
PhotodissoiationG.W.M. VissersOtober 22, 20021 Bound-bound transitionsConsider a system that is desribed by a Hamiltonian with a time independentpart Ĥ0 and a time dependent perturbation V (t):Ĥ = Ĥ0 + V (t): (1)Furthermore, assume that the eigenvalues and eigenfuntions of Ĥ0 are known:Ĥ0jni = �njni; (2)and that the jni are bound states, so that we an writehnjmi = Ænm: (3)The objetive is to solve the time dependent Shr�odinger equationi~ ddt (t) = Ĥ (t); (4)subjet to the ondition that the initial state of the system is given by one ofthe bound states:  (0) = j ii: (5)We an now expand  (t) in terms of the bound states of Ĥ0, using time depen-dent expansion oeÆients  (t) =Xn n(t)jni; (6)where we know from ondition (5) thatn(0) = Æni: (7)1



Inserting expansion (6) and Hamiltonian (1) into the Shr�odinger equation (4)gives us i~ ddtXn n(t)jni =Xm �mm(t)jmi+ V (t)m(t)jmi: (8)If we projet from the left with a �nal state h f j, we get (using the orthonor-mality of the bound states)i~ ddtf (t) = �f f (t) +Xm Vfm(t)m(t); (9)where we have de�ned the V matrix with elementsVnm(t) � hn jV (t) jmi: (10)If we now write the expansion oeÆients f (t) as 1f (t) = bf (t)e� i~ �f t; (11)the left hand side of equation (9) turns intoi~df (t)dt = i~dbf (t)dt e� i~ �f t + i~bf (t) � ddte� i~ �f t�= i~dbf (t)dt e� i~ �f t + �fbf (t)e� i~ �f t= i~dbf (t)dt e� i~ �f t + �ff (t): (12)Inserting this result in equation (9) leads toi~dbf (t)dt e� i~ �f t =Xm Vfm(t)bm(t)e� i~ �mt; (13)so that i~dbf (t)dt =Xm Vfm(t)bm(t)ei!fmt; (14)with !fm = (�f � �m)=~.We now try to solve this equation, using some perturbation theory. If we writeV as �W for some � 2 [0; 1℄, expand the bf (t) in terms of this perturbationparameter: bf (t) = b(0)f (t) + �b(1)f (t) + : : : (15)1In the ase that V (t) = 0, the solution to equation (9) is easily found to be f (t) =f (0) exp[� i~ �f t℄ . 2



and neglet higher order terms, equation (14) readsi~ ddt hb(0)f (t) + �b(1)f (t)i =Xm �W fm hb(0)m (t) + �b(1)m (t)i ei!fmt: (16)Colleting equal powers of � on both sides of the equation gives us�0 : i~ ddtb(0)f (t) = 0; (17)�1 : i~ ddtb(1)f (t) = Xm W fm(t)b(0)m (t)ei!fmt: (18)Sine we know from equation (7) that m(0) = Æmi, and beause the b(0)m do nothange with time, we �nd that b(0)m (t) = b(0)m (0) = Æmi, and henei~ ddt b(1)f (t) = W fi (t)ei!fit: (19)At t = 0, the system is unperturbed, so that bf (0) = b(0)f (0), and b(1)f (0) = 0.Hene we an write the solution to equation (19) asi~b(1)f (t) = Z t0 W fi (t0)ei!fit0dt0; (20)so that for � = 1 b(1)f (t) = � i~ Z t0 Vfi(t0)ei!fit0dt0: (21)Now onsider the ase where the time dependent perturbation V (t) is ausedby a photon: V (t) = E(t) � � = E0 � � os!t (! > 0); (22)where E0 is the eletri �eld vetor assoiated with the photon, and � is thetransition dipole vetor operator. De�ning Vfi = h f jE0 � � j ii and rewritingos!t as 12 (exp[i!t℄ + exp[�i!t℄), we see that the oeÆients b(1)f (t) are givenby b(1)f (t) = � i~ Z t0 Vfi 12 �ei!t0 + e�i!t0� ei!fit0dt0= � i2~Vfi Z t0 �ei(!fi+!)t0 + ei(!fi�!)t0� dt0= � 12~Vfi �ei(!fi+!)t � 1!fi + ! + ei(!fi�!)t � 1!fi � ! � : (23)Sine we are looking at an absorption proess, !fi = (�f � �i)=~ > 0, so thatthe seond (resonant) term of equation (23) beomes muh larger than the �rst3



(anti-resonant) term if ! � !fi. So we an introdue another approximation(\rotating wave approximation"), that neglets the anti-resonant term. Intro-duing �! � !fi � !, we an writeb(1)f (t) = � 12~Vfi ei�!t � 1�!= � i~Vfi ei�!t=2 � e�i�!t=22i�! ei�!t=2= � i~Vfi sin(�!t=2)�! ei�!t=2= � i~Vfi sin (�!t=2) t2ei�!t=2; (24)
where we have introdued the sin funtion: sinx = sinx=x. The �nal wavefuntion then reads (t) =Xf f (t)j fi=Xf bf (t)e� i~ �f tj fi=Xf [b(0)f (t) + b(1)f (t)℄e� i~ �f tj fi=Xf [Æfie�i!f t + b(1)f (t)℄e� i~ �f tj fi= e�i!itj ii+Xf b(1)f (t)e� i~ �f tj fi (25)
Hene, the probability of being in a �nal state f 6= i after a time t is given byPf (t) = jh f j (t)ij2= jb(1)f (t)j2= t24~2 jVfi j2 sin2(�!t=2): (26)A representation of the Æ-funtion is given byÆ(x) = lim�!0 �� sin2(x=�)x2= limt!1 1�t sin2(xt)x2= limt!1 t� sin2(xt); (27)
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so that for suÆiently large t we an writePf (t) = �4~2 jVfi j2Æ(�!=2)t; (28)and, sine Æ(�x) = j�j�1Æ(x)Pf (t) = �2~2 jVfij2Æ(�!)t; (29)In equation (29), t must be large enough to justify the use of the Æ-funtion.On the other hand, a large t means a large transition probability, whih in turnmeans a large jb(1)f (t)j, so that the �rst-order perturbation approah breaksdown. Hene, equation (29) is only valid for a limited range of time.The question is now how to derive a formula for the ross setion from thetransition probability equation (29). To that end we look at a one-dimensionalase, and de�ne an energy density at point x and time t: W (x; t). The totalamount of energy at time t up to point x is denoted by N(x; t):N(x; t) = Z x�1 dx0W (x0; t): (30)Assuming that the energy is oming from a soure (or going into a sink) S(x; t),and denoting the intensity at point x, or energy ux through x, by I(x; t), wean onstrut an energy balane��tN(x; t) = �I(x; t) + Z x�1 dx0S(x0; t): (31)Hene, the energy density hanges in time as��tW (x; t) = ��t ��xN(x; t) = ��x ��tN(x; t) = S(x; t)� ��xI(x; t): (32)Now onsider the ase where absorption is weak, so that S(x; t) is approximatelyzero. We ompute the speed at whih we have to hange x in time in suh away that the total amount of energy up to x stays the same:ddtN(x(t); t) = dx(t)dt ��xN(x(t); t) + ��tN(x(t); t)= v(t)W (x(t); t) � I(x(t); t) = 0: (33)However, this speed is exatly the speed of the moving photon, and hene v(t)is onstant and equal to the speed of light , so that we getW (x; t) = I(x; t) : (34)5



On the other hand, when absorption is weak, then the energy density is approx-imately onstant in time. Then��tW (x; t) = 0 ) S(x; t) = ��xI(x; t): (35)From Beer's law, we know that I(x) = I0 exp[��(!)�x℄, with � being themoleule density and �(!) the frequeny dependent ross setion, so thatS(x) = ��(!)�I(x): (36)Bak in the real world, we an write the transition rate from j ii to j fi askfi = ��tPf (t) = �2~2 jVfi j2Æ(�!): (37)Write the eletri �eld vetor as E0 = E0e, with jej = 1, and de�ne the matrixelements M fi � h f j e � � j ii, then equation (37) turns intokfi = �E202~2 jM fi j2Æ(�!): (38)The average energy density of the photon is given by W = �0E20=2, and sinewe know from equation (34) that W = I=, we an rewrite this askfi = �I~2�0 jM fi j2Æ(�!): (39)The total absorption is proportional to the produt of the transition rate timesthe amount of energy per transition, and the density of moleules:S(x) = �kfi~!fi�: (40)Using equation (36) and �lling in the expression for the rate onstant we get��(!)�I = ��I!fi�~�0 jM fi j2Æ(�!) (41)so that the ross setion is given by�(!) = �!fi~�0 jM fi j2Æ(!fi � !): (42)2 Bound-ontinuum transitionsThe derivation of the expressions from the previous setion all rely on the fatthat the states jni of the system an be normalized, see equation (3). Clearlyfor ontinuum states, this is no longer possible, sine these states behave like6



free waves for R!1 instead of deaying to zero. Hene we must proeed in adi�erent fashion to extend the theory to bound-ontinuum transitions. To thatend, we de�ne the funtion 'x(x0) = Æ(x� x0); (43)and the projetion hxj i = ('x;  ) (44)with (�;  ) = Z ��(x) (x)dx: (45)Working out equation (44) giveshxj i = Z '�x(x0) (x0)dx0 = Z Æ(x � x0) (x0)dx0 =  (x); (46)and for the speial ase  = 'x0 , this readshxjx0i = 'x0(x) = Æ(x0 � x): (47)All funtions  an be expanded in terms of jxi � 'x:hxj i =  (x) = Z Æ(x � x0) (x)0dx0 = Z  (x0)'x(x0)dx0 = Z  (x0)hxjx0idx0= hxj Z  (x0)jx0idx0i: (48)From this expression we see thatj i = Z  (x)jxidx; (49)and thus h j = Z  �(x)hx jdx: (50)Using these expression for expansion of a funtion, we see that for arbitrary �and  we haveh� j �Z jxihx jdx� j i = Z dx0 Z dx00��(x0) (x00) Z dxhx0jxihxjx00i= Z dx0 Z dx00��(x0) (x00) Z dxÆ(x � x0)Æ(x00 � x)= Z dx0 Z dx00��(x0) (x00)Æ(x00 � x0)= Z dx0��(x0) (x0)= h�j i; (51)7



so that the operator R jxihx jdx = 1̂. De�ne the plane waves j ki byhxj ki = 1p2� eikx: (52)Using the losure of the jxi, we an writeh kj k0i = Z dxh k0jxihxj ki = Z dxhxj k0i�hxj ki = 12� Z dxei(k�k0)x= Æ(k0 � k): (53)The j ki also lose to identity, sine applying R dkj kih k j to an arbitrary funtion gives �Z dkj kih k j� j i = Z dk Z dxjxihxj ki Z dx0h kjx0ihx0j i= 12� Z dk Z dxjxieikx Z dx0e�ikx0 (x0)= 12� Z dk Z dxjxi Z dx0eik(x�x0) (x0)= Z dxjxi Z dx0Æ(x0 � x) (x0)= Z dx (x)jxi= j i:
(54)

The plane waves are eigenfuntions of the momentum operator p̂:2hx j p̂ j ki = Z dx0hx j p̂ jx0ihx0j ki= �i~p2� Z dx0 ��xÆ(x0 � x)eikx0= �i~p2� ��xeikx= ~k 1p2�eikx= ~khxj ki; (55)
so that p̂j ki = ~kj ki. Of ourse, the e�et of the kineti energy operatorT̂ = p̂2=2� on a plane wave is then given byT̂ j ki = ~2k22� j ki � ~!kj ki: (56)2Postulate: [x̂; p̂℄ = i~. Then h x j [x̂; p̂℄ jx0i = i~h xjx0i = i~Æ(x0 � x). But alsoh x j [x̂; p̂℄ jx0i = h x j x̂p̂� p̂x̂ jx0i = (x� x0)h x j p̂ jx0i, so that (x� x0)h x j p̂ jx0i = i~Æ(x� x0),with solution h x j p̂ jx0i = �i~ ��x Æ(x0 � x). 8



We an extend this to three dimensions, de�ningjki = j kxij kyij kzi and j ri = jxij yij zi; (57)so that, analogous to the one-dimensional ase, we an writeh rjki = 1p2� eikxx 1p2� eikyy 1p2�eikzz = 1(2�) 32 eik�r; (58)and sineZ drj rih r j = Z dxjxihx j Z dyj yih y j Z dzj zih z j = 1̂1̂1̂ = 1̂; (59)we an also derive thathkjk0i = Æ(k0 � k) and Z dkjkihk j = 1̂: (60)The e�et of the kineti energy operator an easily be derived, sineT̂ jki = 12�(p̂2x + p̂2y + p̂2z)jki= ~22�(k2x + k2y + k2z)jki= ~2k22� jki; (= ~!kjki) (61)where k is the length of k.Consider a two-part system with a time-independent Hamiltonian Ĥ = T̂ +V , where V is the interation potential. We an write down the Shr�odingerequations i~ ��t (t) = Ĥ (t); (62)i~ ��t 0(t) = T̂ 0(t); (63)and their formal solutions (t) = e�iĤ(t�t0)=~ (t0); (64) 0(t) = e�iT̂ (t�t0)=~ 0(t0): (65)If this system is a sattering system, then the two parts are in�nitely separatedwhen t! �1, and the interation potential is then zero. Hene, the two wavefuntions must be the same, so thatlimt!�1 jj (t)�  0(t)jj = 0: (66)9



Substituting the formal solutions from equations (64) and (65) giveslimt!�1 jje�iĤ(t�t0)=~ (t0)� e�iT̂ (t�t0)=~ 0(t0)jj =limt!�1 jje�iĤ(t�t0)=~[ (t0)� eiĤ(t�t0)=~e�iT̂ (t�t0)=~ 0(t0)℄jj =limt!�1 jj (t0)� eiĤ(t�t0)=~e�iT̂ (t�t0)=~ 0(t0)jj = 0; (67)and thus  (t0) = limt!�1 eiĤt=~e�iT̂ t=~ 0(t0): (68)The operator limt!�1 exp[iĤt=~℄ exp[�iT̂ t=~℄ is alled the M�ller wave opera-tor, and is denoted by 
+. This operator holds the boundary onditions for thewave funtions sine it spei�es what the system must look like: going bak intime with the unperturbed Hamiltonian (until the system onsists of free parti-les) and then forward again with the perturbation turned on. Sine equation(68) holds for any t0, we an write (t) = 
+ 0(t): (69)Writing out the exponent of T̂ working on a plane wave jki giveseT̂ jki = 1Xj=0 1j! T̂ j jki = 1Xj=0 1j! (~!k)j jki = e~!k jki; (70)so that operating with the M�ller operator on a plane wave gives
+jki = limt!�1 eiĤt=~e�iT̂ t=~jki = limt!�1 ei(Ĥ�~!k)t=~jki: (71)Using the relation 3 limt!�1 f(t) = lim�!0+ Z 0�1 �e�tf(t)dt; (72)3Suppose that limt!�1 f(t) exists. Then, split the integral into two parts:lim�!0+ �Z T�1 � exp[�t℄f(t)dt + Z 0T � exp[�t℄f(t)dt�For every �nite T , the seond term is zero if f(t) is �nite, sine � goes to zero. Sinelimt!�1 f(t) exists, we an get arbitrarily lose to the limiting value of f , by hoosing asmall enough T , so that f is approximately onstant over the integration range. Denotingthis limit by f(�1), we then getlim�!0+ f(�1) Z T�1 � exp[�t℄dt = f(�1) lim�!0+ exp[�t℄���T�1 = f(�1):
10



we then see that
+jki = lim�!0+ Z 0�1 �ei(Ĥ�~!k�i~�)t=~dtjki= lim�!0+�i~�(Ĥ � ~!k � i~�)�1ei(Ĥ�~!k�i~�)t=~���0�1jki= lim�!0+ i~�(~!k + i~�� Ĥ)�1jki: (73)Denote the result by the ket j +k i, i.e.j +k i � lim�!0+ i~�(~!k + i~�� Ĥ)�1jki= lim�!0+ i~�Ĝ(~!k + i~�)jki; (74)where Ĝ(~!k + i~�) is the Green's funtion for Ĥ .2.1 Intermezzo: Green's funtionsA simple example of the use of Green's funtion is used to solve the system8<: ddxf(x) = h(x)f(A) = 0 (75)on the interval hA;Bi. The solution is of ourse given byf(x) = Z xA h(x0)dx0: (76)Using Green's funtions we would write the solution asf(x) = Z BA g(x; x0)h(x0)dx0; (77)with, in this ase g(x; x0) = �(x � x0) =8<: 1 x > x00 x < x0 : (78)Using the original di�erential equation, we know thatddx Z BA g(x; x0)h(x0)dx0 = Z BA ddxg(x; x0)h(x0)dx0 = h(x); (79)11



from whih follows that ddxg(x; x0) = Æ(x � x0), and thus that ddxg(x; x0) = 0whenever x 6= x0. More generally, when trying to solve a di�erential equationD̂(x)f(x) = h(x); (80)where D̂(x) is a di�erential operator, we an �nd the Green's funtion for thatsystem by solving D̂(x)g(x; x0) = 0 (81)for x 6= x0, and onneting the solutions in suh a way thatD̂(x)g(x; x0) = Æ(x� x0) ) Z D̂(x)g(x; x0)dx0 = 1: (82)The problem we are trying to solve isĤj i = [T̂ + V ℄j i = Ej i (83)so that [E � T̂ ℄j i = V j i ) j i = [E � T̂ ℄�1V j i: (84)We denote the operator [E � T̂ ℄�1 by Ĝ0(E). An expliit expression for thisoperator an be obtained by inserting a resolution of identity:j i = Z dk[E � T̂ ℄�1jkihk jV j i = Z dk 1E � ~!k jkihk jV j i; (85)so that Ĝ0(E) = Z dk jkihk jE � ~!k : (86)Writing h r j Ĝ0(E) j r0i = Z dk h rjkihkj r0iE � ~!k = g0(r; r0) (87)we see that (r) = h rj i = Z dr0 Z dr00h r j Ĝ0(E) j r0ih r0 jV j r00ih r00j i= Z dr0 Z dr00g0(r; r0)Æ(r0 � r00)V (r0) (r00)= Z dr0g0(r; r0)V (r0) (r0): (88)Alternatively, sine Ĥ j i = Ej i, we ould have writtenj i = [E � Ĥ℄�1j i � Ĝ(E)j i; (89)thus de�ning the Green's operatorĜ(E) = [E � Ĥ ℄�1; (90)12



see also equation (74).The two Green's operator Ĝ0(E) and Ĝ(E) an be related. SineĜ(E)[E � Ĥ ℄ = 1̂; (91)and Ĥ = T̂ + V , we know that[E � T̂ � V ℄Ĝ(E) = [E � T̂ ℄Ĝ(E)� V Ĝ(E) = 1̂: (92)Multiplying from the left with Ĝ0(E) givesĜ(E)� Ĝ0(E)V Ĝ(E) = Ĝ0(E) (93)so that Ĝ(E) = Ĝ0(E) + Ĝ0(E)V Ĝ(E): (94)End of intermezzo �De�ning Ĝ+(~!k) � Ĝ(~!k + i~�), we use equation (94) to write j +k i asj +k i = lim�!0+ i~�Ĝ+0 (~!k)jki + i~�Ĝ+0 (~!k)V Ĝ+(~!k)jki= lim�!0+ i~�Ĝ+0 (~!k)jki + Ĝ+0 (~!k)V j +k i: (95)Working out the e�et of Ĝ+0 (~!k) on jki shows thatlim�!0+ i~�Ĝ+0 (~!k)jki = lim�!0+ i~�~!k + i~�� T̂ jki= lim�!0+ i~�~!k + i~�� ~!k jki= jki; (96)so that j +k i = jki+ Ĝ+0 (~!k)V j +k i: (97)This result now de�nes the boundary onditions for a sattering state, given byh rj +k i = h rjki+ Z dr0h r j Ĝ+0 (~!k) j r0ih r0 jV j +k i= 1(2�) 32 eik�r + Z dr0g+0 (r; r0)V (r0) +k (r0) (98)whih is of ourse nie, but pretty useless if we do not have an expression forg+0 (r; r0). This an be derived, however (whih we will not), and the result isgiven by g+0 (r; r0) = � �2�~2jr� r0jeikjr�r0j: (99)13



If we expand jr � r0j in a Taylor polynomial around r0 = jr0j = 0, then in thelimit of r = jrj � r0, we an write the distane between the two points asjr� r0j = r � r � r0r +O�r0r � : (100)Using this equation, we an rewrite the Green's funtion tog+0 (r; r0) = � �2�~2r eikr krkr � k0 � r0 e�ik0�r0 (101)where k0 � kr=r. For suÆiently large r the seond fration goes to one, so thatthe sattering state looks like +k (r) = 1(2�) 32 eik�r � �2�~2r eikr Z dr0e�ik0�r0V (r0) +k (r0); (102)where the integral on the right hand side no longer depends on the length ofr, but only on its diretion r̂. We an try to solve this equation iteratively,by starting with an approximation for  +k , alulating the integral and usingthe result as a new approximation. Note that this funtion requires that thepotential falls faster then 1=r in the long range, sine the integration volumeelement r2drdr̂ grows quadratially in r, and for the plane waveseik�r = 4� 1Xl=0 iljl(kr) lXm=�l Y �lm(k̂)Ylm(r̂); (103)the radial term j0(kr) = sin(kr)=(kr) only falls as 1=r. The �rst order approx-imation, with the initial guess j +k i = jki is alled the Born approximation,and is simply related to the Fourier transform of the potential, sine +k (r) � 1(2�) 32 �eik�r � �2�~2r eikr Z dr0e�ik0�r0V (r0)eik�r0�= h rjki � �p2�~2r eikr Z dr0dr00hk0j r0ih r0 jV j r00ih r00jki= h rjki � �p2�~2r eikrhk0 jV jki (104)
In photodissoiation we start with a system in a bound state, whih we exiteto a dissoiating state through a time dependent oupling in the Hamiltonian.We an depit this by H (t) = � H g W (t)W (t) H e ; � (105)where Ĥg is the ground state Hamiltonian, and Ĥe is the exited state Hamil-tonian. Suppose the bound states are known and normalized:Ĥg j ii = ~!ij ii; h ij ji = Æij ; (106)14



and set the phase at t = 0 to zero, so that j i(t)i = exp[�i!it℄j ii. Furthermore,we an write the exited state Hamiltonian as Ĥe = Ĥe;0 + Ve, where theeigenstates of Ĥe;0 are given by the plane wavesĤe;0jki = ~!kjki; hkjk0i = Æ(k0 � k) (107)with time evolution jk(t)i = exp[�i!kt℄jki. The Shr�odinger equation may befamiliar by now: i~ ��t j (t)i = Ĥ(t)j (t)i: (108)Note that sine the Hamiltonian depends on time, we annot write a formalsolution like  (t) = exp[�iĤ(t)t=~℄ (0). Sine we start in a bound state, weknow that at the beginning of all times, the system must have been in one ofthe eigenstates of Ĥg : limt!�1 j (t)i = j i(t)i: (109)We split the Hamiltonian into a time-independent part Ĥ0 and a time-dependentperturbation V (t), with matrix representationsH 0 = � H g OO H e � ; V(t) = � O W (t)W (t) O � : (110)In order to get rid of as many trivial phase fators as possible, we de�ne thefuntion e (t) = eiĤ0t=~ (t); (111)so that limt!�1 j e (t)i = limt!�1 eiĤ0t=~j i(t)i = j ii: (112)Inserting the de�nition of e (t) into the Shr�odinger equation yieldsi~ ��t j e (t)i = i~ � ��teiĤ0t=~� j (t)i+ i~eiĤ0t=~ ��t j (t)i= eiĤ0t=~[�Ĥ0 + Ĥ(t)℄j (t)i= eiĤ0t=~V (t)e�iĤ0t=~j e (t)i� eV (t)j e (t)i: (113)Integrating both sides from �1 to t givesi~ Z t�1 ��t0 j e (t0)idt0 = i~[j e (t)i � j e (�1)i℄ = Z t�1 eV (t0)j e (t0)idt0; (114)so thatj e (t)i = j e (�1)i � i~ Z t�1 eV (t0)j e (t0)idt0 = j ii � i~ Z t�1 eV (t0)j e (t0)idt0:(115)15



In �rst order perturbation theory, this isj e (t)i = j ii � i~ Z t�1 eV (t0)j iidt0: (116)Hene, the �rst order orretion to j e (t)i is given byj e (1)(t)i = � i~ Z t�1 eV (t0)j iidt0; (117)so that the �rst order orretion to the original wave funtion isj (1)(t)i = � i~e�iĤ0t=~ Z t�1 eV (t0)j iidt0: (118)Sine the system is dissoiating, we know that at the end of all times the wavefuntion onsists of free partile wave funtions. Hene, we expand the wavefuntion for large t in these funtions:j (1)(t)i t!1����! Z dkfk(t)jk(t)i: (119)The expansion oeÆients fk(t) are by de�nition given byfk(t) = hk(t)j (1)(t)i = � i~ Z t�1 dt0hk(t)j e�iĤ0t=~ eV (t0)ii (120)Moving the exponent of Ĥ0 to the bra, and inserting the de�nition of hk(t) j,we get fk(t) = � i~ Z t�1 dt0h eiĤ0t=~e�iĤe;0t=~kj eV (t0)ii: (121)The operator limt!1 eiĤ0t=~e�iĤe;0t=~ (122)bears a striking resemblane to the M�ller operator 
+ introdued in equation(68). The di�erene lies in the fat that with 
+ we �rst go bak in timewith the unperturbed operator, and then forward again with the perturbationon, whereas in equation (122) we go forward in time without perturbation andthen bak again (note that the ground state part Ĥg of Ĥ0 does not ontribute,sine exp[iĤ0t=~℄ operates on a plane wave). This di�erene is aused by thefat that the sattering system starts as a system of free partiles, whereasin photodissoiation we are going towards suh a system. It will not ome asa surprise, then, that the operator of equation (122) will be denoted by 
�.
16



Playing around a bit with the expansion oeÆient turns equation (121) intofk(t) = � i~ Z t�1 dt0h
�kj eV (t0)ii= � i~ Z t�1 dt0h
�kj eiĤ0t0=~V (t0)e�iĤ0t0=~ii= � i~ Z t�1 dt0h e�iĤ0t0=~
�kjV (t0)e�iĤ0t0=~ii: (123)A nie property of the M�ller operators is that it does not matter where thezero point of time is, i.e.
� = limt!1 eiĤ0t=~e�iĤe;0t=~= limt!1 eiĤ0(t+t0)=~e�iĤe;0(t+t0)=~= limt!1 eiĤ0t0=~eiĤ0t=~e�iĤe;0t=~e�iĤe;0t0=~= eiĤ0t0=~
�e�iĤe;0t0=~ (124)for arbitrary t0. Hene for arbitrary t we havee�iĤ0t=~
� = 
�e�iĤe;0t=~: (125)Applying this property to equation (123) givesfk(t) = � i~ Z t�1 dt0h
�e�iĤe;0t0=~kjV (t0)e�iĤ0t0=~ii= � i~ Z t�1 dt0ei(!k�!i)t0h
�k jV (t0) j ii: (126)For a photon we have, as before, V (t) = E0 �� os!t, so that (denoting !k �!iby !ki) fk(t) = � i~h
�k jE0 � � j ii Z t�1 dt0ei!kit0 os!t0: (127)Applying the rotating wave approximation again, only the resonant part of theosine, exp[�i!t0℄=2, ontributes. Suppose we \slowly turn on" the photon, bydamping it with exp[�t℄ for some small, postive �, then with �! = !ki � ! weget fk(t) = lim�!0+� i2~h
�k jE0 � � j ii Z t�1 dt0ei(�!�i�)t0 : (128)Working out the integral shows thatZ t�1 dt0ei(�!�i�)t0 = Z 0�1 dt0ei(�!�i�)t0 + Z t0 dt0ei(�!�i�)t0= Z 10 dt0e�i(�!�i�)t0 + Z t0 dt0ei(�!�i�)t0 : (129)17



Due to the damping, the �rst funtion goes to zero when t0 ! 1, so that wean replae the integral from zero to in�nity by one from zero to t, if we hoosea large enough t:Z t�1 dt0ei(�!�i�)t0 = Z t0 dt0e�i(�!�i�)t0 + ei(�!�i�)t0= 2 Z t0 dt0 os[(�! � i�)t0℄= 2sin[(�! � i�)t℄�! � i� = 2t sin[(�! � i�)t℄; (130)so that the expansion oeÆients for the �rst order orretion to the wave fun-tion are given by fk(t) = � it~ h
�k jE0 � � j ii sin[�!t℄: (131)De�ning the matrix elements M ki � h
�k j e �� j ii we an then write the totalwave funtion j (t)i asj (t)i = e�iĤ0t=~j ii+ Z dkfk(t)jk(t)i= j i(t)i � iE0t~ sin[�!t℄ Z dkM ki jk(t)i: (132)We an then write an expression for the probability of being in a state jk(t)iafter a ertain time t, sinePk(t) = jhk(t)j (t)ij2= E20t2~2 sin2[�!t℄j Z dk0M k0 ihk(t)jk0(t)ij2= E20t2~2 sin2[�!t℄j Z dk0M k0 iÆ(k0 � k)j2= E20t2~2 sin2[�!t℄jM ki j2: (133)
Using equation (27), we rewrite this asPk(t) = �E20~2 jM ki j2Æ(�!)t: (134)As noted before for the bound-bound transitions, this expression is only validwhen t is large enough to justify the use of Æ(�!), but small enough to ensurethat the �rst-order perturbation treatment is orret.The transition rate from the initial state j ii to a sattering state j
�ki is thensimply given by kki = �E20~2 jM ki j2Æ(�!): (135)18



The boundary onditions for the dissoiating system are given by the M�lleroperator 
�. Its e�et on a plane wave is given by
�jki = limt!1 eiĤ0t=~e�iĤe;0t=~jki= limt!1 ei(Ĥ0�~!k)t=~jki (136)We know that this limit exists, sine at then end of times the system is dissoi-ated, so that the exited state potential is zero, and Ĥ0 = Ĥe;0. Using equation(72) we see that limt!1 f(t) = limt!�1 f(�t)= lim�!0+ Z 0�1 �e�tf(�t)dt= lim�!0+ Z 10 �e��tf(t)dt= � lim�!0� Z 10 �e�tf(t)dt; (137)
so that
�jki = � lim�!0� Z 10 �ei(Ĥ0�~!k�i~�)t=~jki= lim�!0� i~�(Ĥ0 � ~!k � i~�)�1ei(Ĥ0�~!k�i~�)t=~����10 jki= lim�!0� i~�(~!k + i~�� Ĥ0)�1jki= lim�!0�G(~!k + i~�)jki� j �k i: (138)
Following equations (94) | (98), we see that we an write the representationof the wave funtion ash rj �k i = 1(2�) 32 eik�r + Z dr0g�0 (r; r0)V (r0) �k (r0): (139)The fat that the real energy axis is approahed from the negative imaginaryaxis, in stead of from the positive imaginary axis as in the sattering problem,is reeted in the Green's funtiong�0 (r; r0) = � �2�~2jr� r0je�ikjr�r0j; (140)whih is the omplex onjugate of g+0 (r; r0). Hene, in the Born approximationwe get  �k (r) = 1(2�) 32 eik�r � �2�~2r e�ikr Z dr0ei(k+k0)�r0V (r0); (141)19



where k0 is a vetor of length k in the diretion of r, or in an alternative notation �k (r) = 1(2�) 32 eik�r � 1r e�ikrf(k; k̂; r̂): (142)We know that the kineti energy of a plane wave, Ek = ~!k, is given byEk = ~2k22� ; (143)so that the in�nitesimal elementdk = �~2kdEk : (144)Knowing thatZ dkjkihk j = Z k2dkdk̂jkihk j = Z �k~2 dEkdk̂jkihk j = 1̂; (145)we de�ne the energy normalized ket jEkk̂i � p�k=~jki , for whihZ dEkdk̂jEkk̂ihEkk̂ j = 1̂: (146)It easily seen then, thatjEkk̂i = Z dEk0dk̂0jEk0 k̂0ihEk0 k̂0jEkk̂i; (147)so that hEk0 k̂0jEkk̂i = Æ(Ek0 �Ek)Æ(k̂0 � k̂): (148)
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