

and since $W = E_0^2/2\epsilon_0$ this is

$$\frac{dW}{dt} = -\rho \frac{\pi W \omega_{ki}}{\hbar \epsilon_0} |\langle \hat{\mathbf{k}}E_k | \mathbf{e} \cdot \hat{\boldsymbol{\mu}} i \rangle|^2 \delta(\omega_{ki} - \omega). \quad (44)$$

Using the relations

$$\frac{dW}{dt} = \frac{dI}{dz} \quad \text{and} \quad W = \frac{I}{c}, \quad (45)$$

where c is the speed of the moving photon, we get

$$\frac{dI}{dz} = -\rho \frac{\pi \omega_{ki}}{\hbar \epsilon_0 c} |\langle \hat{\mathbf{k}}E_k | \mathbf{e} \cdot \hat{\boldsymbol{\mu}} i \rangle|^2 \delta(\omega_{ki} - \omega) I \quad (46)$$

so that the photodissociation cross section $\sigma(\omega)$ would be

$$\sigma(\omega) = \frac{\pi \omega_{ki}}{\hbar \epsilon_0 c} |\langle \hat{\mathbf{k}}E_k | \mathbf{e} \cdot \hat{\boldsymbol{\mu}} i \rangle|^2 \delta(\omega_{ki} - \omega). \quad (47)$$

However, since excitation with an exact energy difference $\hbar\omega$ is impossible, we integrate over E_k to get the partial photodissociation cross section for a transition in direction $\hat{\mathbf{k}}$:

$$\sigma(\omega) = \frac{\pi \omega}{\epsilon_0 c} |\langle \hat{\mathbf{k}}E_k | \mathbf{e} \cdot \hat{\boldsymbol{\mu}} i \rangle|^2. \quad (48)$$