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1 Bound-bound transitions

Consider a system that is described by a Hamiltonian with a time independent
part Hy and a time dependent perturbation V'(t):

H=H,+ V(). (1)
Furthermore, assume that the eigenvalues and eigenfunctions of H, are known:
Ho|n) = en| ), (2)

and that the |n) are bound states, so that we can write
(n|m) = dnm. (3)

The objective is to solve the time dependent Schrédinger equation

o d iy
() = (), (4)

subject to the condition that the initial state of the system is given by one of
the bound states:

$(0) = [4)- (5)

We can now expand () in terms of the bound states of Hy, using time depen-
dent expansion coefficients

D) =Y eal®)n), (6)

where we know from condition (5) that

en(0) = p;.- (7)



Inserting expansion (6) and Hamiltonian (1) into the Schrédinger equation (4)
gives us

S en®)ln) = 3 emen () m) +V (E)en ()] m). ®)

If we project from the left with a final state ( f |, we get (using the orthonor-
mality of the bound states)

. d
Zhac‘f( = Efo + vam cm (9)

where we have defined the V matrix with elements
Vo (t) = (n |V (2) [m). (10)

If we now write the expansion coefficients cg(f) as !
es(t) = by(t)e™ /", (1)

the left hand side of equation (9) turns into

. dCf(t) dbf( ) it . d . t
h —in kert Linbo(t) | Se ke
B TR by (1) | e

db ; ;
= ih%eiﬁqt +epby(t)e nest (12)

= hdbft() __Eft-FEfo(t)

Inserting this result in equation (9) leads to

dbf

in =L e iest — Zme b (t)ehert, (13)

so that aby (1)
: f _ W mt
ih T - E V() br, (2) €777, (14)

m

with Wy = (€ — €m) /R

We now try to solve this equation, using some perturbation theory. If we write
V as AW for some A € [0, 1], expand the bs(¢) in terms of this perturbation
parameter:
br(t) = bV (1) + Mo (1) + ... (15)
'In the case that V(t) = 0, the solution to equation (9) is easily found to be cy(t) =
cr(0) exp[—%e/ct] .




and neglect higher order terms, equation (14) reads
' d w

Collecting equal powers of A on both sides of the equation gives us

d
A0 ihab;o)(t) = 0, (17)
AL z’h%b‘fl)(t) = ) Wen (D) (£)e™rm". (18)

Since we know from equation (7) that ¢, (0) = i, and because the b9 do not
change with time, we find that blo) (t) = bo) (0) = 0, and hence

m%b;”(t) = Wy (t)e™rt, (19)

At t = 0, the system is unperturbed, so that b(0) = bgco) (0), and bgcl)(O) = 0.
Hence we can write the solution to equation (19) as

t
inbg (1) = /0 Wy (¢)et it dt!, (20)
so that for A =1 R
b (1) = —% /0 Vyi(t)elrit'at. (21)

Now consider the case where the time dependent perturbation V' (t) is caused
by a photon:

V(t)=E(t) uw=Eq-pucoswt (w>0), (22)
where Eg is the electric field vector associated with the photon, and u is the
transition dipole vector operator. Defining V¢; = (f |Eo - p|¢) and rewriting

coswt as % (expliwt] + exp[—iwt]), we see that the coefficients bgcl)(t) are given
by

.t
1 I I . ’
bgcl)(t) — _%/0 Vﬂi (ezwt + e—zwt ) ezwfit dtl

. t
— _Lsz/ (ei(wﬁ+w)t' _|_ei(‘*’fi*‘*’)t’) dt' (23)
1 H(writw)t _ 1 H(wpi—w)t _ 1
= ——Vfi € + € .
2h Wi +w W —w

Since we are looking at an absorption process, wy; = (ef —€;)/h > 0, so that
the second (resonant) term of equation (23) becomes much larger than the first



anti-resonant) term if w &~ wy;. So we can introduce another approximation
f
“rotating wave approximation”), that neglects the anti-resonant term. Intro-
g pp ) g
ducing Aw = wy; — w, we can write

iAwt
Wy oLy, €01
s () = 2hVﬁ Aw

i eiAwt/2 _ efiAwt/2

__ » iAwt/2

BV 2iAw ‘ (24)
iy, SnA6t/2)
AL Aw

. .
= —%Vﬁ sinc (Awt/2)§e’A‘”t/2,

where we have introduced the sinc function: sincz = sinz/z. The final wave
function then reads

V() =Y e f)
f
= " bp(t)e 7 f)
f

=307 () + B Wle H o ) (25)
!

=D lpie =+ ()e b f)
!

— efiwit

i)+ S 00 (pe ket )
f

Hence, the probability of being in a final state f # i after a time ¢ is given by

Pr(t) = |( flo ()]

— 1M 1)2

= b, ()] (26)
£ 2 .2

= 4—hQ|Vfi| sinc”(Awt/2).

A representation of the d-function is given by

€ sin®(z/€)

d(z) = lim

e—=0 T X

12
lim 1 sin®(xt) (27)

t—oo mt  x2

t
= lim — sinc?(xt),
t—oo T



so that for sufficiently large ¢ we can write

™

P(t) = 755V oA 20, (28)
and, since §(axr) = |a|~18(x)
T
Pi(t) = 5 IV Po(Aw), (29)

In equation (29), ¢ must be large enough to justify the use of the d-function.
On the other hand, a large ¢ means a large transition probability, which in turn
means a large |b§c1)(t)|, so that the first-order perturbation approach breaks
down. Hence, equation (29) is only valid for a limited range of time.

The question is now how to derive a formula for the cross section from the
transition probability equation (29). To that end we look at a one-dimensional
case, and define an energy density at point z and time ¢: W(x,t). The total
amount of energy at time ¢ up to point z is denoted by N (z,¢):

N(z,t) = /90 da'W(a',t). (30)

— 00

Assuming that the energy is coming from a source (or going into a sink) S(z, t),
and denoting the intensity at point z, or energy flux through z, by I(z,t), we
can construct an energy balance

6 T

&N(x,t) = —I(z,t) -I-/ d2'S(2', ). (31)

— 00
Hence, the energy density changes in time as

0 0 0

) )
= N(z,t) = S(z,t) — —I(z,1).  (32)

NGt =55 9

Now consider the case where absorption is weak, so that S(x,t) is approximately
zero. We compute the speed at which we have to change z in time in such a
way that the total amount of energy up to = stays the same:

d _da(t) 0 8
SN, 1) = 2 N((D), ) + 5 N (b), ) 3

= ()W (2(t),t) — I(2(t),t) = 0.

However, this speed is exactly the speed of the moving photon, and hence v(t)
is constant and equal to the speed of light ¢, so that we get

I(x,t)

W(zx,t) = -

(34)



On the other hand, when absorption is weak, then the energy density is approx-
imately constant in time. Then

) )
W@ =0 = St =g I (35)

From Beer’s law, we know that I(x) = Iyexp[—o(w)pz], with p being the
molecule density and o(w) the frequency dependent cross section, so that

S(z) = —o(w)pl(z). (36)
Back in the real world, we can write the transition rate from |} to | f) as

0 T

kyi = Epf(t) = ﬁWﬁF(s(Aw)- (37)

Write the electric field vector as Eg = Epe, with |e| = 1, and define the matrix
elements My; = ( f|e- p|i), then equation (37) turns into

2
mEq

k1 = e

My *5(Aw). (38)

The average energy density of the photon is given by W = €y E3 /2, and since
we know from equation (34) that W = I /e, we can rewrite this as

Il
i = —— Mg |28(Aw).
kf ﬁ2ceg| f | 6( W) (39)

The total absorption is proportional to the product of the transition rate times
the amount of energy per transition, and the density of molecules:

S(x) = —kyihwyip. (40)

Using equation (36) and filling in the expression for the rate constant we get

wlw iP
~o(w)pl = = "LE My '5(Aw) (41)
C€Q
so that the cross section is given by
Wi 2
= L vy, = w). 42
o() = Sl Wy PO uogi - ) (42)

2 Bound-continuum transitions

The derivation of the expressions from the previous section all rely on the fact
that the states |n) of the system can be normalized, see equation (3). Clearly
for continuum states, this is no longer possible, since these states behave like



free waves for R — oo instead of decaying to zero. Hence we must proceed in a
different fashion to extend the theory to bound-continuum transitions. To that

end, we define the function

pa(a') = d(x —2'),
and the projection
(2]¥) = (¢x,¢)
with
0.6) = [ 6" @0(e)da,

Working out equation (44) gives
(al9) = [ @) = [oa - o)’ = (o)
and for the special case ¥ = ., this reads

(z]2") = o (z) = 0(z' — 2).

All functions 9 can be expanded in terms of | z) = @,:

(2l9) = b(@) = [ 8z = i@y da’ = [ 0@)pala)ds’ = [0la)

— (] / (e o' )da').

From this expression we see that

) = / ()| z)dz,

and thus

(| =/w*<x><x|dx.

(43)

(44)

(45)

| z')dz'

(48)

(49)

(50)

Using these expression for expansion of a function, we see that for arbitrary ¢

and v we have

(o1 | [12xzlaz] 101 = [ [ @ @row [aateo el

_ / dz’ / da" 6 (2" Y (") / dzé(z — 2)6(z" — )

_ / dz’ / Az 6* (2" (a")8(z" — o)
- / da' ¢ (a1 (o)
= (4]9),



so that the operator [ |z)(x|dz = 1. Define the plane waves | k) b

1
V2T

Using the closure of the | z), we can write

(x| k) = etk (52)

"= z(k'|z) (2| k) = (x| k"N (z _ 1 petb—k)z
(KK = [dnkl@) (el = [an(al k) (s18) = 5 [amet00n
— 6K — k).

The | k) also close to identity, since applying [ dk|k)(k | to an arbitrary function

Y gives
/dk/d:n|:n)(ﬂf|k)/dfﬂl(k|$'><$'|¢>

[ amimel 19
= % / dk / dz| z)e’® / da'e” " (')
= %/dk/dx|x)/dx'eik(z*zl)iﬁ(m") (54)

- /dx|x)/dx'5(x' —z)p(a’)

= /dm¢(m) x
=v)

The plane waves are eigenfunctions of the momentum operator p:

(:vlﬁlk>Z/dx’<x|ﬁ|x'><x’|k>
= _m/d:n —(z' —x)e ika!
:__mﬂeikz (55)
V2r 0z

1 .

= hk ikx
\/ﬁe
— hk(al k),

so that p|k) = hk|k). Of course, the effect of the kinetic energy operator
T=p %/2p on a plane wave is then given by

2.2
k) = hk

| k) = hwg k). (56)

2Postulate: [#,p] = ih. Then (x|[ z,p]| 2"y = ih(z|z') = ihdé(z’ — z). But also
(x|[#5]2') = (x| — | a') = (x— ') (| p|a’), so that (x —a')(x|p|a') = ihd(z —a'),
with solution (z|p|z') = —zhié(x’ —z).



We can extend this to three dimensions, defining

k) = [ka) [ ky)| kz)  and ) =[z)[y)]2), (57)

eiky y

so that, analogous to the one-dimensional case, we can write
ik.z 1 ik-r (58)

1 e 1 1 _ .

=R R T et

and since
[astniel= [aslana [avno) [ e =1ii=1,  59)
we can also derive that
(k|K'y =6(k' —k)  and /dk|k)(k| =1. (60)
The effect of the kinetic energy operator can easily be derived, since

1, R R
— (P + P, +p2) k)

7| k) o

h2
= ﬂ(k; +k, + k2)| k) (61)
h2k?
=2

k), (= hwil k)
where k is the length of k.
Consider a two-part system with a time-independent Hamiltonian H=T+

V, where V is the interaction potential. We can write down the Schrédinger
equations

o) = Hy(0), (62)
nSbo(t) = Tuolt), (63)
and their formal solutions
bty = e T M), (64)
wolt) = em T My (ty). (65)

If this system is a scattering system, then the two parts are infinitely separated
when ¢t — —o0, and the interaction potential is then zero. Hence, the two wave
functions must be the same, so that

lim {[9() = ho()]| = 0. (66)

t——o0



Substituting the formal solutions from equations (64) and (65) gives

tim e~y (1) — =T Mg 1) =

t——o00

lim ||e—iﬁ(t—t0)/h[¢(t0) . eifr(t—to)/he—iT‘(t—to)/h%(to)]|| — (67)

t——o00

Jim {9 (to) — €' Ht=to) /=T (t=t0) gy (1) | = 0,

and thus X .

Ulto) = lim et/ e Tt (1), (68)

t——o0

The operator limy_, _ o exp[iHt/h] exp[—iTt/H] is called the Mgller wave opera-
tor, and is denoted by Q. This operator holds the boundary conditions for the
wave functions since it specifies what the system must look like: going back in
time with the unperturbed Hamiltonian (until the system consists of free parti-
cles) and then forward again with the perturbation turned on. Since equation
(68) holds for any to, we can write

h(t) = Q"o (t). (69)

Writing out the exponent of 7' working on a plane wave | k) gives

o0 o0

; 1

eT|k)—§: TJ|k =§:J— (hw)?| k) = e™*| k), (70)
Jj= 0 7=0

so that operating with the Mgller operator on a plane wave gives
QF|k) = lim et/he Tt/ Ky = Jim (A —hwnt/h| k), (71)
t——o0 t——o0

Using the relation ?

lim f(t) = lim " eeft f(t)dt, (72)

t——o0 e—0t — o

3Suppose that lim;—_ o f(t) exists. Then, split the integral into two parts:

T 0
lim { / cexplet] F(£)dt + / ¢ explef] f(t)dt}
e—=0t /-0 T

For every finite T, the second term is zero if f(t) is finite, since € goes to zero. Since
lim¢—, _ oo f(t) exists, we can get arbitrarily close to the limiting value of f, by choosing a
small enough 7', so that f is approximately constant over the integration range. Denoting
this limit by f(—o0), we then get

T T
lim f(— )[ cexplet]dt = f(~o0) lim explef]| = f(~o0).

e—0+ e—0 —oo

10



we then see that

0 r .
QF k) = lim eel—hwr=ih)t/h | k)

e—=0t ) _

N e . 0
= lim —ihe(H — hwy — ihe) "' —hor—ihat/h k)

e—0+ —c0
= lim ihe(hwy, + ihe — H) 7| k).
e—0+
Denote the result by the ket |¢}), i.e.
| k) = lim ihe(hwy + ifie — H) 7! k)
e—0+

= lim iheG(hwy + ihe)| k),

e—0t

where G (hwy, + ihe) is the Green’s function for H.

2.1 Intermezzo: Green’s functions

(73)

A simple example of the use of Green’s function is used to solve the system

{ isf(2) = h(z)
f(A)=0

on the interval (A4, B). The solution is of course given by

@) = /A h(z')da'

Using Green’s functions we would write the solution as
B
f@) = [ gla o (e’
A

with, in this case

1 x>
g(z,2') =0(z —2') =
0 <

Using the original differential equation, we know that

B
g(z, 2" )h(z")da' = /A %g(m,m')h(az')dx' = h(z),

d B
dz /4

11

(75)

(76)

(78)

(79)



from which follows that d 1;9(%,2") = 6(x — 2'), and thus that %g(m,x’) =0
whenever = # z'. More generally, when trying to solve a differential equation

D(x)f(z) = h(x), (80)

where D(z) is a differential operator, we can find the Green’s function for that

system by solving .
D(@)g(z,2') = 0 (81)

for x # 2’, and connecting the solutions in such a way that

D(z)g(z,2') = d(x — z') = /D(x)g(x,x')dx' =1 (82)

The problem we are trying to solve is
H|y) = [T +V]|¥) = E|v) (83)

so that . .

[E=T|¢) =V]¢) = |¥) =[E =T 'V]y). (84)
We denote the operator [E — T] by Go(E). An explicit expression for this
operator can be obtained by inserting a resolution of identity:

|w>Z/dk[E—T]’llkﬂkIVIw: dk———|K)(k|V[¥),  (85)

E — hwy,
so that (K|
/ ke (36)
Writing
(r1GoE) 5 = [t - g ) (87)
we see that

= (rfo) = [ar' [ @ (x| Go(B) 7Y [V [2) (27| )
= /dr'/dr”go(r,r')é(r' ")V (")(x") (88)
= /dr'go(r,r')V(r')zﬁ(r').

Alternatively, since H |v) = E| ), we could have written

|0) = [E~ H]'|y) = G(E)| ¥), (89)
thus defining the Green’s operator

G(E)=[E—H]™, (90)

12



see also equation (74).

The two Green’s operator Go(E) and G(E) can be related. Since
G(E)[E - H] =1, (91)

and H="T + V', we know that

[E—-T —V]G(E)=|E-T)G(E) - VG(E) =1. (92)
Multiplying from the left with Go(E) gives
G(E) — Go(E)VG(E) = Go(E) (93)

so that
G(E) =Go(E) + Go(E)VG(E). (94)

End of intermezzo O

Defining G (hiwy,) = G(fiwy, + ihe), we use equation (94) to write | ¢") as

|yt = lim, iheG (hwy)| k) + iheGF (T )V G (wy)| k)
‘ ) . (95)
= 61_i>%1+ iheGY (hwi)| k) + G (hwi) V[ ).

Working out the effect of Gif (fiwy,) on | k) shows that
N LR
lim iheG (hwy)| k) = lim ———— | k)
e—0+ =0+ hwy, +ihe — T
, ihe (96)
1 —k
ei)I(I)l"’ hwy, + ihe — hwy, k)
1K),

so that .
| i) = | k) + G (hwr)V [ 5). (97)

This result now defines the boundary conditions for a scattering state, given by
(rl iy = (xl1 + [ '] G () [¥) (x| V] 30

(271)% ekr 4 /dr'g()*(r,r')V(r')@ZJlf(r')

(98)

which is of course nice, but pretty useless if we do not have an expression for
g (r,r'). This can be derived, however (which we will not), and the result is
given by

+ ! — _ H iklr—r" 99
%o (r,') 27rh2|r—r’|e ’ (99)

13



If we expand |r — r'| in a Taylor polynomial around ' = |r'| = 0, then in the
limit of » = |r| > ', we can write the distance between the two points as

- ’
|r—r'|=r—rrr +0<’"—>. (100)

r

Using this equation, we can rewrite the Green’s function to

B ik kr —ik’r/
27rh2rel ' kr — k' - r’e l (101)

where k' = kr/r. For sufficiently large r the second fraction goes to one, so that
the scattering state looks like

1 . . P
) = per et [ae v, o

g(—)i_(rarl) = -

where the integral on the right hand side no longer depends on the length of
r, but only on its direction ¥. We can try to solve this equation iteratively,
by starting with an approximation for 1/111' , calculating the integral and using
the result as a new approximation. Note that this function requires that the
potential falls faster then 1/r in the long range, since the integration volume
element r2drdit grows quadratically in r, and for the plane waves

—471'Zzgl kr) Z ViE (K)Yim (), (103)
m=—I

the radial term jo(kr) = sin(kr)/(kr) only falls as 1/r. The first order approx-
imation, with the initial guess |43 ) = |k) is called the Born approximation,
and is simply related to the Fourier transform of the potential, since

1 ik-r H ikr —ik'-r’ ik-r'
W r o [ek e /dr'e Kry () ok

— (r|k) — “m /d e (K Y |V Y (e k) (104)
u\/ﬁ zkr

= (rlk) - (K'|V]k)

In photodissociation we start with a system in a bound state, which we excite
to a dissociating state through a time dependent coupling in the Hamiltonian.

We can depict this by
H(t) = < &) YXH(:’) ) (105)

where fIg is the ground state Hamiltonian, and H. is the excited state Hamil-
tonian. Suppose the bound states are known and normalized:

Hyliy = hwi|i),  (i]j) = 6, (106)

14



and set the phase at ¢ = 0 to zero, so that |i(t)) = exp[—iw;t]| 7). Furthermore,
we can write the excited state Hamiltonian as He H.o + Ve, where the
eigenstates of H,  are given by the plane waves

Hoolk) = huglk),  (K|K') = (k' — k) (107)

with time evolution | k(t)) = exp[—iwyt]| k). The Schrédinger equation may be
familiar by now:

(1)) = 0|0 (108)

Note that since the Hamiltonian depends on time, we cannot write a formal
solution like ¥ (t) = exp[—iH (t)t/h]y(0). Since we start in a bound state, we
know that at the beginning of all times, the system must have been in one of
the eigenstates of fIg:

Jlim [ 4(0) = (). (109)

We split the Hamiltonian into a time-independent part Hyand a time-dependent,
perturbation V' (¢), with matrix representations

w-(32) vo-( W) o

In order to get rid of as many trivial phase factors as possible, we define the
function

b(t) = et/ Mp(p), (111)

so that X
: TN T iHot/h) ; () — |/
Jlim [(0) = lim_ e/ i) = i), (112)

Inserting the definition of 4 (¢) into the Schrédinger equation yields

MID(0) = ih | e [0 +ine ™1 2 (o)

= oot/ Fy + H)] (1)) (113)
— 6iﬁ0t/ﬁV(t)67iﬁ0t/h| ,(Z(t))
= V(1) (1)
Integrating both sides from —oo to ¢ gives
i [ D idenar =i - 1-oon = [ T@Ena, me
so that

50) = 1500y~ 3 [ TWldwnar =1o-1 [ T@lawnar.
(115)

15



In first order perturbation theory, this is
_ t
By =1 -5 [ T (116)
Hence, the first order correction to |J(t)> is given by

@) =1 [ Tl (117)

so that the first order correction to the original wave function is

0@y = e [ pyar (13)

Since the system is dissociating, we know that at the end of all times the wave
function consists of free particle wave functions. Hence, we expand the wave
function for large ¢ in these functions:

0@ o, [ dihl0)]k(0). (119)
The expansion coefficients fi(t) are by definition given by
. t . _
Al = (kO[O @0) =~ [ a (ke TIT @y (20)

Moving the exponent of Hy to the bra, and inserting the definition of (k(t)],
we get

) t ') - 73 ~
fi(t) = —% dt' ( etHot/he=iHeot /Ry 77 (4)5), (121)
The operator A A
thm eiHot/ﬁefiHe‘gt/ﬁ (122)
—00

bears a striking resemblance to the Mgller operator Q1 introduced in equation
(68). The difference lies in the fact that with Q* we first go back in time
with the unperturbed operator, and then forward again with the perturbation
on, whereas in equation (122) we go forward in time without perturbation and
then back again (note that the ground state part H g of Hy does not contribute,
since expliHot/h] operates on a plane wave). This difference is caused by the
fact that the scattering system starts as a system of free particles, whereas
in photodissociation we are going towards such a system. It will not come as
a surprise, then, that the operator of equation (122) will be denoted by Q.

16



Playing around a bit with the expansion coefficient turns equation (121) into

fult) = —%[ at' (k| V(t')i)

) t 'y i . 77 1
—%/ dt' (Q k| e ot /Ry (¢!)eiHot /) (123)

) t (7 4! ey
g [ e v ee i),

A nice property of the Mgller operators is that it does not matter where the
zero point of time is, i.e.

0~ = lim eiﬁot/he—iﬁg‘ot/h

t—00
— lim eiHo(t+t0)/h,—iHeo(t+t0)/h

t—o00 A ) A A (124)
— lim eiHoto/hgiHot/h,—iHe 0t/h,—iHe oto/h

— eiﬁoto/hﬂ—e—iﬁg‘oto/h
for arbitrary ¢y. Hence for arbitrary ¢ we have

efiﬁgt/hﬂf 0 e —iH, ot/h (125)
Applying this property to equation (123) gives

i t

fk(t) = -7 dtl<Q_6_iﬁe,0tl/hk| V(tl)e—iﬁot’/hi>

o (126)

— At e =Dt (7K | V(') | ).

—00

For a photon we have, as before, V (t) = Eq - pu cos wt, so that (denoting wy — w;

by wki)
t

f) = —%( Ok |Eo-p]i) / dt'e™rit coswt'. (127)

Applying the rotating wave approximation again, only the resonant part of the
cosine, exp[—iwt']/2, contributes. Suppose we “slowly turn on” the photon, by
damping it with explet] for some small, postive €, then with Aw = wy; — w we
get

— 00

t
fie(t) = lim ——(Q k|Eq-p|i) / At e(Aw—iot’, (128)

e—0+ 0

Working out the integral shows that

/ dt'e i(Aw—ie)t! _ / dt'e i(Aw—ie) / dt'e i(Aw—ie)
/ d¢ e—z (Aw— ze)t / dt'e H(Aw— ze)t
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Due to the damping, the first function goes to zero when t' — oo, so that we
can replace the integral from zero to infinity by one from zero to t, if we choose
a large enough t:

t t
/ g i(Aw—io)t :/ Al e=iBw=iat’ | i(Aw=iof
—00 0

= t "cos[(Aw — ie)t’ 130
2 /0 dt’ cos[(A )] (130)
_ 2sin[(Aw — ie)t]

NP 2t sinc[(Aw — ie€)t],

so that the expansion coefficients for the first order correction to the wave func-
tion are given by

flt) = —%(Q_k | Eo - | i) sinc[Awt]. (131)

Defining the matrix elements My; = (Q k|e- p|i) we can then write the total
wave function | (t)) as

(o) = M)+ [ a0l )
Bt (132)
= |i(t)) — o sinc[Awt]/dkMka(t))-

We can then write an expression for the probability of being in a state | k(t))
after a certain time ¢, since

Be(t) = (k)| (1)
Egt2 02 ! ! 2
=~ sinc [Awt]| | dk'M,;(k(t)| k' (2))]
9.2 (133)
= Eg; sinc?[Awt]| [ dk'My ;6(k" — k)|?
E2 2
_ ;_;f sinc?[Awt]|Mici [

Using equation (27), we rewrite this as

nE2
72
As noted before for the bound-bound transitions, this expression is only valid

when ¢ is large enough to justify the use of 6(Aw), but small enough to ensure
that the first-order perturbation treatment is correct.

Bi(t) = —5* M |*6(Aw)t. (134)

The transition rate from the initial state | i) to a scattering state | 27k} is then
simply given by
o

kxi = =
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The boundary conditions for the dissociating system are given by the Mgller
operator 7. Its effect on a plane wave is given by

Q,| k> — tlirgo eiﬁot/ﬁe*iﬁe,ot/ﬂ k> ( )
136

_ tIHEO ei(ﬁofﬁwk)t/ﬁ| k)

We know that this limit exists, since at then end of times the system is dissoci-

ated, so that the excited state potential is zero, and Hy = H, . Using equation
(72) we see that

lim f(t) = lim_f(~1)

t—00
0
= lim eet f(—t)dt

e—0t ) _ o

e (137)
- el—if(l;lJr 0 €€_Etf(t)dt
o0
=— lim [ e f(t)dt,
e—=0~ Jo
so that
oo ~
Q_| k> = — lim Eei(Ho—hwk—ihe)t/h| k)
e—=0" Jo
~ s . o0
= lim ihe(Hy — hwy, — ihe)_lez(Ho—hwk—lhE)t/h | k)
e—0—
im i G fryt ’ (138)
= lim ihe(hwy + ihe — Hy) " | k)
e—0—
= lim G(hwy, + ihe)| k)
e—0—
= | ¥y)-

Following equations (94) — (98), we see that we can write the representation
of the wave function as

(x| o) = ﬁe“ﬂ+/dr'gg(r,r')V(r')¢;(r'). (139)

o

The fact that the real energy axis is approached from the negative imaginary
axis, in stead of from the positive imaginary axis as in the scattering problem,
is reflected in the Green’s function

— M —ik|lr—r'
9o (r,r')z—me Ko, (140)

which is the complex conjugate of gj (r,r'). Hence, in the Born approximation

we get
1 . . . ! ’
Uy (r) = @ )3 ellr — 5 l;i%eﬂm /dr'e’(k+k )r V(zh, (141)
mT)2 e
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where k' is a vector of length k in the direction of r, or in an alternative notation

Yy (r) = (271) etk _ %e_“" f(k,k, 7). (142)

M

We know that the kinetic energy of a plane wave, Ej; = hwy, is given by

h%k?
E, = 14
k 2'u ) ( 3)
so that the infinitesimal element
7
Knowing that
- uk N -
/dk|k>(k| = /k2dkdk|k><k| = /ﬁdEkdk|k)(k| =1, (145)
we define the energy normalized ket | Exk) = /uk/h| k) , for which
/dEkdfc|Ekf<><EklE| =1 (146)
It easily seen then, that
| Exk) = / dE dk'| By kK'Y By k'| Exk), (147)
so that A . o
(EpX'| Exk) = §(Ey — Ei)d(k" — k). (148)
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