
Photodisso
iationG.W.M. VissersO
tober 22, 20021 Bound-bound transitionsConsider a system that is des
ribed by a Hamiltonian with a time independentpart Ĥ0 and a time dependent perturbation V (t):Ĥ = Ĥ0 + V (t): (1)Furthermore, assume that the eigenvalues and eigenfun
tions of Ĥ0 are known:Ĥ0jni = �njni; (2)and that the jni are bound states, so that we 
an writehnjmi = Ænm: (3)The obje
tive is to solve the time dependent S
hr�odinger equationi~ ddt (t) = Ĥ (t); (4)subje
t to the 
ondition that the initial state of the system is given by one ofthe bound states:  (0) = j ii: (5)We 
an now expand  (t) in terms of the bound states of Ĥ0, using time depen-dent expansion 
oeÆ
ients  (t) =Xn 
n(t)jni; (6)where we know from 
ondition (5) that
n(0) = Æni: (7)1



Inserting expansion (6) and Hamiltonian (1) into the S
hr�odinger equation (4)gives us i~ ddtXn 
n(t)jni =Xm �m
m(t)jmi+ V (t)
m(t)jmi: (8)If we proje
t from the left with a �nal state h f j, we get (using the orthonor-mality of the bound states)i~ ddt
f (t) = �f 
f (t) +Xm Vfm(t)
m(t); (9)where we have de�ned the V matrix with elementsVnm(t) � hn jV (t) jmi: (10)If we now write the expansion 
oeÆ
ients 
f (t) as 1
f (t) = bf (t)e� i~ �f t; (11)the left hand side of equation (9) turns intoi~d
f (t)dt = i~dbf (t)dt e� i~ �f t + i~bf (t) � ddte� i~ �f t�= i~dbf (t)dt e� i~ �f t + �fbf (t)e� i~ �f t= i~dbf (t)dt e� i~ �f t + �f
f (t): (12)Inserting this result in equation (9) leads toi~dbf (t)dt e� i~ �f t =Xm Vfm(t)bm(t)e� i~ �mt; (13)so that i~dbf (t)dt =Xm Vfm(t)bm(t)ei!fmt; (14)with !fm = (�f � �m)=~.We now try to solve this equation, using some perturbation theory. If we writeV as �W for some � 2 [0; 1℄, expand the bf (t) in terms of this perturbationparameter: bf (t) = b(0)f (t) + �b(1)f (t) + : : : (15)1In the 
ase that V (t) = 0, the solution to equation (9) is easily found to be 
f (t) =
f (0) exp[� i~ �f t℄ . 2



and negle
t higher order terms, equation (14) readsi~ ddt hb(0)f (t) + �b(1)f (t)i =Xm �W fm hb(0)m (t) + �b(1)m (t)i ei!fmt: (16)Colle
ting equal powers of � on both sides of the equation gives us�0 : i~ ddtb(0)f (t) = 0; (17)�1 : i~ ddtb(1)f (t) = Xm W fm(t)b(0)m (t)ei!fmt: (18)Sin
e we know from equation (7) that 
m(0) = Æmi, and be
ause the b(0)m do not
hange with time, we �nd that b(0)m (t) = b(0)m (0) = Æmi, and hen
ei~ ddt b(1)f (t) = W fi (t)ei!fit: (19)At t = 0, the system is unperturbed, so that bf (0) = b(0)f (0), and b(1)f (0) = 0.Hen
e we 
an write the solution to equation (19) asi~b(1)f (t) = Z t0 W fi (t0)ei!fit0dt0; (20)so that for � = 1 b(1)f (t) = � i~ Z t0 Vfi(t0)ei!fit0dt0: (21)Now 
onsider the 
ase where the time dependent perturbation V (t) is 
ausedby a photon: V (t) = E(t) � � = E0 � � 
os!t (! > 0); (22)where E0 is the ele
tri
 �eld ve
tor asso
iated with the photon, and � is thetransition dipole ve
tor operator. De�ning Vfi = h f jE0 � � j ii and rewriting
os!t as 12 (exp[i!t℄ + exp[�i!t℄), we see that the 
oeÆ
ients b(1)f (t) are givenby b(1)f (t) = � i~ Z t0 Vfi 12 �ei!t0 + e�i!t0� ei!fit0dt0= � i2~Vfi Z t0 �ei(!fi+!)t0 + ei(!fi�!)t0� dt0= � 12~Vfi �ei(!fi+!)t � 1!fi + ! + ei(!fi�!)t � 1!fi � ! � : (23)Sin
e we are looking at an absorption pro
ess, !fi = (�f � �i)=~ > 0, so thatthe se
ond (resonant) term of equation (23) be
omes mu
h larger than the �rst3



(anti-resonant) term if ! � !fi. So we 
an introdu
e another approximation(\rotating wave approximation"), that negle
ts the anti-resonant term. Intro-du
ing �! � !fi � !, we 
an writeb(1)f (t) = � 12~Vfi ei�!t � 1�!= � i~Vfi ei�!t=2 � e�i�!t=22i�! ei�!t=2= � i~Vfi sin(�!t=2)�! ei�!t=2= � i~Vfi sin
 (�!t=2) t2ei�!t=2; (24)
where we have introdu
ed the sin
 fun
tion: sin
x = sinx=x. The �nal wavefun
tion then reads (t) =Xf 
f (t)j fi=Xf bf (t)e� i~ �f tj fi=Xf [b(0)f (t) + b(1)f (t)℄e� i~ �f tj fi=Xf [Æfie�i!f t + b(1)f (t)℄e� i~ �f tj fi= e�i!itj ii+Xf b(1)f (t)e� i~ �f tj fi (25)
Hen
e, the probability of being in a �nal state f 6= i after a time t is given byPf (t) = jh f j (t)ij2= jb(1)f (t)j2= t24~2 jVfi j2 sin
2(�!t=2): (26)A representation of the Æ-fun
tion is given byÆ(x) = lim�!0 �� sin2(x=�)x2= limt!1 1�t sin2(xt)x2= limt!1 t� sin
2(xt); (27)
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so that for suÆ
iently large t we 
an writePf (t) = �4~2 jVfi j2Æ(�!=2)t; (28)and, sin
e Æ(�x) = j�j�1Æ(x)Pf (t) = �2~2 jVfij2Æ(�!)t; (29)In equation (29), t must be large enough to justify the use of the Æ-fun
tion.On the other hand, a large t means a large transition probability, whi
h in turnmeans a large jb(1)f (t)j, so that the �rst-order perturbation approa
h breaksdown. Hen
e, equation (29) is only valid for a limited range of time.The question is now how to derive a formula for the 
ross se
tion from thetransition probability equation (29). To that end we look at a one-dimensional
ase, and de�ne an energy density at point x and time t: W (x; t). The totalamount of energy at time t up to point x is denoted by N(x; t):N(x; t) = Z x�1 dx0W (x0; t): (30)Assuming that the energy is 
oming from a sour
e (or going into a sink) S(x; t),and denoting the intensity at point x, or energy 
ux through x, by I(x; t), we
an 
onstru
t an energy balan
e��tN(x; t) = �I(x; t) + Z x�1 dx0S(x0; t): (31)Hen
e, the energy density 
hanges in time as��tW (x; t) = ��t ��xN(x; t) = ��x ��tN(x; t) = S(x; t)� ��xI(x; t): (32)Now 
onsider the 
ase where absorption is weak, so that S(x; t) is approximatelyzero. We 
ompute the speed at whi
h we have to 
hange x in time in su
h away that the total amount of energy up to x stays the same:ddtN(x(t); t) = dx(t)dt ��xN(x(t); t) + ��tN(x(t); t)= v(t)W (x(t); t) � I(x(t); t) = 0: (33)However, this speed is exa
tly the speed of the moving photon, and hen
e v(t)is 
onstant and equal to the speed of light 
, so that we getW (x; t) = I(x; t)
 : (34)5



On the other hand, when absorption is weak, then the energy density is approx-imately 
onstant in time. Then��tW (x; t) = 0 ) S(x; t) = ��xI(x; t): (35)From Beer's law, we know that I(x) = I0 exp[��(!)�x℄, with � being themole
ule density and �(!) the frequen
y dependent 
ross se
tion, so thatS(x) = ��(!)�I(x): (36)Ba
k in the real world, we 
an write the transition rate from j ii to j fi askfi = ��tPf (t) = �2~2 jVfi j2Æ(�!): (37)Write the ele
tri
 �eld ve
tor as E0 = E0e, with jej = 1, and de�ne the matrixelements M fi � h f j e � � j ii, then equation (37) turns intokfi = �E202~2 jM fi j2Æ(�!): (38)The average energy density of the photon is given by W = �0E20=2, and sin
ewe know from equation (34) that W = I=
, we 
an rewrite this askfi = �I~2
�0 jM fi j2Æ(�!): (39)The total absorption is proportional to the produ
t of the transition rate timesthe amount of energy per transition, and the density of mole
ules:S(x) = �kfi~!fi�: (40)Using equation (36) and �lling in the expression for the rate 
onstant we get��(!)�I = ��I!fi�~
�0 jM fi j2Æ(�!) (41)so that the 
ross se
tion is given by�(!) = �!fi~
�0 jM fi j2Æ(!fi � !): (42)2 Bound-
ontinuum transitionsThe derivation of the expressions from the previous se
tion all rely on the fa
tthat the states jni of the system 
an be normalized, see equation (3). Clearlyfor 
ontinuum states, this is no longer possible, sin
e these states behave like6



free waves for R!1 instead of de
aying to zero. Hen
e we must pro
eed in adi�erent fashion to extend the theory to bound-
ontinuum transitions. To thatend, we de�ne the fun
tion 'x(x0) = Æ(x� x0); (43)and the proje
tion hxj i = ('x;  ) (44)with (�;  ) = Z ��(x) (x)dx: (45)Working out equation (44) giveshxj i = Z '�x(x0) (x0)dx0 = Z Æ(x � x0) (x0)dx0 =  (x); (46)and for the spe
ial 
ase  = 'x0 , this readshxjx0i = 'x0(x) = Æ(x0 � x): (47)All fun
tions  
an be expanded in terms of jxi � 'x:hxj i =  (x) = Z Æ(x � x0) (x)0dx0 = Z  (x0)'x(x0)dx0 = Z  (x0)hxjx0idx0= hxj Z  (x0)jx0idx0i: (48)From this expression we see thatj i = Z  (x)jxidx; (49)and thus h j = Z  �(x)hx jdx: (50)Using these expression for expansion of a fun
tion, we see that for arbitrary �and  we haveh� j �Z jxihx jdx� j i = Z dx0 Z dx00��(x0) (x00) Z dxhx0jxihxjx00i= Z dx0 Z dx00��(x0) (x00) Z dxÆ(x � x0)Æ(x00 � x)= Z dx0 Z dx00��(x0) (x00)Æ(x00 � x0)= Z dx0��(x0) (x0)= h�j i; (51)7



so that the operator R jxihx jdx = 1̂. De�ne the plane waves j ki byhxj ki = 1p2� eikx: (52)Using the 
losure of the jxi, we 
an writeh kj k0i = Z dxh k0jxihxj ki = Z dxhxj k0i�hxj ki = 12� Z dxei(k�k0)x= Æ(k0 � k): (53)The j ki also 
lose to identity, sin
e applying R dkj kih k j to an arbitrary fun
tion gives �Z dkj kih k j� j i = Z dk Z dxjxihxj ki Z dx0h kjx0ihx0j i= 12� Z dk Z dxjxieikx Z dx0e�ikx0 (x0)= 12� Z dk Z dxjxi Z dx0eik(x�x0) (x0)= Z dxjxi Z dx0Æ(x0 � x) (x0)= Z dx (x)jxi= j i:
(54)

The plane waves are eigenfun
tions of the momentum operator p̂:2hx j p̂ j ki = Z dx0hx j p̂ jx0ihx0j ki= �i~p2� Z dx0 ��xÆ(x0 � x)eikx0= �i~p2� ��xeikx= ~k 1p2�eikx= ~khxj ki; (55)
so that p̂j ki = ~kj ki. Of 
ourse, the e�e
t of the kineti
 energy operatorT̂ = p̂2=2� on a plane wave is then given byT̂ j ki = ~2k22� j ki � ~!kj ki: (56)2Postulate: [x̂; p̂℄ = i~. Then h x j [x̂; p̂℄ jx0i = i~h xjx0i = i~Æ(x0 � x). But alsoh x j [x̂; p̂℄ jx0i = h x j x̂p̂� p̂x̂ jx0i = (x� x0)h x j p̂ jx0i, so that (x� x0)h x j p̂ jx0i = i~Æ(x� x0),with solution h x j p̂ jx0i = �i~ ��x Æ(x0 � x). 8



We 
an extend this to three dimensions, de�ningjki = j kxij kyij kzi and j ri = jxij yij zi; (57)so that, analogous to the one-dimensional 
ase, we 
an writeh rjki = 1p2� eikxx 1p2� eikyy 1p2�eikzz = 1(2�) 32 eik�r; (58)and sin
eZ drj rih r j = Z dxjxihx j Z dyj yih y j Z dzj zih z j = 1̂1̂1̂ = 1̂; (59)we 
an also derive thathkjk0i = Æ(k0 � k) and Z dkjkihk j = 1̂: (60)The e�e
t of the kineti
 energy operator 
an easily be derived, sin
eT̂ jki = 12�(p̂2x + p̂2y + p̂2z)jki= ~22�(k2x + k2y + k2z)jki= ~2k22� jki; (= ~!kjki) (61)where k is the length of k.Consider a two-part system with a time-independent Hamiltonian Ĥ = T̂ +V , where V is the intera
tion potential. We 
an write down the S
hr�odingerequations i~ ��t (t) = Ĥ (t); (62)i~ ��t 0(t) = T̂ 0(t); (63)and their formal solutions (t) = e�iĤ(t�t0)=~ (t0); (64) 0(t) = e�iT̂ (t�t0)=~ 0(t0): (65)If this system is a s
attering system, then the two parts are in�nitely separatedwhen t! �1, and the intera
tion potential is then zero. Hen
e, the two wavefun
tions must be the same, so thatlimt!�1 jj (t)�  0(t)jj = 0: (66)9



Substituting the formal solutions from equations (64) and (65) giveslimt!�1 jje�iĤ(t�t0)=~ (t0)� e�iT̂ (t�t0)=~ 0(t0)jj =limt!�1 jje�iĤ(t�t0)=~[ (t0)� eiĤ(t�t0)=~e�iT̂ (t�t0)=~ 0(t0)℄jj =limt!�1 jj (t0)� eiĤ(t�t0)=~e�iT̂ (t�t0)=~ 0(t0)jj = 0; (67)and thus  (t0) = limt!�1 eiĤt=~e�iT̂ t=~ 0(t0): (68)The operator limt!�1 exp[iĤt=~℄ exp[�iT̂ t=~℄ is 
alled the M�ller wave opera-tor, and is denoted by 
+. This operator holds the boundary 
onditions for thewave fun
tions sin
e it spe
i�es what the system must look like: going ba
k intime with the unperturbed Hamiltonian (until the system 
onsists of free parti-
les) and then forward again with the perturbation turned on. Sin
e equation(68) holds for any t0, we 
an write (t) = 
+ 0(t): (69)Writing out the exponent of T̂ working on a plane wave jki giveseT̂ jki = 1Xj=0 1j! T̂ j jki = 1Xj=0 1j! (~!k)j jki = e~!k jki; (70)so that operating with the M�ller operator on a plane wave gives
+jki = limt!�1 eiĤt=~e�iT̂ t=~jki = limt!�1 ei(Ĥ�~!k)t=~jki: (71)Using the relation 3 limt!�1 f(t) = lim�!0+ Z 0�1 �e�tf(t)dt; (72)3Suppose that limt!�1 f(t) exists. Then, split the integral into two parts:lim�!0+ �Z T�1 � exp[�t℄f(t)dt + Z 0T � exp[�t℄f(t)dt�For every �nite T , the se
ond term is zero if f(t) is �nite, sin
e � goes to zero. Sin
elimt!�1 f(t) exists, we 
an get arbitrarily 
lose to the limiting value of f , by 
hoosing asmall enough T , so that f is approximately 
onstant over the integration range. Denotingthis limit by f(�1), we then getlim�!0+ f(�1) Z T�1 � exp[�t℄dt = f(�1) lim�!0+ exp[�t℄���T�1 = f(�1):
10



we then see that
+jki = lim�!0+ Z 0�1 �ei(Ĥ�~!k�i~�)t=~dtjki= lim�!0+�i~�(Ĥ � ~!k � i~�)�1ei(Ĥ�~!k�i~�)t=~���0�1jki= lim�!0+ i~�(~!k + i~�� Ĥ)�1jki: (73)Denote the result by the ket j +k i, i.e.j +k i � lim�!0+ i~�(~!k + i~�� Ĥ)�1jki= lim�!0+ i~�Ĝ(~!k + i~�)jki; (74)where Ĝ(~!k + i~�) is the Green's fun
tion for Ĥ .2.1 Intermezzo: Green's fun
tionsA simple example of the use of Green's fun
tion is used to solve the system8<: ddxf(x) = h(x)f(A) = 0 (75)on the interval hA;Bi. The solution is of 
ourse given byf(x) = Z xA h(x0)dx0: (76)Using Green's fun
tions we would write the solution asf(x) = Z BA g(x; x0)h(x0)dx0; (77)with, in this 
ase g(x; x0) = �(x � x0) =8<: 1 x > x00 x < x0 : (78)Using the original di�erential equation, we know thatddx Z BA g(x; x0)h(x0)dx0 = Z BA ddxg(x; x0)h(x0)dx0 = h(x); (79)11



from whi
h follows that ddxg(x; x0) = Æ(x � x0), and thus that ddxg(x; x0) = 0whenever x 6= x0. More generally, when trying to solve a di�erential equationD̂(x)f(x) = h(x); (80)where D̂(x) is a di�erential operator, we 
an �nd the Green's fun
tion for thatsystem by solving D̂(x)g(x; x0) = 0 (81)for x 6= x0, and 
onne
ting the solutions in su
h a way thatD̂(x)g(x; x0) = Æ(x� x0) ) Z D̂(x)g(x; x0)dx0 = 1: (82)The problem we are trying to solve isĤj i = [T̂ + V ℄j i = Ej i (83)so that [E � T̂ ℄j i = V j i ) j i = [E � T̂ ℄�1V j i: (84)We denote the operator [E � T̂ ℄�1 by Ĝ0(E). An expli
it expression for thisoperator 
an be obtained by inserting a resolution of identity:j i = Z dk[E � T̂ ℄�1jkihk jV j i = Z dk 1E � ~!k jkihk jV j i; (85)so that Ĝ0(E) = Z dk jkihk jE � ~!k : (86)Writing h r j Ĝ0(E) j r0i = Z dk h rjkihkj r0iE � ~!k = g0(r; r0) (87)we see that (r) = h rj i = Z dr0 Z dr00h r j Ĝ0(E) j r0ih r0 jV j r00ih r00j i= Z dr0 Z dr00g0(r; r0)Æ(r0 � r00)V (r0) (r00)= Z dr0g0(r; r0)V (r0) (r0): (88)Alternatively, sin
e Ĥ j i = Ej i, we 
ould have writtenj i = [E � Ĥ℄�1j i � Ĝ(E)j i; (89)thus de�ning the Green's operatorĜ(E) = [E � Ĥ ℄�1; (90)12



see also equation (74).The two Green's operator Ĝ0(E) and Ĝ(E) 
an be related. Sin
eĜ(E)[E � Ĥ ℄ = 1̂; (91)and Ĥ = T̂ + V , we know that[E � T̂ � V ℄Ĝ(E) = [E � T̂ ℄Ĝ(E)� V Ĝ(E) = 1̂: (92)Multiplying from the left with Ĝ0(E) givesĜ(E)� Ĝ0(E)V Ĝ(E) = Ĝ0(E) (93)so that Ĝ(E) = Ĝ0(E) + Ĝ0(E)V Ĝ(E): (94)End of intermezzo �De�ning Ĝ+(~!k) � Ĝ(~!k + i~�), we use equation (94) to write j +k i asj +k i = lim�!0+ i~�Ĝ+0 (~!k)jki + i~�Ĝ+0 (~!k)V Ĝ+(~!k)jki= lim�!0+ i~�Ĝ+0 (~!k)jki + Ĝ+0 (~!k)V j +k i: (95)Working out the e�e
t of Ĝ+0 (~!k) on jki shows thatlim�!0+ i~�Ĝ+0 (~!k)jki = lim�!0+ i~�~!k + i~�� T̂ jki= lim�!0+ i~�~!k + i~�� ~!k jki= jki; (96)so that j +k i = jki+ Ĝ+0 (~!k)V j +k i: (97)This result now de�nes the boundary 
onditions for a s
attering state, given byh rj +k i = h rjki+ Z dr0h r j Ĝ+0 (~!k) j r0ih r0 jV j +k i= 1(2�) 32 eik�r + Z dr0g+0 (r; r0)V (r0) +k (r0) (98)whi
h is of 
ourse ni
e, but pretty useless if we do not have an expression forg+0 (r; r0). This 
an be derived, however (whi
h we will not), and the result isgiven by g+0 (r; r0) = � �2�~2jr� r0jeikjr�r0j: (99)13



If we expand jr � r0j in a Taylor polynomial around r0 = jr0j = 0, then in thelimit of r = jrj � r0, we 
an write the distan
e between the two points asjr� r0j = r � r � r0r +O�r0r � : (100)Using this equation, we 
an rewrite the Green's fun
tion tog+0 (r; r0) = � �2�~2r eikr krkr � k0 � r0 e�ik0�r0 (101)where k0 � kr=r. For suÆ
iently large r the se
ond fra
tion goes to one, so thatthe s
attering state looks like +k (r) = 1(2�) 32 eik�r � �2�~2r eikr Z dr0e�ik0�r0V (r0) +k (r0); (102)where the integral on the right hand side no longer depends on the length ofr, but only on its dire
tion r̂. We 
an try to solve this equation iteratively,by starting with an approximation for  +k , 
al
ulating the integral and usingthe result as a new approximation. Note that this fun
tion requires that thepotential falls faster then 1=r in the long range, sin
e the integration volumeelement r2drdr̂ grows quadrati
ally in r, and for the plane waveseik�r = 4� 1Xl=0 iljl(kr) lXm=�l Y �lm(k̂)Ylm(r̂); (103)the radial term j0(kr) = sin(kr)=(kr) only falls as 1=r. The �rst order approx-imation, with the initial guess j +k i = jki is 
alled the Born approximation,and is simply related to the Fourier transform of the potential, sin
e +k (r) � 1(2�) 32 �eik�r � �2�~2r eikr Z dr0e�ik0�r0V (r0)eik�r0�= h rjki � �p2�~2r eikr Z dr0dr00hk0j r0ih r0 jV j r00ih r00jki= h rjki � �p2�~2r eikrhk0 jV jki (104)
In photodisso
iation we start with a system in a bound state, whi
h we ex
iteto a disso
iating state through a time dependent 
oupling in the Hamiltonian.We 
an depi
t this by H (t) = � H g W (t)W (t) H e ; � (105)where Ĥg is the ground state Hamiltonian, and Ĥe is the ex
ited state Hamil-tonian. Suppose the bound states are known and normalized:Ĥg j ii = ~!ij ii; h ij ji = Æij ; (106)14



and set the phase at t = 0 to zero, so that j i(t)i = exp[�i!it℄j ii. Furthermore,we 
an write the ex
ited state Hamiltonian as Ĥe = Ĥe;0 + Ve, where theeigenstates of Ĥe;0 are given by the plane wavesĤe;0jki = ~!kjki; hkjk0i = Æ(k0 � k) (107)with time evolution jk(t)i = exp[�i!kt℄jki. The S
hr�odinger equation may befamiliar by now: i~ ��t j (t)i = Ĥ(t)j (t)i: (108)Note that sin
e the Hamiltonian depends on time, we 
annot write a formalsolution like  (t) = exp[�iĤ(t)t=~℄ (0). Sin
e we start in a bound state, weknow that at the beginning of all times, the system must have been in one ofthe eigenstates of Ĥg : limt!�1 j (t)i = j i(t)i: (109)We split the Hamiltonian into a time-independent part Ĥ0 and a time-dependentperturbation V (t), with matrix representationsH 0 = � H g OO H e � ; V(t) = � O W (t)W (t) O � : (110)In order to get rid of as many trivial phase fa
tors as possible, we de�ne thefun
tion e (t) = eiĤ0t=~ (t); (111)so that limt!�1 j e (t)i = limt!�1 eiĤ0t=~j i(t)i = j ii: (112)Inserting the de�nition of e (t) into the S
hr�odinger equation yieldsi~ ��t j e (t)i = i~ � ��teiĤ0t=~� j (t)i+ i~eiĤ0t=~ ��t j (t)i= eiĤ0t=~[�Ĥ0 + Ĥ(t)℄j (t)i= eiĤ0t=~V (t)e�iĤ0t=~j e (t)i� eV (t)j e (t)i: (113)Integrating both sides from �1 to t givesi~ Z t�1 ��t0 j e (t0)idt0 = i~[j e (t)i � j e (�1)i℄ = Z t�1 eV (t0)j e (t0)idt0; (114)so thatj e (t)i = j e (�1)i � i~ Z t�1 eV (t0)j e (t0)idt0 = j ii � i~ Z t�1 eV (t0)j e (t0)idt0:(115)15



In �rst order perturbation theory, this isj e (t)i = j ii � i~ Z t�1 eV (t0)j iidt0: (116)Hen
e, the �rst order 
orre
tion to j e (t)i is given byj e (1)(t)i = � i~ Z t�1 eV (t0)j iidt0; (117)so that the �rst order 
orre
tion to the original wave fun
tion isj (1)(t)i = � i~e�iĤ0t=~ Z t�1 eV (t0)j iidt0: (118)Sin
e the system is disso
iating, we know that at the end of all times the wavefun
tion 
onsists of free parti
le wave fun
tions. Hen
e, we expand the wavefun
tion for large t in these fun
tions:j (1)(t)i t!1����! Z dkfk(t)jk(t)i: (119)The expansion 
oeÆ
ients fk(t) are by de�nition given byfk(t) = hk(t)j (1)(t)i = � i~ Z t�1 dt0hk(t)j e�iĤ0t=~ eV (t0)ii (120)Moving the exponent of Ĥ0 to the bra, and inserting the de�nition of hk(t) j,we get fk(t) = � i~ Z t�1 dt0h eiĤ0t=~e�iĤe;0t=~kj eV (t0)ii: (121)The operator limt!1 eiĤ0t=~e�iĤe;0t=~ (122)bears a striking resemblan
e to the M�ller operator 
+ introdu
ed in equation(68). The di�eren
e lies in the fa
t that with 
+ we �rst go ba
k in timewith the unperturbed operator, and then forward again with the perturbationon, whereas in equation (122) we go forward in time without perturbation andthen ba
k again (note that the ground state part Ĥg of Ĥ0 does not 
ontribute,sin
e exp[iĤ0t=~℄ operates on a plane wave). This di�eren
e is 
aused by thefa
t that the s
attering system starts as a system of free parti
les, whereasin photodisso
iation we are going towards su
h a system. It will not 
ome asa surprise, then, that the operator of equation (122) will be denoted by 
�.
16



Playing around a bit with the expansion 
oeÆ
ient turns equation (121) intofk(t) = � i~ Z t�1 dt0h
�kj eV (t0)ii= � i~ Z t�1 dt0h
�kj eiĤ0t0=~V (t0)e�iĤ0t0=~ii= � i~ Z t�1 dt0h e�iĤ0t0=~
�kjV (t0)e�iĤ0t0=~ii: (123)A ni
e property of the M�ller operators is that it does not matter where thezero point of time is, i.e.
� = limt!1 eiĤ0t=~e�iĤe;0t=~= limt!1 eiĤ0(t+t0)=~e�iĤe;0(t+t0)=~= limt!1 eiĤ0t0=~eiĤ0t=~e�iĤe;0t=~e�iĤe;0t0=~= eiĤ0t0=~
�e�iĤe;0t0=~ (124)for arbitrary t0. Hen
e for arbitrary t we havee�iĤ0t=~
� = 
�e�iĤe;0t=~: (125)Applying this property to equation (123) givesfk(t) = � i~ Z t�1 dt0h
�e�iĤe;0t0=~kjV (t0)e�iĤ0t0=~ii= � i~ Z t�1 dt0ei(!k�!i)t0h
�k jV (t0) j ii: (126)For a photon we have, as before, V (t) = E0 �� 
os!t, so that (denoting !k �!iby !ki) fk(t) = � i~h
�k jE0 � � j ii Z t�1 dt0ei!kit0 
os!t0: (127)Applying the rotating wave approximation again, only the resonant part of the
osine, exp[�i!t0℄=2, 
ontributes. Suppose we \slowly turn on" the photon, bydamping it with exp[�t℄ for some small, postive �, then with �! = !ki � ! weget fk(t) = lim�!0+� i2~h
�k jE0 � � j ii Z t�1 dt0ei(�!�i�)t0 : (128)Working out the integral shows thatZ t�1 dt0ei(�!�i�)t0 = Z 0�1 dt0ei(�!�i�)t0 + Z t0 dt0ei(�!�i�)t0= Z 10 dt0e�i(�!�i�)t0 + Z t0 dt0ei(�!�i�)t0 : (129)17



Due to the damping, the �rst fun
tion goes to zero when t0 ! 1, so that we
an repla
e the integral from zero to in�nity by one from zero to t, if we 
hoosea large enough t:Z t�1 dt0ei(�!�i�)t0 = Z t0 dt0e�i(�!�i�)t0 + ei(�!�i�)t0= 2 Z t0 dt0 
os[(�! � i�)t0℄= 2sin[(�! � i�)t℄�! � i� = 2t sin
[(�! � i�)t℄; (130)so that the expansion 
oeÆ
ients for the �rst order 
orre
tion to the wave fun
-tion are given by fk(t) = � it~ h
�k jE0 � � j ii sin
[�!t℄: (131)De�ning the matrix elements M ki � h
�k j e �� j ii we 
an then write the totalwave fun
tion j (t)i asj (t)i = e�iĤ0t=~j ii+ Z dkfk(t)jk(t)i= j i(t)i � iE0t~ sin
[�!t℄ Z dkM ki jk(t)i: (132)We 
an then write an expression for the probability of being in a state jk(t)iafter a 
ertain time t, sin
ePk(t) = jhk(t)j (t)ij2= E20t2~2 sin
2[�!t℄j Z dk0M k0 ihk(t)jk0(t)ij2= E20t2~2 sin
2[�!t℄j Z dk0M k0 iÆ(k0 � k)j2= E20t2~2 sin
2[�!t℄jM ki j2: (133)
Using equation (27), we rewrite this asPk(t) = �E20~2 jM ki j2Æ(�!)t: (134)As noted before for the bound-bound transitions, this expression is only validwhen t is large enough to justify the use of Æ(�!), but small enough to ensurethat the �rst-order perturbation treatment is 
orre
t.The transition rate from the initial state j ii to a s
attering state j
�ki is thensimply given by kki = �E20~2 jM ki j2Æ(�!): (135)18



The boundary 
onditions for the disso
iating system are given by the M�lleroperator 
�. Its e�e
t on a plane wave is given by
�jki = limt!1 eiĤ0t=~e�iĤe;0t=~jki= limt!1 ei(Ĥ0�~!k)t=~jki (136)We know that this limit exists, sin
e at then end of times the system is disso
i-ated, so that the ex
ited state potential is zero, and Ĥ0 = Ĥe;0. Using equation(72) we see that limt!1 f(t) = limt!�1 f(�t)= lim�!0+ Z 0�1 �e�tf(�t)dt= lim�!0+ Z 10 �e��tf(t)dt= � lim�!0� Z 10 �e�tf(t)dt; (137)
so that
�jki = � lim�!0� Z 10 �ei(Ĥ0�~!k�i~�)t=~jki= lim�!0� i~�(Ĥ0 � ~!k � i~�)�1ei(Ĥ0�~!k�i~�)t=~����10 jki= lim�!0� i~�(~!k + i~�� Ĥ0)�1jki= lim�!0�G(~!k + i~�)jki� j �k i: (138)
Following equations (94) | (98), we see that we 
an write the representationof the wave fun
tion ash rj �k i = 1(2�) 32 eik�r + Z dr0g�0 (r; r0)V (r0) �k (r0): (139)The fa
t that the real energy axis is approa
hed from the negative imaginaryaxis, in stead of from the positive imaginary axis as in the s
attering problem,is re
e
ted in the Green's fun
tiong�0 (r; r0) = � �2�~2jr� r0je�ikjr�r0j; (140)whi
h is the 
omplex 
onjugate of g+0 (r; r0). Hen
e, in the Born approximationwe get  �k (r) = 1(2�) 32 eik�r � �2�~2r e�ikr Z dr0ei(k+k0)�r0V (r0); (141)19



where k0 is a ve
tor of length k in the dire
tion of r, or in an alternative notation �k (r) = 1(2�) 32 eik�r � 1r e�ikrf(k; k̂; r̂): (142)We know that the kineti
 energy of a plane wave, Ek = ~!k, is given byEk = ~2k22� ; (143)so that the in�nitesimal elementdk = �~2kdEk : (144)Knowing thatZ dkjkihk j = Z k2dkdk̂jkihk j = Z �k~2 dEkdk̂jkihk j = 1̂; (145)we de�ne the energy normalized ket jEkk̂i � p�k=~jki , for whi
hZ dEkdk̂jEkk̂ihEkk̂ j = 1̂: (146)It easily seen then, thatjEkk̂i = Z dEk0dk̂0jEk0 k̂0ihEk0 k̂0jEkk̂i; (147)so that hEk0 k̂0jEkk̂i = Æ(Ek0 �Ek)Æ(k̂0 � k̂): (148)
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