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Chapter 1

Born-Oppenheimer approximation

1.1 Molecular Hamiltonian

We consider a molecular system consisting of n electrons and N nuclei. The notation of the
Cartesian coordinates, linear momenta, masses, and charges are shown in Table 1.1. The
Hamiltonian is given by

Ĥ = T̂e + T̂N + V̂e,e + V̂e,N + V̂N,N , (1.1)

with the kinetic energy of the electrons

T̂e =
n∑
i=1

p̂2
i

2me
= − ~2

2me

n∑
i=1

∇2
i , (1.2)

the kinetic energy of the nuclei

T̂N =

N∑
α=1

P̂ 2
α

2mα
= −

N∑
α=1

~2

2Mα
∇2
α, (1.3)

the Coulomb repulsion between the electrons

V̂e,e =
∑
i<j

e2

4πε0

1

|ri − rj |
, (1.4)

the Coulomb attraction between the electrons and nuclei

V̂e,N =

n∑
i=1

N∑
α=1

e2

4πε0

−Zα
|ri −Rα|

, (1.5)

Particles coordinates momenta masses charges

Electrons (i = 1, . . . , n) ri p̂i = ~
i∇i me −e

Nuclei (α = 1, . . . , N) Rα P̂α = ~
i∇α Mα Zαe

Table 1.1: Notation of coordinates, linear momenta, masses, and charges.
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and the Coulomb repulsion between the nuclei

V̂N,N =
∑
α<β

e2

4πε0

ZαZβ
|Rα −Rβ|

. (1.6)

1.2 Mass weighted coordinates

Before we proceed, we introduce mass weighted coordinates. This is not essential, but it sim-
plifies the equations. Coordinate transformations are frequently used in quantum dynamics
to simplify a problem. For N nuclei, we define 3N mass weighted coordinates byQ1

Q2

Q3

 =
√
M1R1;

Q4

Q5

Q6

 =
√
M2R2; . . . ;

Q3N−2

Q3N−1

Q3N

 =
√
MNRN . (1.7)

We will use the column vector Q to denote all 3N nuclear mass weighted coordinates. The
nuclear kinetic energy operator (Eq. 1.3) now takes the form

T̂N = −~2

2

3N∑
i=1

∂2

∂Q2
i

= −~2

2
∇2
Q. (1.8)

The 3n electronic coordinates are denoted by the column vector q, and the total Coulomb
interaction will be denoted by

V̂ (q;Q) ≡ V̂e,e + V̂e,N + V̂N,N . (1.9)

1.3 The Born-Oppenheimer approximation

The Born-Oppenheimer approximation relies on the nuclei being much heavier than the
electrons, Mα � me. Already the hydrogen nucleus has 1836.15 times the mass of an
electron. This allows a two-step approach to solving the Schrödinger equation. In the first
step the kinetic energy of the nuclei is neglected and the electronic Hamiltonian is defined,

Ĥ(el) ≡ T̂e + V̂ (q;Q). (1.10)

For a given choice of the positions of the nuclei (Q), the electronic wave functions Φ
(el)
i (q;Q)

(i = 0, 1, . . . ) are the solutions of the electronic Schrödinger equation,

Ĥ(el)Φ
(el)
i (q;Q) = E

(el)
i (Q)Φ

(el)
i (q;Q). (1.11)

The electronic energies E
(el)
i (Q) depend on the positions of the nuclei, and they are usually

referred to as adiabatic or Born-Oppenheimer potential energy surfaces. We assume that the
electronic wave functions are orthonormal

〈Φ(el)
i |Φ

(el)
j 〉q ≡

∫
· · ·
∫

Φ
(el),∗
i (q;Q) Φ

(el)
j (q;Q)dq1dq2 · · · dq3n = δi,j . (1.12)
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In the second step of the Born-Oppenheimer approximation we use the electronic wave
functions as a basis to expand the total wave function

Ψ(q,Q) =
∑
i

Φ
(el)
i (q;Q)χi(Q). (1.13)

To find an equation for the nuclear wave functions χi(Q) we first substitute the expansion
into the time-independent Schrödinger equation

[T̂N + Ĥ(el) − E]
∑
j

Φ
(el)
j (q;Q)χj(Q) = 0. (1.14)

Next, we project from the left with electronic wave functions, integrating over the electronic
coordinates

〈Φ(el)
i (q;Q)|T̂N + Ĥ(el) − E|

∑
j

Φ
(el)
j (q;Q)χj(Q)〉q = 0. (1.15)

When evaluating the matrix elements, one has to remember that the nuclear kinetic energy
operator acts on the nuclear as well as the electronic wave function since

∇2
QΦ

(el)
j (q;Q)χj(Q) = (1.16)

[∇2
QΦ

(el)
j (q;Q)]χj(Q) + 2[∇QΦ

(el)
j (q;Q)] ·∇Qχj(Q) + Φ

(el)
j (Q)∇2

Qχj(Q).

In this equation the gradient ∇Q is the vector operator

∇Q =


∂
∂Q1

...
∂

∂Q3N

 . (1.17)

To evaluate the matrix elements of the electronic Hamiltonian we use Eqs. (1.11) and (1.12)
and find

〈Φ(el)
i (q;Q)|Ĥ(el) − E|

∑
j

Φ
(el)
j (q;Q)χj(Q)〉q = [E

(el)
i (Q)− E]χi(Q). (1.18)

Combining the last four equations we arrive at a set of coupled equations

[T̂N + Ei(Q)− E]χi(Q) = ~2
∑
j

[
1

2
Gi,j(Q) + Fi,j(Q) ·∇Q

]
χj(Q), (1.19)

where the non-adiabatic coupling matrix elements are given by

Gi,j(Q) ≡ 〈Φ(el)
i (q;Q)|∇2

Q|Φ
(el)
j (q;Q)〉q (1.20)

Fi,j(Q) ≡ 〈Φ(el)
i (q;Q)|∇Q|Φ(el)

j (q;Q)〉q. (1.21)

In the Born-Oppenheimer approximation all non-adiabatic coupling matrix elements are ne-
glected and Eq. (1.19) can be solved separately for each electronic state (i)

[T̂N + Ei(Q)]χi,v(Q) = Ei,vχi,v(Q). (1.22)

The total wave function is then a product of an electronic and a nuclear wave function

Ψi,v(q;Q) = Φ
(el)
i (q;Q)χi,v(Q). (1.23)
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1.4 Validity of the Born-Oppenheimer approximation

In general, the Born-Oppenheimer approximation is accurate when the separation of the
electronic energies is large compared to the nuclear kinetic energy. To show this, we first
observe that

Fi,j(Q) = −F ∗j,i(Q), (1.24)

which follows from taking the first derivative of Eq. (1.12). Dropping the subscript q for the
scalar products we have

∂

∂Qα
〈Φ(el)

i |Φ
(el)
j 〉 = 〈

∂Φ
(el)
i

∂Qα
|Φ(el)
j 〉+ 〈Φ(el)

i |
∂Φ

(el)
j

∂Qα
〉 =

∂

∂Qα
δi,j = 0, (1.25)

which shows that

〈Φ(el)
i |

∂Φ
(el)
j

∂Qα
〉 = −〈

∂Φ
(el)
i

∂Qα
|Φ(el)
j 〉 = −〈Φ(el)

j |
∂Φ

(el),∗
i

∂Qα
〉. (1.26)

For non-degenerate real electronic wave functions we have

Fi,j(Q) = −Fj,i(Q) (1.27)

and hence Fi,i(Q) = 0. To derive an expression for i 6= j we taking the first derivative with
respect to nuclear coordinate Qα of

〈Φ(el)
i |Ĥ

(el)|Φ(el)
j 〉 = 0, (1.28)

which gives

〈 ∂

∂Qα
Φ

(el)
i |Ĥ

(el)|Φ(el)
j 〉+〈Φ

(el)
i |

∂Ĥ(el)

∂Qα
|Φ(el)
j 〉+〈Φ

(el)
i |Ĥ

(el)| ∂
∂Qα

Φ
(el)
j 〉 = 0, (for i 6= j). (1.29)

Again restricting ourselves to the real, non-degenerate case we derive, using Eqs. (1.11),
(1.27), and (1.29)

Fi,j(Q) =
〈Φ(el)

i (q;Q)|
[
∇Q, Ĥ

(el)
]
|Φ(el)
j (q;Q)〉

E
(el)
j (Q)− E(el)

i (Q)
. (1.30)

This result shows that the first derivative couplings Fi,j(Q) are small when the electronic

energies are well separated, i.e., when |E(el)
j (Q)− E(el)

i (Q)| is large. Conversely, when two
electronic states are close in energy, the nonadiabatic coupling can become large.

When the electronic wave function Φ is complex in a non-trivial way, i.e., when Φ and Φ∗

are linearly independent this derivation breaks down. However, since the electronic Hamilto-
nian is real, the functions Φ and Φ∗ are degenerate, and breakdown of the Born-Oppenheimer
approximation is expected.

In the next section we consider the second derivative couplings.
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1.5 Second derivative nonadiabatic coupling

The second derivative couplings Gi,j(Q) are related to the first derivative couplings Fi,j(Q).
For the divergence of the latter, we have, from Eq. (1.21),

∇Q · Fi,j(Q) = 〈∇QΦ
(el)
i |∇QΦ

(el)
j 〉+ 〈Φ(el)

i |∇
2
QΦ

(el)
j 〉. (1.31)

The first term on the right-hand side can be rewritten by inserting a resolution of identity
over the electronic states

〈∇QΦ
(el)
i |∇QΦ

(el)
j 〉 =

∑
k

〈∇QΦ
(el)
i |Φ

(el)
k 〉 · 〈Φ

(el)
k |∇QΦ

(el)
j 〉. (1.32)

Using the definitions of the non-adiabatic couplings and Eq. (1.24) we find

Gi,j(Q) = ∇Q · Fi,j(Q)−
∑
k

F ∗k,i(Q)Fk,j(Q). (1.33)

For real wave functions k = i and k = j do not contribute to the last term. Hence, if
two electronic states i and j are close in energy, and all other electronic states are far away
in energy, the second derivative couplings may be computed as the divergence of the first-
derivative couplings.
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Chapter 2

Diatomic molecules

We will discuss a diatomic molecule in the Born-Oppenheimer approximation. The Schrödinger
equation for the nuclear motion, vibration and rotation, is mathematically very similar to
the electronic Schrödinger equation of the hydrogen atom. The main difference is that
the Coulomb interaction between the proton and the electron is replaced by the Born-
Oppenheimer potential V (r), where r is the distance between the atoms. Therefore, we
will only summarize the key results here, without a full derivation.

We denote the Cartesian coordinates of the atoms A and B, with masses MA and MB by
RA and RB. The nuclear kinetic energy operator in Cartesian coordinates is given by

T̂ = − ~2

2MA
∇2
A −

~2

2MB
∇2
B. (2.1)

Since the motion of the center of mass is not coupled to the rotation and vibration of the
molecule, it is advantageous to introduce new coordinates. The center of mass is given by

X =
MARA +MBRB

MA +MB
. (2.2)

Furthermore, we define
r ≡ RB −RA. (2.3)

In these coordinates the kinetic energy operator becomes

T̂ = − ~2

2Mtot
∇2
X −

~2

2µ
∇2
r , (2.4)

with total mass
Mtot = MA +MB, (2.5)

and reduced mass µ, defined by
1

µ
=

1

MA
+

1

MB
. (2.6)

Since we do not consider external electric or magnetic fields, the potential only depends on
the distance r = |r|, and it is convenient to use spherical polar coordinates (r, θ, φ), defined
by

r = r

cosφ sin θ
sinφ sin θ

cos θ

 . (2.7)

8
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In principle, the kinetic energy operator for the relative motion can be written in these new
coordinates by applying the chain rule to ∇2

r . That approach is tedious and the result gives
little insight in how to proceed and solve the resulting Schrödinger equation. An indirect but
more effective approach starts with identifying Hermitian operators that commute with the
Hamiltonian.

Let us consider the angular momentum operator l̂ defined by a cross product

l̂ ≡ r × p̂, (2.8)

where p = ~
i∇ is the linear momentum operator, and the total angular momentum operator

l̂2,
l̂2 ≡ l̂ · l̂. (2.9)

By substituting Eq. (2.8) into Eq. (2.9) one can derive

l̂2 = −~2r2∇2
r + ~2r

∂2

∂r2
r. (2.10)

The Schrödinger equation for the rotational and vibrational motion, which is decoupled from
the center-of-mass motion, can be written as

[− ~2

2µ

1

r

∂2

∂r2
r +

l̂2

2µr2
+ V (r)− E]ψ(r, θ, φ) = 0. (2.11)

The first term of the Hamiltonian operator represents the radial kinetic energy and the second
term the rotational energy. The solutions can be factorized,

ψvlml(r, θ, φ) =
1

r
χvl(r)Ylml(θ, φ), (2.12)

where v = 0, 1, . . . is the vibrational quantum number. The angular part is a spherical
harmonic, it is an eigenfunction of the total angular momentum operator and of l̂z,

l̂2Yl,ml(θ, φ) = ~2l(l + 1)Yl,ml(θ, φ), with l = 0, 1, 2, . . . (2.13)

l̂zYl,ml(θ, φ) = ~mlYl,ml(θ, φ), and ml = −l,−l + 1, . . . , l. (2.14)

The spherical harmonics are orthonormal,

〈l′m′l|lml〉 ≡
∫ 2π

0

∫ 1

−1
Y ∗l′m′l

(θ, φ)Ylm′l(θ, φ) d cos θ dφ = δl′lδm′lml . (2.15)

An equation for the radial wave functions χvl(r) is found by substituting Eq. (2.12) into
Eq. (2.11), using Eq. (2.13), projecting the equation with a spherical harmonic, using the
orthonormality of spherical harmonics [Eq. (2.15)], and multiplying the equation with r. The
result is

[− ~2

2µ

∂2

∂r2
+

~2l(l + 1)

2µr2
+ V (r)]χvl(r) = Evlχvl(r). (2.16)

The solutions can be made orthonormal,∫ ∞
0

χ∗v′l′(r)χvl(r) dr = δv′vδl′l. (2.17)
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With this normalization, the functions ψvl,ml(r, θ, φ) are also orthonormal, since the volume
element for spherical polar coordinates is

dτ = r2dr d cos θ dφ (2.18)

and the r2 in the volume element cancels against the factors 1/r introduced in Eq. (2.12).
The radial Schrödinger equation for χvl(r) looks like a one-dimensional Schrödinger equa-

tion in Cartesian coordinates, except that r ≥ 0, and the rotation modifies the potential V (r)
by adding the so called centrifugal term ~2l(l + 1)/2µr2.

The energies Evl depend on the vibration quantum number v, and the rotational quantum
number l, but not on ml, so for each v and l, there are 2l + 1 degenerate eigenfunctions.

2.1 Harmonic oscillator approximation

The Born-Oppenheimer potential for a diatomic molecule can be expanded around its mini-
mum at r = re in a Taylor series,

V (r) = V (re) +
1

2
k(r − re)2 + . . . , (2.19)

where k is a force constant. Truncating the expansion after the quadratic term results in the
harmonic oscillator approximation, which can be solved analytically.

First we consider a non-rotating molecule, i.e., l = 0, and introduce a mass-weighted
coordinate

q ≡ √µ(r − re). (2.20)

By taking V (re) as the zero of energy the Hamiltonian becomes

Ĥ0 = −~2

2

∂2

∂q2
+

~2

2
ω2q2, (2.21)

where

ω =

√
k

µ
. (2.22)

The solutions of the quantum harmonic oscillator problem

Ĥ0φv(q) = εvφv(q) (2.23)

are given by

φv(q) = Hn(
√
ωq)e−

1
2
ωq2
(ω
π

) 1
4

(2nn!)−
1
2 , (2.24)

where Hn are Hermite polynomials

H0(q) = 1 (2.25)

H1(q) = 2q (2.26)

Hv+1(q) = 2qHv(q)− 2vHv−1(q), for v = 1, 2, . . . (2.27)

and the energies are given by

εv = (v +
1

2
)~ω. (2.28)
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2.2 Anharmonic oscillator, variational approach

In general, analytic solutions are not available for real potentials. There are several ways
to compute rovibrational wave functions and energies in that case. In the linear variational
method the wave function is expanded in a basis

χ(q) =
∑
i

φi(q)ci. (2.29)

The basis functions φi(q) may be chosen as the analytic solution corresponding to an approx-
imation of the potential. For example, we may write V (q) as

V (q) = V0(q) + ∆V (q), (2.30)

where V0(q) is a harmonic approximation of the potential. The Hamiltonian then becomes

Ĥ = Ĥ0 + ∆V (q), (2.31)

where Ĥ0 is the harmonic oscillator Hamiltonian corresponding to the harmonic potential V0.
Thus, the basis functions satisfy

Ĥ0φi(q) = εiφi(q). (2.32)

The linear variational method turn the Schrödinger equation into a matrix eigenvalues prob-
lem

Hc = Ec, (2.33)

where the column vector c contains the expansion coefficients and the Hamiltonian matrix
elements are given by

Hi,j ≡ 〈φi|Ĥ|φj〉 = εiδi,j + 〈φi|∆V |φj〉. (2.34)

Formally, the energies E are found as zeros of the characteristic polynomial, i.e., the deter-
minant

|H − EI| = 0, (2.35)

where I is the identity matrix with Ii,j = δi,j . For each solution E = Ev the corresponding
eigenvector cv is found as the non-trivial solution of the singular set of linear equations

(H − EvI)cv = 0. (2.36)

The energies Ev are upper limits of the exact solutions of the Schrödinger equation.

2.3 Rotational levels of diatomic molecules

The above harmonic approximation and variational methods are directly applicable to a
rotating diatomic molecule when applied to the effective potential, i.e., the potential including
the centrifugal term [see Eq. (2.16)]

Veff(r) = V (r) +
~2l(l + 1)

2µr2
. (2.37)

Lecture notes on Quantum Dynamics, version May 20, 2025
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A more approximate method is to find the vibrational wave function χv for l = 0 only and
compute the rotational energy with first order perturbation theory. This gives the energy
levels

Evl ≈ Ev + 〈χv|
~2l(l + 1)

2µr2
|χv〉 = Ev +Bvl(l + 1), (2.38)

with rotational constant

Bv =
~2

2µ
〈φv|r−2|φv〉. (2.39)

The rotational constant can be further approximated as

Bv ≈
~2

2µ
r−2
v , (2.40)

where
rv = 〈φv|r|φv〉. (2.41)

In the harmonic approximation rv = re, the equilibrium distance.

2.4 Morse oscillator

The Morse potential is a more realistic model for a diatomic Born-Oppenheimer potential
than the harmonic approximation, but is still has analytic solutions for vibrational wave
functions and energies. The Morse potential is given by

VM(r) = Ve +De[1− e−α(r−re)]2. (2.42)

It is easy to verify that the minimum of this potential occurs at r = re with VM(re) = Ve. For
large r the Morse potential approaches the value Ve+De. The force constant of the harmonic
approximation to the Morse potential is

k =
∂2V (r)

∂r2

∣∣∣∣
r=re

= 2Deα
2. (2.43)

The exact energies are given by

Ev = ~ω0(v +
1

2
)− [~ω0(v + 1/2)]2

4De
, (2.44)

where ω0 =
√

k
µ as in the harmonic approximation. The Morse oscillator has only a finite

number of bound states, and this expression is only valid for vibrational quantum numbers
v for which Ev > Ev−1. The vibrational wave functions can be found in the original paper
by Philip Morse [1].

Since there are only a finite number of bound states, the analytic solutions do not form
a complete set. This must be kept in mind when using Morse oscillator functions as basis
functions in a variational calculation. The problem can be ameliorated by using re, α, and
De as nonlinear variational parameters.
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2.5 Numerical approach to one-dimensional bound states

In a numerical approach a wave function is represented by its values on a grid, rather than
by an expansion in a basis. The simplest scheme is to use an equally spaced grid,

ri = r0 + i∆, with i = 1, 2, . . . , n, (2.45)

where ∆ is the grid spacing. The wave function is represented by column vector c, with
components

ci = χ(ri). (2.46)

To find a representation of the Hamiltonian we first consider the potential energy. We may
represent V (r)χ(r) by a vector with components

V (ri)χ(ri) = V (ri)ci, (2.47)

which corresponds to representing the potential energy operator by a diagonal matrix V with
elements

Vi,j = V (ri)δi,j . (2.48)

A representation of the kinetic energy operator may be found by approximating the second
derivative operator by a finite-difference formula,

∂2

∂r2
χ(r)|r=ri ≈

χ(ri−1)− 2χ(ri) + χ(ri+1)

∆2
=
ci−1 − 2ci + ci+1

∆2
. (2.49)

Hence, the kinetic energy operator

T̂ = − ~2

2µ

∂2

∂r2
(2.50)

is represented by the matrix

T = − ~2

2µ∆2


−2 1
1 −2 1

1 −2 1

1
. . .

 , (2.51)

or, in components

Ti,j = − ~2

2µ∆2
(δi+1,j − 2δi,j + δi,j+1). (2.52)

The Hamiltonian matrix is the sum of kinetic and potential energy matrices,

H = T + V (2.53)

and the eigenvectors and eigenvalues can be found by solving the matrix eigenvalue equation
as in Eqs. (2.33)-(2.36).

This numerical method is not variational, i.e., the energies that are found are not neces-
sarily upper limits. To converge to the exact result two conditions have to be met: the grid
spacing ∆ must be sufficiently small and the range, [r1, rn] must be sufficiently large.
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In practice, to set up a grid we first decide on the maximum energy Emax for which
we want converged results. The highest kinetic energy that we have to represent is than
Tmax = Emax − Ve, here Ve is the minimum of the potential. A plane wave with this kinetic
energy would be

ψ(r) = sin(kmaxr − ϕ) (2.54)

with
~2k2

max

2µ
= Tmax (2.55)

The corresponding de Broglie wavelength λmin is found by solving

kmaxλmin = 2π. (2.56)

As a minimum, about four points per de Broglie wavelength are required to represent the
oscillations in the wave function on a grid, so

∆min ≈
λmin

4
. (2.57)

As a rule of thumb, about 10 points per de Broglie wavelength are required for accurate
results.

By choosing a grid ranging from r1 to rn, we implicitly assume that the wave functions
are zero for r < r1 and for r > rn. Clearly, the grid must at least include the part of the
potential that is classically allowed, i.e., V (r) < Emax. In particular when the reduced mass
µ is small, wave functions will tunnel into the classically forbidden region, so the grid must
be extended accordingly.

Higher order finite-difference approximations of the second derivative operator give more
accurate results for the same grid spacing [2]. In particular, the infinite order finite difference
formula is often used. This method is known as the Colbert-Miller DVR (discrete variable
representation)[3] or sinc-function DVR [4, 5].
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Chapter 3

Time-dependent Schrödinger
equation

The motion of nuclei is most naturally described by the time dependent Schrödinger equation.
To be specific, we consider a diatomic molecule in its ground state, set in motion through
excitation by light. The ground-state vibrational wave function is χ0(r) has zero-point energy,
but it is still called stationary, because it is an eigenstate of the nuclear Hamiltonian

Ĥ0 = T̂ + V0(r), (3.1)

where V0(r) is the ground state potential and T̂ the nuclear kinetic energy operator. Without
going into the details of the interaction between light and molecules, we imagine that the
molecule is put into an electronically excited state by a short laser-pulse. The vibrational
wave function χ̃0(r) - assuming it has not changed during the excitation - will no longer be
and eigenstate of

Ĥ = T̂ + V (r), (3.2)

where V (r) is the potential for the electronically excited state. The nuclear wave function at
time t0, the time of the excitation, is equal to ground vibrational wave function

ψ(r, t0) = χ̃0(r). (3.3)

The wave function at later times, ψ(r, t), is found by solving the time-dependent Schrödinger
equation

i~
∂ψ(r, t)

∂t
= Ĥψ(r, t). (3.4)

If the photon energy put into the molecule it is not sufficient to break the bond, we may use
the vibrational wave functions χv(r) of the electronically excited state as a basis to expand
ψ(r, t) using time-dependent coefficients cv(t),

ψ(r, t) =
∑
v

χv(r)cv(t), (3.5)

where the vibrational wave functions are solutions of

Ĥχv(r) = εvχv(r). (3.6)

15
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At time t0 we have
ψ(r, t0) = χ̃0(r) =

∑
v

χv(r)cv(t0) (3.7)

The expansion coefficients at time t0 are found by projection with the vibrational wave
functions, assuming they form an orthonormal set

〈χv|χ̃0〉 = 〈χv|
∑
v′

χv′(r)cv′(t0)〉 =
∑
v′

δv,v′cv′(t0) = cv(t0). (3.8)

To find the expansion coefficients at later times, we substitute the expansion of ψ(t, r)
[Eq. (3.5)] into the Schrödinger equation (3.4)

i~
∂

∂t

∑
v

χv(r)cv(t) = Ĥ
∑
v

χv(r)cv(t) =
∑
v

εvχv(r)cv(t). (3.9)

This equation may be rewritten as∑
v

χv(r)[i~
∂

∂t
cv(t)− εvcv(t)] = 0 (3.10)

and since the vibrational wave functions are linearly independent all the terms in the sum
must be zero, i.e.,

i~
∂

∂t
cv(t) = εvcv(t). (3.11)

Alternatively, one may arrive at this equation by projecting Eq. (3.9) with χv(r). The solution
is

cv(t) = e−
i
~ εv(t−t0)cv(t0). (3.12)

Substituting this back into the expansion [Eq. (3.5)] and using Eq. (3.8) for the coefficients
at t0 gives

ψ(r, t) =
∑
v

χv(r)e
− i

~ εv(t−t0)〈χv|χ̃0〉. (3.13)

3.1 Time-dependent Schrödinger equation in arbitrary basis

Above we expanded the time-dependent wave function ψ(r, t) in a basis of eigenfunctions
χv(r) of the Hamiltonian Ĥ. Here, we expand ψ(r, t) in an arbitrary orthonormal basis
{φ1(r), . . . , φn(r)}

ψ(r, t) =
∑
i

φi(r)di(t). (3.14)

Substituting this expansion into the time-dependent Schrödinger equation (3.4) and project-
ing with the basis functions φi gives

i~
∂

∂t
di(t) =

∑
j

〈φi|Ĥ|φj〉dj(t), (3.15)

or, in matrix-vector notation

i~
∂

∂t
d(t) = Hd(t). (3.16)
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To solve this set of coupled, first-order, linear differential equations, we first determine the
eigenvalues λi and eigenvectors ui of the Hamiltonian matrix H

Hui = λiui. (3.17)

This approach is equivalent to using the above method, with vibrational wave functions
obtained with the linear variational method. We first rewrite the eigenvalue problem in
matrix notation

H [u1u2 . . .un] = [u1u2 . . .un]

λ1

. . .

λn

 (3.18)

or
HU = UΛ (3.19)

where Λ is the diagonal matrix with matrix elements

Λi,j = λiδi,j . (3.20)

Assuming that the eigenvectors ui are orthonormal, we find

U †U = I, (3.21)

because
(U †U)i,j = u†iuj = 〈ui|uj〉 = δi,j . (3.22)

Since the columns of the matrix U are linearly independent and the matrix is square it is
nonsingular, i.e., it has an inverse. Multiplying Eq. (3.21) with U−1 from the right gives

U † = U−1 (3.23)

and so U is a unitary matrix. We express the expansion coefficient vector in this the basis
of eigenvectors,

d(t) = Uc(t). (3.24)

Substituting this basis transformation into Eq. (3.16) and multiplying from the left with U †

gives

i~
∂

∂t
U †Uc(t) = U †HUc(t) (3.25)

or

i~
∂

∂t
c(t) = Λc(t). (3.26)

If we write this in components we are back at equation (3.12), with the eigenvalues λi corre-
sponding to the vibrational energies εv. At t0, we can find the expansion coefficient again by
projection,

di(t0) = 〈φi|χ̃0〉. (3.27)

Using
c(t0) = U †d(t0) (3.28)

we find the explicit expression of the time-dependent expansion coefficients as

d(t) = U

e
− i

~λ1(t−t0)

. . .

e−
i
~λn(t−t0)

U †d(t0). (3.29)
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3.2 Matrix exponentiation

The time-dependent Schrödinger equation expressed in a basis, Eq. (3.16) can also be written
as

∂

∂t
d(t) = − i

~
Hd(t). (3.30)

For sufficiently small time steps τ we can approximate

d(t+ τ) ≈ d(t) + τ
∂

∂t
d(t) (3.31)

= d(t)− i

~
τHd(t) (3.32)

= (I − i

~
τH)d(t). (3.33)

As a numerical approach this is more efficient than the previous method, since it involves
only a matrix-vector multiplication, which requires in the order of n2 operations (n being the
dimension of the basis), rather than the order n3 required for diagonalization. However, it
can only be used for short times. For larger time intervals τ may be divided into m smaller
time steps τ/m, for which the short-time propagator can be used. Mathematically, we get
the exact result by taking the limit of m→∞,

d(t+ τ) = lim
m→∞

(I − iτ

m~
H)md(t). (3.34)

Since the Hamiltonian matrix H commutes with the identity matrix I this limit can be
evaluated with the exact same method one would use when the dimension of the space were
one - i.e. when H would be a number and d had only a single component. The result is

d(t+ τ) =
∞∑
k=0

1

k!
(− i

~
Hτ)kd(t) (3.35)

Here, one may recognize the Taylor expansion of the exponential function

ex =

∞∑
k=0

1

k!
xk. (3.36)

By defining a function of a matrix through the Taylor expansion of that function, we may
write

d(t+ τ) = e−
i
~Hτd(t). (3.37)

In general, for a function defined by a polynomial expansion

f(x) =
∑
k

ckx
k (3.38)

we may define the corresponding matrix function

f(A) ≡
∑
k

ckA
k. (3.39)
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If the matrix A is normal, i.e., if it commutes with its Hermitian conjugate

[A,A†] = 0, (3.40)

it has a complete set of orthonormal eigenvectors. Note that Hermitian matrices H satisfy
this condition, since H† = H, but it also hold for anti-Hermitian matrices A = iH, for which
A† = −A. With the eigenvectors collected in the unitary matrix U and the corresponding
eigenvalues in the diagonal matrix Λ,

AU = UΛ (3.41)

we may write A as
A = UΛU †. (3.42)

The square of the matrix may now be evaluated as

A2 = AA = (UΛU †)(UΛU †) = UΛ2U † (3.43)

and for an arbitrary power we find

Ak = UΛkU †. (3.44)

Hence, the matrix-polynomial Eq. (3.39) can be evaluated as

f(A) =
∑
k

ckUΛkU † (3.45)

= U

(∑
k

ckΛ
k

)
U † (3.46)

= U


∑

k ckλ
k
1

. . . ∑
k ckλ

k
n

U † (3.47)

= U

f(λ1)
. . .

f(λn)

U †. (3.48)

From this general expression we can immediately obtain equation (3.29) of the previous
section by noting that the eigenvalues of − i

~H(t − t0) are − i
~λi(t − t0), and so matrix

exponentiation is equivalent to the other methods. Note, however, that algorithms exist to
exponentiate a matrix, without computing eigenvalues and eigenvectors first [6].

3.3 Free particles in one dimension

The Hamiltonian Ĥ0 for a free particle with mass µ, moving in one dimension (x) consists of
just the kinetic energy operator

Ĥ0 = − ~2

2µ

∂2

∂x2
. (3.49)
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We call it a “free particle” because the potential is zero. The time-independent Schrödinger
equation for this Hamiltonian is

Ĥ0Ψ(x) = EΨ(x), (3.50)

and it is easy to find the solutions Ψ(x)

Ψ(x) = Ne−ikx, (3.51)

where the so called wave vector k is related to the energy E by

E =
~2k2

2µ
. (3.52)

The problem with these solutions is that they cannot be normalized, since the integral∫ ∞
−∞
|Ψ(x)|2 dx (3.53)

does not exist (“is infinite”) for any normalization factor N 6= 0. To give meaning to these
wave functions we will first derive analytic solutions of the time-dependent Schrödinger equa-
tion for a free particle. This derivation will be more complicated, but we will find solutions
that can be normalized, so the interpretation of the result will be straightforward.

3.4 Gaussian wave packets

The time-dependent Schrödinger equation for a free particle moving in one dimension is

i~
∂Ψ(x, t)

∂t
= − ~2

2µ

∂2

∂x2
Ψ(x, t). (3.54)

We will derive normalizable solutions that can be written in exponential form

Ψ(x, t) = ef(x,t), (3.55)

where f(x, t) is a complex function. To simplify the notation we will use a dot to denote the
derivative with respect to time (t), and a prime to denote the derivative with respect to the
position x and we will drop the (x, t) arguments. Dividing Eq. (3.4) by i~ then gives

Ψ̇ =
i~
2µ

Ψ′′. (3.56)

For the time derivative we have
Ψ̇ = ḟ ef = ḟΨ, (3.57)

the first derivative of Ψ with respect to x gives

Ψ′ = f ′ef (3.58)

and the second derivate is

Ψ′′ = f ′′ef + (f ′)2ef = [f ′′ + (f ′)2]Ψ. (3.59)
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Substituting Eqs. (3.57) and (3.59) into the Schrödinger equation (3.56) gives

ḟΨ =
i~
2µ

[f ′′ + (f ′)2]Ψ. (3.60)

This equation is satisfied if

ḟ =
i~
2µ

[f ′′ + (f ′)2]. (3.61)

It turns out that this equation has solutions that can be written in this form:

f(x, t) = −1

2
αt(x− vt)2 + ikx+ ct, (3.62)

where αt and ct are functions of time, and v and k are constants. It may not be immediately
obvious that a solution can be written like this, but given the functional form is not difficult
to derive the expressions for αt and ct and find an interpretation of the parameters v, k, αt,
and ct. In particular, we will find that v has the meaning of the (average) velocity of the
wave packet, ~k = µv ≡ p is its linear momentum and ct keeps the wave packet normalized
as a function of time.

To verify Eq. (3.62) we first write the left-hand side (lhs) and the right-hand side (rhs) of
Eq. (3.61) as second degree polynomials in x. The lhs is equal to:

ḟ = −1

2
α̇t(x− vt)2 + αtv(x− vt) + ċt (3.63)

= −1

2
α̇tx

2 + (α̇tt+ αt)vx−
1

2
α̇tv

2t2 − αtv2t+ ċt. (3.64)

For the rhs we have:

f ′ = −αt(x− vt) + ik = −αtx+ αtvt+ ik (3.65)

f ′′ = −αt (3.66)

(f ′)2 = α2
tx

2 − 2αt(αtvt+ ik)x+ (αtvt+ ik)2 (3.67)

Equating the terms with x2 in Eq. (3.61) gives:

−1

2
α̇t =

i~
2µ
α2
t (3.68)

or

α̇t = − i~
µ
α2
t . (3.69)

We will solve this first order differential equation for αt below.
Equating the terms linear in x gives [see Eqs. (3.61), (3.64), and (3.67)]

(α̇tt+ αt)v =
i~
2µ

(−2α2
t vt− 2αtik). (3.70)

On the lhs we can replace α̇t by substituting Eq. (3.69) and we can simplify the rhs:

− i~
µ
α2
t tv + αtv = − i~

µ
α2
t vt+

~
µ
αtk, (3.71)
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which shows that the parameters v and k must be related through:

v =
~k
µ
. (3.72)

Since mass times velocity is linear momentum, µv = p, we just found that ~k = p, as we
announced above. Note that for a free moving particle we do not expect the velocity or the
momentum to change in time, and indeed v and k are constants.

Finally, from the terms independent of x we get:

−1

2
α̇tv

2t2 − αtv2t︸ ︷︷ ︸
At

+ċt =
i~
2µ

[(αvvt+ ik)2 − αt]︸ ︷︷ ︸
Bt

(3.73)

or
ċt = Bt −At (3.74)

After solving αt (see below) we know Bt and At, so ct can be found by integration:

ct = c0 +

∫ t

0
(Bt −At) dt. (3.75)

Since the Hamiltonian is Hermitian, the normalization of the wave function should not change
in time, and we can check the expression for αt and ct by computing the norm:∫ ∞

−∞
|Ψ(x, t)|2dx =

∫ ∞
−∞

Ψ(x, t)∗Ψ(x, t)dx =

∫ ∞
−∞

e−<[αt](x−vt)2+2<[ct] dx, (3.76)

where <[. . .] stands for the real part of the argument and the result should be time indepen-
dent.

Derivation of expression for αt

Here we solve Eq. (3.69), with α = αt,

dα

dt
= −Cα2, with C = i~

µ . (3.77)

Separation of variables gives
dα

α2
= −C dt (3.78)

Integration from some initial t = 0 for which α = α0 to time t gives∫ αt

α0

1

α2
dα = −

∫ t

0
Cdt, (3.79)

which gives

− 1

α

∣∣∣∣αt
α0

= −Ct (3.80)

or

− 1

αt
+

1

α0
= −Ct, (3.81)
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which may be rewritten as

αt =
α0

1 + i~
µ tα0

. (3.82)

First note that for t = 0 we get αt = α0, as it should be. Furthermore, over time the absolute
value of αt becomes smaller and for t� µ

~ we get

αt '
µ

i~t
→ 0 (for t→∞). (3.83)

This shows that over time |αt| gets smaller, i.e., the wave packet spreads. To make this
statement more quantitative we first note that the spread of the wave packet ∆x actually
depends on the real part of αt

∆x ≈ 1√
<[α]

(3.84)

If we take α0 to be real, then we find for the real part of αt,

<(αt) =
α0

1 + ~2

µ2 t2α
2
0

(3.85)

For t� µ
~α0

we can ignore the 1 in the denominator of this equation and we find

∆x ≈
~t√α0

µ
(3.86)

This shows that eventually the width of the wave packet will be increasing linearly in time.
Also, if α0 is large the wave packet is initially very narrow, but for large times it will be
wider.

3.5 Expectation values of Gaussian wave packets

It is left as an exercise to show that the expectation value of the position x is

〈x〉 ≡ 〈Ψ(x, t)|x|Ψ(x, t)〉
〈Ψ(x, t)|Ψ(x, t)〉

= vt. (3.87)

Here, the wave function is given by Eqs. (3.55), (3.62), and (3.82). Note that the expression
for ct is not needed. Also, the expectation value of the linear momentum:

〈p̂〉 = 〈~
i

∂

∂x
〉 = ~k. (3.88)

Even more work: solve ct integral Eq. (3.75) and show that 〈Ψ(x, t)|Ψ(x, t)〉 is a constant.

3.6 Middle of the wave packet

Since αt becomes very small after a long time, the wave function Ψ(x, t) near x = vt looks
like

Ψ(x, t) ' eikx+ct . (3.89)
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−→ xa b

ρ(x, t)

jin jout

Figure 3.1: The particle density ρ(x, t) as a function of position x for time t. The fluxes at
a and b are jin and jout.

The interpretation of the wave packet suggests that Ψ(x, t), at least in this region near
x = vt, describes particles that move with velocity v. Neglecting the term with αt(x − vt)2

in Eq. (3.62) we note that f ≈ ikx+ ct and 3.61 becomes

ḟ =
i~
2µ

(f ′)2, (3.90)

from which we find

ċt = − i
~
~2k2

2µ
. (3.91)

Since ~k = p = µv, we may rewrite ~2k2

2µ = 1
2µv

2, which is the kinetic energy (E0) of a particle
with mass µ moving at a velocity v. Solving Eq. (3.91) by integration we find

ct = c0 −
i

~
E0t (3.92)

so at large t for x ≈ vt we may write Ψ(x, t) as

Ψ(x, t) ' ec0eikxe−
i
~E0t (3.93)

This wave function cannot be valid for all x, since it cannot be normalized, but the x-
dependent part eikx is a solution of the time-independent Schrödinger equation at energy
E0,

(Ĥ − E0)eikx = 0 (3.94)

and it can also be easily verified that Ψ(x, t) is solution of the time-dependent Schrödinger
equation. Since the wave packet spreads out over time, the region for which Eq. (3.93)
becomes larger and larger, so it is very tempting to use such functions to describe free
particles with energy E0, even though they cannot be normalized. In the next section we
will introduce the concept of flux, which will help us to work with solutions of the time-
independent Schrödinger equations that cannot be normalized.

3.7 Flux in one dimension

We consider a particle moving along a one-dimensional Cartesian coordinate. The particle
density ρ(x, t) gives the probability density of finding a particle at coordinate x at time t
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(Fig. 3.1). The probability Pab(t) of finding the particle in the interval [a, b] at time t is found
by integrating the particle density over that interval

Pab(t) =

∫ b

a
ρ(x, t) dx. (3.95)

The change in time of the probability of finding a particle in the interval is related to the
fluxes ja and jb through

d

dt
Pab(t) = ja − jb (3.96)

To find the quantum mechanical expression for flux we express the particle density in terms
of the wavefunction Ψ(x, t):

ρ(x, t) = |Ψ(x, t)|2 = Ψ∗(x, t)Ψ(x, t) (3.97)

and we determine its time derivative from the time-dependent Schrödinger equation:

d

dt
Pab(t) =

d

dt

∫ b

a
Ψ∗(x, t)Ψ(x, t) dx =

∫ b

a

[
Ψ∗(x, t)

d

dt
Ψ(x, t) + Ψ(x, t)

d

dt
Ψ∗(x, t)

]
dx.

(3.98)
From the time-dependent Schrödinger equation we have

d

dt
Ψ(x, t) = − i

~
ĤΨ(x, t) (3.99)

and its complex conjugate
d

dt
Ψ∗(x, t) =

i

~
ĤΨ∗(x, t) (3.100)

so we have
d

dt
Pab(t) = − i

~

∫ b

a

[
Ψ∗(x, t)ĤΨ(x, t)−Ψ(x, t)ĤΨ∗(x, t)

]
dx. (3.101)

The Hamiltonian for a particle with mass µ moving in a potential V (x) is

Ĥ = − ~2

2µ

∂2

∂x2
+ V (x). (3.102)

First, we note that the potential, if we assume that it is real, does not contribute to the
integral ∫ b

a
[Ψ∗(x, t)V (x)Ψ(x, t)−Ψ(x, t)V (x)Ψ∗(x, t)] dx = 0. (3.103)

If the potential has a negative imaginary part the Hamiltonian is not Hermitian and the
potential can “absorb” particles. In a time-dependent calculation this means that the norm
of the wave function would not be conserved.

For the kinetic energy term we find

d

dt
Pab(t) =

i~
2µ

∫ b

a

[
Ψ∗(x, t)

∂2

∂x2
Ψ(x, t)−Ψ(x, t)

∂2

∂x2
Ψ∗(x, t)

]
dx. (3.104)
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To evaluate the integral, we use the following relation that holds for any two functions f(x)
and g(x) with derivative f ′ and g′:

d

dx
(fg′ − gf ′) = f ′g′ + fg′′ − (g′f ′ + gf ′′) = fg′′ − gf ′′ (3.105)

so ∫ b

a
(fg′′ − gf ′′)dx =

∫ b

a

d

dx
(fg′ − gf ′)dx = (fg′ − gf ′)

∣∣b
a
. (3.106)

Applying this relation to Eq. (3.104) gives

d

dt
Pab(t) =

i~
2µ

[
Ψ∗(x, t)

d

dx
Ψ(x, t)−Ψ(x, t)

d

dx
Ψ∗(x, t)

]b
a

(3.107)

= −~
µ

Im

[
Ψ∗(x, t)

d

dx
Ψ(x, t)

]b
a

(3.108)

= ja − jb, (3.109)

where we define the flux at x

jx =
~
µ

Im

[
Ψ∗(x, t)

d

dx
Ψ(x, t)

]
. (3.110)

3.8 The Ehrenfest theorem

Combining Eqs. (3.72), (3.87), and (3.88) shows that for a Gaussian wave packet moving in
free space

〈x〉 = vt =
〈p〉
µ
t. (3.111)

So the expectation values of position and momentum behave as for a classical particle. This
is a special case of the much more general Ehrenfest theorem, which holds for arbitrary wave
packets, and is also valid if the potential in not zero: the expectation values of observables
satisfy classical equations of motion.

Consider the time-dependence of the expectation value of some observable Â for a particle
moving in one dimension as described by some wavepacket Ψ(x, t)

d

dt
〈Ψ(x, t)|Â|Ψ(x, t)〉 = 〈Ψ̇(x, t)|Â|Ψ(x, t)〉+ 〈Ψ(x, t)|Â|Ψ̇(x, t)〉 (3.112)

=
i

~
〈Ψ(x, t)|[Ĥ, Â]|Ψ(x, t)〉 (3.113)

or, written more compactly,
d

dt
〈Â〉 =

i

~
〈[Ĥ, Â]〉. (3.114)

If we take

Ĥ =
p2

2µ
+ V (x) (3.115)
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and use

[Ĥ, x] =
1

2µ
[p2, x] =

1

2µ
{p[p, x] + [p, x]p} =

~
iµ
p (3.116)

[Ĥ, p] =
1

2µ
[V, p] = −~

i

d

dx
V, (3.117)

we find

d

dt
〈x〉 =

〈p〉
µ

(3.118)

d

dt
〈p〉 = −

〈
dV

dx

〉
. (3.119)

These equations of motion correspond to Hamiltons classical equations of motion

d

dt
x =

∂H(p, x)

∂p
=
p

µ
(3.120)

d

dt
p = −∂H(p, x)

∂x
= −∂V

∂x
, (3.121)

where the classical Hamiltonian is defined by

H(p, x) =
p2

2µ
+ V (x). (3.122)
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Chapter 4

Time-independent scattering in one
dimension

4.1 Some properties and examples of flux

The first example is a free particle in 1-D:

Ψ1(x) = Neikx, (4.1)

where N is a constant, we find

j1 =
~
µ

Im

[
N∗e−ikx

d

dx
Neikx

]
= |N |2~k

µ
. (4.2)

The momentum is given by p = ~k, it is related to the velocity v through p = µv, and for
the density we have ρ(x) = |Ψ(x)|2 = |N |2, so we get a relation that is also valid in classical
mechanics:

j = ρv. (4.3)

As a second example we look at

Ψ2(x) = aeikx + be−ikx, (4.4)

which has a flux

j2 =
~k
µ

(|a|2 − |b|2). (4.5)

This result may suggest that the flux of the sum of two wave functions is equal to the fluxes of
these wave functions, but in general that is not correct. A counter example can be constructed
from Ψ1(x), by writing it as a sum

Ψ1(x) = N cos(kx) + i sin(kx) (4.6)

From the definition [Eq. 3.110] it follows immediately that the flux of a real wave function
is zero. The flux is also zero for a wave function that can be written as an arbitrary complex
constant factor times a real wave function.

28



CHAPTER 4. TIME-INDEPENDENT SCATTERING IN ONE DIMENSION Page 29

In general, for a wave function with a real part f(x) and an imaginary part g(x),

Ψ(x) = f(x) + ig(x) (4.7)

we find

j =
~
µ

Im

{
[f(x)− ig(x)]

d

dx
[f(x) + ig(x)]

}
=

~
µ

(fg′ − f ′g). (4.8)

The factor
W (f, g) = fg′ − f ′g (4.9)

is called the Wronskian of the functions f and g. If the Hamiltonian is real, and Ψ is a
solution of the 1-D Schrödinger equation with energy E, then f and g are both solution with
energy E. In this case the Wronskian of f and g, and hence the flux j are constant. This
can be seen in two ways. First consider the derivative of the Wronskian:

d

dx
W (f, g) = f ′g′ + fg′′ − f ′′g − f ′g′ = fg′′ − f ′′g. (4.10)

For f and g we have:

− ~2

2µ
f ′′(x) + V (x)f(x) = Ef(x) (4.11)

− ~2

2µ
g′′(x) + V (x)f(x) = Eg(x). (4.12)

If we multiply the first of these two equations with g(x) and the second with f(x) and we
take the difference of the two equations we get

~2

2µ
(g′′f − f ′′g) = 0 (4.13)

and we find that the Wronskian W (f, g), and hence the flux j, is constant.
An easier way to show that a solution Ψ(x) of the time-independent Schrödinger equation

has constant flux starts with Eq. (3.101). Again, assuming the Hamiltonian is real, both Ψ
and Ψ∗ have energy E, and the right-hand side of the equation is zero. This means that the
probability Pab(t) of finding a particle in interval [a, b] is constant in time, and hence the flux
ja = jb [see Eqs. (3.106)] for each a and b, or, in other words, j is constant.

This result shows that if a solution of the time-independent Schrödinger equation has
a node, i.e., for some x we have Ψ(x) = 0, then its flux must be zero at x, and, hence,
everywhere.

4.2 Boundary conditions for 1-D scattering problems

We start with an example from elementary quantum mechanics that has an analytic solution,
a “stream of particles” with energy E and mass µ, scattered by a step potential:

V (x) =

{
Va, for x > 0.
Vb, for x < 0,

(4.14)
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We assume the particles are incoming from the right, and particles may be reflected at x = 0,
or transmitted. Hence, for x > 0 the wave function consists of an incoming and a reflected
part

Ψa(x) = e−ikax − eikaxR, (x > 0), (4.15)

with reflection coefficient R. The minus sign for the reflection term is just a convention: with
this choice R = 1 if Vb =∞. For x < 0 we only have a transmitted wave

Ψb(x) = e−ikbxT, (x < 0), (4.16)

where T is the transmission amplitude. The wave numbers ka and kb are the positive solutions
of

~2k2
i

2µ
= E − Vi, for i = a, b. (4.17)

The flux of the transmitted wave is jb = ~kb
µ |T |

2. The incoming flux, by which we mean
the flux of the wave function without the step in the potential, i.e., for Vb = Va, is given by
jin = ~ka

µ . With the step potential the reflected part will be nonzero, and the flux will be

ja = jin −
~ka
µ
|R|2. (4.18)

Since flux must be conserved, we must have ja = jb, or

1− |R|2 =
kb
ka
|T |2. (4.19)

The amplitudes R and T can be found from the condition that the wave function and its first
derivative must be continuous at x = 0. The transmission probability is given by

Pa←b =
jb
jin

=
kb
ka
|T |2. (4.20)

Note that as a result of conservation of flux [Eq. (4.19)], this probability must be between 0
and 1.

4.3 Numerical solution for 1-D tunneling problem

We consider a one-dimensional potential barrier, e.g.,

V (x) = Vme
−αx2

. (4.21)

Classically, if the scattering energy E is less than the maximum of the potential, E < Vm, all
particles will be reflected, and otherwise all particles are transmitted. Quantum mechanically,
tunneling may occur for E < Vm, while part of the wave may still be reflected if E > Vm.

The boundary conditions are similar to the step-potential problem in the previous Section
with Va = Vb = 0, but Eq. (4.15) now applies for x � 0, where we have V (x) ≈ 0, and
similarly Eq. (4.16) now applies for x� 0.
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In the region where the potential is not negligible, we will solve the Schrödinger equation
numerically, representing the wave function by its values Ψi ≡ Ψ(xi) on an equally spaced
grid

xi = x0 + i∆, i = 1, . . . , N, (4.22)

and using the second order finite difference approximation for the kinetic energy operator,
just as we did for bound states in Section 2.5. The grid will have to cover the entire range
where the potential is nonnegligible, so x0 � 0 and xN � 0, and the step size ∆ must
be taken small compared to the smallest Broglie wave length in the problem. Since the
time-independent Schrödinger equation is a second order differential equation, we need two
boundary conditions. Initially, we do not know the reflection coefficient R, so we cannot
apply boundary conditions at xN . For x� 0 we also do not know T , but we know the ratio
of Ψ(x) for two points. Hence, we introduce the Q-matrices defined by

Ψi−1 = QiΨi, i = 1, 2, . . . , N, (4.23)

For i = 1 we have
e−ikx0T = Q1e

−ikx1T, (4.24)

or
Q1 = eik(x1−x0) = eik∆. (4.25)

The 1-d time independent Schrödinger equation[
− ~2

2µ

d2

dx2
+ V (x)− E

]
Ψ(x) = 0 (4.26)

can be rewritten as
Ψ′′(x) = W (x)Ψ(x) (4.27)

where

W (x) =
2µ

~2
[V (x)− E]. (4.28)

Using the second order finite difference approximation [as in Eq. (2.49)], we find

Ψ′′i =
Ψi−1 − 2Ψi + Ψi+1

∆2
= WiΨi, (4.29)

where Wi ≡W (xi). This gives the three-term recursion relation

Ψi−1 − (∆2Wi + 2)Ψi + Ψi+1 = 0. (4.30)

We can relate both Ψi−1 and Ψi+1 to Ψi using the Q-matrices defined in Eq. (4.23)

QiΨi − (∆2Wi + 2)Ψi +Q−1
i+1Ψi = 0, (4.31)

which gives the two-term recursion relation

Qi − (∆2Wi + 2) +Q−1
i+1 = 0. (4.32)

Since we know Q1, we can get propagate the Q-matrices:

Qi+1 = (∆2Wi + 2−Qi)−1, for i = 1, . . . , N − 1. (4.33)
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Once we have computed QN we can match it to the x � 0 boundary condition of the wave
function

ΨN−1 = QNΨN (4.34)

or, with Eq. (4.15),

e−ikaxN−1 − eikaxN−1R = QN (e−ikaxN − eikaxNR) (4.35)

which we can solve for R

R = [eikaxN−1 −QNeikaxN ]−1[e−ikaxN−1 −QNe−ikaxN ]. (4.36)

Having found the reflection coefficient R, we can obtain the wave function ΨN at the last
grid point from Eq. (4.15). Assuming we stored the matrices Qi during the propagation, we
can compute the wave function recursively with Eq. (4.23), propagating backwards, i.e., with
i = N,N − 1, . . . , 1. To complete the calculation we can find the transmission amplitude T
from

Ψ0 = e−ikbx0T (4.37)

and we can check numerically the relation between |T | and |R| as given by Eq. (4.19).
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Chapter 5

Multichannel collinear scattering

Collinear scattering is an approximation where all atoms move on a straight line. The
classic[7, 8, 9] example is the vibrational excitation of H2 by He

H2(v) + He→ H2(v′) + He. (5.1)

We will take the coordinate of the atom as xA, and the coordinates of the atoms in the
molecules as xB and xC . The mass of the atom is mA and the mass of the molecule is
mBC = mB +mC . The center-of-mass of the molecule is

xBC =
mBxB +mCxC

mBC
(5.2)

and the center-of-mass of the complex is

XCOM =
mAxA +mBCxBC

mA +mBC
. (5.3)

In these Cartesian coordinates, the Hamiltonian is given by

Ĥ = − ~2

2mA

∂2

∂x2
A

− ~2

2mB

∂2

∂x2
B

− ~2

2mC

∂2

∂x2
C

+ VCart(xA, xB, xC). (5.4)

The first step is to introduce Jacobi coordinates, or scattering coordinates:

r = xB − xC (5.5)

R = xA − xBC (5.6)

Assuming the potential is invariant under translation of all three atoms, we can transform
the potential to Jacobi coordinates by taking the center of mass of the molecule as the origin,
so xA = R, and

V (R, r) = VCart(R,
mC

mBC
r,− mB

mBC
r). (5.7)

We assume that the interaction between the atom and the molecule approaches zero for large
distance, so the diatomic potential is given by

VBC(r) = lim
R→∞

V (R, r) (5.8)
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and the interaction potential is defined by

∆V (R, r) = V (R, r)− VBC(r). (5.9)

The Hamiltonian in Jacobi coordinates then becomes

Ĥ = − ~2

2µ

∂2

∂R2
+ ĤBC(r) + ∆V (R, r), (5.10)

with the reduced mass of the complex

µ−1 = m−1
A +m−1

BC (5.11)

and the Hamiltonian of the diatom is

ĤBC = − ~2

2µBC

∂2

∂r2
+ VBC(r), (5.12)

with µBC the reduced mass of the molecules BC,

µ−1
BC = m−1

B +m−1
C . (5.13)

The Schrödinger equation in Jacobi coordinates can now be rewritten as

∂2

∂R2
Ψ(R, r) =

2µ

~2

[
ĤBC(r) + ∆V (R, r)− E

]
Ψ(R, r). (5.14)

The vibrational wave functions of the diatom are solutions of

ĤBCφn(r) = εnφn(r). (5.15)

We consider energy well below the dissociation energy of the molecule BC, and we assume
that the functions φn(r) approximate a complete set, so we can use these functions to expand
the scattering wave functions

Ψ(R, r) =
∑
n′

φn′(r)cn′(R). (5.16)

The terms in this expansion for which the vibrational energies are less than the total energy,
εn < E, are called the open channels. To get converged results, we may also have to include
closed channels. The closed channels have vibrational energies εn > E, so they cannot
contribute asympotically (i.e., at large R), but in the interaction region, where ∆V (R, r) is
not negligible, they can.

To define the boundary conditions, we assume that the interaction potential is sufficiently
repulsive at short range (i.e., for small R) so that we may assume that the wave function can
be set to zero for some value R0,

Ψ(R0, r) = 0. (5.17)

For large R the boundary conditions are

Ψn(R, r) ' −φn(r)v−
1/2

n e−iknR︸ ︷︷ ︸
incoming

+
∑
n′

φn′(r)v
−1/2
n′ eikn′RSn′,n︸ ︷︷ ︸

outgoing

. (5.18)
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There are several differences compared to single channel scattering. The wavenumber kn
depends on the vibrational state (n) of the molecule, since the kinetic energy is equal to the
total energy minus the energy of the molecule:

~2k2
n

2µ
= E − εn. (5.19)

Furthermore, the wave function Ψn is labeled with the vibrational state of the molecule
before the collision, i.e., the state of the incoming wave. After the collision, there can be
contributions to the wave function from open channels, so the outgoing wave is a sum over
channels. The contribution of final state φn′ for a given initial state φn, is given by the
S-matrix element Sn′,n. The S-matrix is a complex symmetric unitary matrix, i.e., S = ST

(or Sn′,n = Sn,n′), and S†S = SS† = 1m×m, where m is the number of open channels. The

unitarity is the result of using flux-normalized waves: we included the factors v
−1/2
n , with the

velocities vn = ~kn/µ. The probability of scattering into final vibrational state φn′ for given
initial state n is

Pn′,n = |Sn′,n|2. (5.20)

The sum of each column of P is one, since S is unitary. If the interaction potential is zero,
and we take R0 = 0, i.e., we assume that the potential is infinitely repulsive for R < 0,
then one can easily check that the functions Ψn(R, r) with S = 1m×m are solutions of the
time-independent Schrödinger equation.

To find a solution in the general case, we insert the expansion Eq. (5.16) into Eq. (5.14) and
project from the left with 〈φn|. Using the orthonormality of the vibrational wave functions
〈φ′n|φn〉 = δn′,n we obtain

∂2

∂R2
cn(R) =

∑
n′

Wn′,n(R)cn′(R), (5.21)

where

Wn′,n(R) =
2µ

~2

[
(εn − E)δn′,n + 〈φn′ |∆V (R, r)|φn〉

]
. (5.22)

In matrix notation, the coupled-channels equation becomes

c′′(R) = W (R)c(R). (5.23)

We can find a numerical solution as before: we introduce an equally spaced grid {Ri =
R0 + i∆, i = 1, . . . , N}, we define the expansion coefficients for the wave function on the
grid, ci = c(Ri) and we introduce the Q-matrices as real, square, matrices of dimension
ntot = nopen + nclosed (the number of open channels plus the number of closed channels),
that satisfy ci−1 = Qici. For the second derivative we use the second order finite difference
approximation

c′′(Ri) =
ci−1 − 2ci + ci+1

∆2
(5.24)

and we arrive at the matrix equivalent of Eq. (4.33)

Qi+1 = (∆2Wi + 2−Qi)
−1, for i = 1, . . . , N − 1. (5.25)
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where Wi = W (Ri). At short range the boundary condition for the Q-matrix becomes
Q1 = 0ntot×ntot , because we require the wave function to be zero at R = R0. To match the
wave function to its analytic long range form, we rewrite Eq. (5.18) as

Ψn(R, r) '
∑
n′

φn′(r)
[
−v−1/2

n′ e−ikn′Rδn′n + v
−1/2
n′ eikn′RSn′,n

]
≡
∑
n′

φn′(r)Cn′,n(R). (5.26)

In matrix notation, the boundary conditions for the expansion coefficients can be written as

C(R) = −U(R) + V (R)S (5.27)

where U(R) is a diagonal matrix with incoming waves on the diagonal

Un′,n(R) = v
−1/2
n′ e−ikn′Rδn′n (5.28)

and its complex conjugate, V (R) ≡ U∗(R), contains outgoing waves. After propagating the
Q-matrix to RN , the S-matrix is found by solving the set of linear equations

−UN−1 + VN−1S = QN (−UN + VNS) (5.29)

i.e.,
S = (VN−1 −QNVN )−1 (UN−1 −QNUN ) . (5.30)

This only solves the hypothetical problem of particles moving on a straight line, but the nu-
merical approach will turn out to be suitable in a general three-dimensional collision problem
as well.
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Chapter 6

Elastic scattering

6.1 Classical equations of motion

We will set up the classical equations of motion to describe the collision of two atoms, A
and B, with masses mA and mB and three-dimensional Cartesian coordinates RA and RB.
We assume that the interaction potential, V (r), is isotropic, i.e., that it only depends on the
distance r ≡ |RB −RA|. The kinetic energy in Cartesian coordinates is

T =
1

2
mAṘA · ṘA +

1

2
mBṘB · ṘB, (6.1)

where the central dot denotes a scalar product and the dot in ṙ denotes the time derivative.
As in Chapter 2 we switch to Jacobi coordinates (X, r), where X is the center of mass
[Eq. (2.2)] and r = RB −RA. The kinetic energy in these coordinates is

T =
1

2
MtotẊ · Ẋ +

1

2
µṙ · ṙ, (6.2)

with the total mass Mtot and the reduced mass µ given by Eqs. (2.5) and (2.6). In order to
use the classical Hamilton’s equations of motion we introduce conjugate momenta P and p.
They are defined as derivatives of the kinetic energy with respect to the velocities Ẋ and ṙ,
i.e., for Cartesian components i = x, y, z,

Pi ≡
∂T

∂Ẋi

= MtotẊi (6.3)

pi ≡
∂T

∂ṙi
= µṙi, (6.4)

or, in vector notation

P = MtotẊ (6.5)

p = µṙ. (6.6)

The classical Hamiltonian can now be expressed in coordinates (X, r) and their conjugate
momenta (P ,p)

H(X, r,P ,p) = T + V (r) =
P 2

2Mtot
+
p2

2µ
+ V (r), (6.7)
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where P = |P | and p = |p|. The equation of motion for the center-of-mass X and its
conjugate momenta P is

Ẋi =
∂H

∂Pi
(6.8)

Ṗi = − ∂H
∂Xi

(6.9)

i.e.,

Ẋ =
1

Mtot
P (6.10)

Ṗ = 0. (6.11)

Similarly, for the relative motion, we find

ṙ =
1

µ
p (6.12)

ṗ = −∇V (r). (6.13)

Clearly Eqs. (6.10) and (6.12) are consistent with the definitions of the momenta in Eqs. (6.5)
and (6.6). Using ṗ = µr̈ and the force F ≡ −∇V , the last equation becomes Newton’s
equation of motion

F = µr̈. (6.14)

The advantage of Hamilton’s equations of motion is that they take the same form in any
coordinate system, see, e.g., the textbook on classical mechanics by Goldstein [10]. Also,
using momenta instead of velocities can help to make the relation to quantum mechanics a
little easier to understand.

Since the potential depends only on the length of the vector r, we have for the components
of the force

Fi = − ∂

∂ri
V (r) = − ∂r

∂ri

∂V (r)

∂r
. (6.15)

From r =
√
r2
x + r2

y + r2
z we find

∂r

∂ri
=
ri
r

(6.16)

and in vector notation

ṗ = F = −1

r

∂V (r)

∂r
r. (6.17)

We now have the equations of motion, but we can gain more insight and simplify the equations
by introducing the orbital angular momentum vector

l ≡ r × p. (6.18)

First, we derive that l is conserved, i.e., its time derivative is zero:

l̇ = ṙ × p + r × ṗ (6.19)

=
1

µ
p× p︸ ︷︷ ︸

=0

− 1

r

∂V (r)

∂r
r × r︸ ︷︷ ︸

=0

= 0. (6.20)

Lecture notes on Quantum Dynamics, version May 20, 2025



CHAPTER 6. ELASTIC SCATTERING Page 39

From the definition of l [Eq. (6.18)] it follows that r ⊥ l and p ⊥ l, i.e., the position vector
r and the momentum p are always in a plane perpendicular to l. This plane is called the
scattering plane. In a Cartesian coordinate system where the scattering plane is the x, y-plane
and introducing polar coordinates (r, φ) we have

r = r

cosφ
sinφ

0

 = rr̂ (6.21)

The velocity in this coordinate system is

ṙ = ṙr̂ + rφ̇

− sinφ
cosφ

0

 ≡ ṙr̂ + rφ̇r̂⊥ (6.22)

and the kinetic energy is

T =
1

2
µṙ · ṙ =

1

2
µ(ṙ2 + r2φ̇2). (6.23)

The conjugate momenta are

pr ≡
∂T

∂ṙ
= µṙ (6.24)

pφ ≡
∂T

∂φ̇
= µr2φ̇. (6.25)

In this coordinate system the angular momentum only has a z-component and it is easy to
verify that lz = µr2φ̇, so pφ = lz. Since l2z = l2, the Hamiltonian can be written as:

H =
p2
r

2µ
+

l2

2µr2
+ V (r)︸ ︷︷ ︸

≡Veff(r)

. (6.26)

The first term on the right-hand side is the radial kinetic energy and the second term is called
the centrifugal term. Since l is a constant we can define an effective potential Veff(r) as the
sum of the interaction potential V (r) and the centrifugal term. Finding r(t) is equivalent to
solving a one-dimensional problem for the effective potential,

ṗr = −∂H
∂r

(6.27)

or

µr̈ = −∂Veff(r)

∂r
. (6.28)

The angle can be found from Eq. (6.25)

φ̇ =
lz
µr2

. (6.29)

This equation shows that φ̇r2 is a constant. For planetary orbits this is known as Kepler’s
second law.
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A

B

x

y

r

ṙ

b

φ

Figure 6.1: Initial condition of the classical trajectory.

As initial condition of the trajectory at time t0 we start with a large value of r, where we
assume V (r) to be negligible, and we take the initial velocity r(t0) parallel to the x-axis, but
with opposite sign. From l = µr × ṙ we find

lz = µvb, (6.30)

where v is the velocity v ≡ |ṙ| and b is called the impact parameter, which is equal to the initial
y-component of r(t0). The impact parameter may also be defined as the nearest approach
between the atoms A and B if the interaction potential were zero and they would move in a
straight line.
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Chapter 7

Elastic scattering in quantum
mechanics

7.1 Free particles in 3D

The time-independent Schrödinger equation for a particle with mass µ in three dimensions

− ~2

2µ
∇2Ψ(r) = EΨ(r). (7.1)

The Cartesian coordinates of the particle are

r =

xy
z

 (7.2)

and the Laplacian in 3D is

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(7.3)

Solutions are products of one-dimensional solutions

Ψ(r) = Neikxxeikyyeikzz = Neik·r. (7.4)

By substituting this plane wave into Eq. (7.1) we find the energy

E =
~2

2µ
(k2
x + k2

y + k2
z) =

~2k2

2µ
. (7.5)

The flux in three dimensions j is a vector with three components

j =

jxjy
jz

 =
~
µ


Im[Ψ∗(r) ∂

∂xΨ(r)]

Im[Ψ∗(r) ∂∂yΨ(r)]

Im[Ψ∗(r) ∂∂zΨ(r)]

 =
~
µ

Im[Ψ∗(r)∇Ψ(r)] = N2~k
µ

= |Ψ|2p
µ

= ρv, (7.6)

where we introduced the momentum p = ~k, the velocity v, and the density ρ = |Ψ|2. Since
the density has units of particles per volume and the velocity is in distance per time, the flux
now has units particles per area per time.
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We can also solve the problem using spherical polar coordinates (r, θ, φ), [Chapter 2,
Eq. (2.7)]. The Schrödinger equation becomes

[Ĥ0 − E]Ψ(r, θ, φ) = 0 (7.7)

with the Hamiltonian of the free particle

Ĥ0 = − ~2

2µ

1

r

∂2

∂r2
r +

l̂2

2µr2
. (7.8)

Just as for the diatomic molecule [Eq. (2.12)] we can factorize the wave function in a radial
part χk(r)/r and spherical harmonics Yl,m(θ, φ) for angular part

Ψk,l,m(r, θ, φ) =
1

r
χk,l(r)Yl,ml(θ, φ). (7.9)

As before, we included the factor 1/r in the expansion, because the volume element in spher-
ical coordinates is dτ = r2 sin(θ)dr dθ dφ. To find the equation for χk,l we substitute the
expansion in the Schrödinger equation, project the equation onto spherical harmonics, and
multiply from the left by r:[

− ~2

2µ

∂2

∂r2
+

~2l(l + 1)

2µr2
− E

]
χk,l(r) = 0. (7.10)

For large r, the centrifugal term becomes negligible, and the equation becomes[
− ~2

2µ

∂2

∂r2
− E

]
χk,l(r) = 0, (7.11)

so we find two solutions
χ±k,l(r) = Ne±ikr, (7.12)

with energy E = ~2k2

2µ . Any linear combination of spherical waves with the same energy is a
solution of the Schrödinger equation, so we can write an arbitrary solution with energy E at
large r as

Φ
(±)
E (r, θ, φ) =

∞∑
l=0

l∑
m=−l

Ψk,l,m(r, θ, φ)ck,l,m = N
e±ikr

r
f(θ, φ), (7.13)

where f(θ, φ) is some linear combination of spherical harmonics. For reasons that become
clear below, it is called the scattering amplitude.

7.1.1 Flux in spherical polar coordinates

To evaluate the flux in spherical polar coordinates we need the gradient operator ∇ in
spherical polar coordinates. Denoting the Cartesian coordinates [x, y, z] as [r1, r2, r3] and the
spherical polar coordinates [r, θ, φ] as [q1, q2, q3], we have

∇j ≡
∂

∂rj
=

3∑
i=1

∂qi
∂rj

∂

∂qi
=
∑
i

Jij
∂

∂qi
=
∑
i

(JT )ji
∂

∂qi
(7.14)
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where we introduced the 3× 3 Jabobian matrix J with elements

Ji,j =
∂qi
∂rj

. (7.15)

Since we have expressions for ri as functions of the spherical polar coordinates ri(q), it is a
little easier to compute instead

J̃ij =
∂ri
∂qj

. (7.16)

It is easy to see the J̃ is the inverse of the Jacobian J :

∂qi
∂qj

= δij =
∑
k

∂qi
∂rk

∂rk
∂qj

=
3∑

k=1

JikJ̃kj = δij . (7.17)

Inverting the matrix J̃ to get J is easier than it sounds, since the columns of J are orthogonal
for orthogonal curvilinear coordinates such as spherical polar coordinates. From Eq. (2.7) we
find

J̃ =

cosφ sin θ r cosφ cos θ −r sinφ sin θ
sinφ sin θ r sinφ cos θ r cosφ sin θ

cos θ −r sin θ 0

 =
(
r̂ f̂θf̂φ

)1 0 0
0 r 0
0 0 r sin θ

 , (7.18)

where the matrix (r̂ f̂θf̂φ) is orthonormal. So, for the transpose of the Jacobian we find find

JT = J̃−T =

(
r̂

f̂θ
r

f̂φ
r sin θ

)
(7.19)

and we find for the gradient

∇ = r̂
∂

∂r
+

1

r
f̂θ

∂

∂θ
+

1

r sin θ
f̂φ

∂

∂φ
. (7.20)

If we use this result to compute the flux of the spherical wave Ψk,l,m(r, θ, φ) for large r, we

see that the components in the direction f̂θ and f̂φ are smaller by a factor 1/r compared to

the r̂ component. So, for sufficiently large r we find that the flux of Ψ
(±)
E (r, θ, φ) is

j = r̂
~
µ

Im

[
Ψ

(±)
E (r, θ, φ)∗

∂

∂r
Ψ

(±)
E (r, θ, φ)

]
= ±r̂N2~k

µ

|f(θ, φ)|2

r2
. (7.21)

7.2 Boundary conditions for elastic scattering

Having expressions for the free particle in Cartesian coordinates and in spherical polar coor-
dinates and the corresponding fluxes (at least at large r), we can write down the boundary
conditions for elastic scattering. Before the collision, a stream of incoming particles can be
described by a plane wave.

Ψin(r) = eik·r. (7.22)
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Ψin(r) = eik·r

Ψout(r, θ, φ) = eikr

r f(θ, φ)

Figure 7.1: Boundary conditions for elastic scattering.

After the collision the particles will move away from the scattering center, so they can be
described by spherical waves, so the boundary conditions for large r are

Ψ(r) ' eik·r︸︷︷︸
incoming

+
eikr

r
f(θ, φ)︸ ︷︷ ︸

outgoing

, (7.23)

as illustrated in Fig. (7.1). The corresponding flux is

j =
~
µ
k︸︷︷︸

incoming

+
~k
µ

|f(θ, φ)|2

r2
r̂︸ ︷︷ ︸

outgoing

(7.24)

Here, we left out the cross term that arises from the interference between the incoming and
the outgoing part of the wave function. This can be justified in several ways. One way is to
assume that in incoming wave is not really infinitely wide, so that at sufficiently large r the
outgoing wave no longer overlaps with the incoming wave (except in the forward direction).

Remember that the flux is expressed as particles per time per area. As the spherical wave
spreads out, the particles are spread over an ever larger area and the flux goes to zero as
1/r2. However, the area corresponding to a solid angle dΩ = sin θdθdφ at a distance r is
r2 dΩ, so we define the outgoing flux in particles per time per solid angle as

jout(θ, φ) =
~k
µ
|f(θ, φ)|2dΩ (7.25)

The incoming flux is expressed per area

jin =
~k
µ

(7.26)

The ratio of outgoing flux and incoming flux is called the differential cross section

dσ

dΩ
(θ, φ) =

jout

jin
= |f(θ, φ)|2, (7.27)
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which has units of area. When the incoming wave is along the z-axis and the potential is
isotropic then the system has cylinder symmetry, and the cross section is independent of
φ. In that case the differential cross section a function of θ only and f(θ, φ) can be written
as f(θ),

dσ

dΩ
(θ) = |f(θ)|2. (7.28)

7.3 Partial wave expansion

So far, the boundary conditions are expressed in Cartesian coordinates for the incoming
wave and in spherical polar coordinates for the outgoing wave. Since angular momentum is
conserved for the isotropic potential that we will consider, the spherical polar coordinates are
preferred, so we rewrite the incoming wave in those coordinates. To simplify the problem we
define the z-axis to be parallel to the wave vector so that k = kez, and the wave function
becomes independent of the φ angle. With k · r = kez · r = kr cos θ we can now expand the
plane wave in Legendre polynomials of cos θ

eik·r = eikr cos θ =

∞∑
l=0

al(kr)Pl(cos θ). (7.29)

Using the orthogonality of Legendre polynomials,∫ 1

−1
Pl(x)Pl′(x)dx =

2

2l + 1
δll′ (7.30)

we can find the expansion coefficients al(kr) by projection, with x ≡ kr and z ≡ cos θ,

al(x) =
2l + 1

2

∫ 1

−1
eixzPl(z) dz. (7.31)

For l = 0 we have P0(z) = 1 and we find

a0(x) =
1

2

∫ 1

−1
eixzdz =

1

2

eixz

ix

∣∣∣∣z=1

z=−1

=
1

2

eix − e−ix

ix
=

sin(x)

x
= j0(x). (7.32)

The complete expansion is given by

eikr cos θ =
∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ), (7.33)

where jl is a spherical Bessel function of the first kind. These functions are the regular
solutions of the radial Schrödinger equation for a free particle [Eq. (7.10)], where “regular”
means that they are finite at r = 0. For large r they behave like

jl(kr) '
sin(kr − lπ

2 )

kr
=

i

2k

[
e−i(kr−

lπ
2

)

r
− ei(kr−

lπ
2

)

r

]
, (7.34)

where we have written the real functions as a sum on incoming and outgoing spherical waves.
We now make the following key observation: if the potential is nonzero only the spherical
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outgoing part of the wave function can change as a result of the scattering, since the wave
function must satisfy the boundary conditions given by Eq. (7.23). Thus, for large r, the
solution of the Schrödinger equation can be written as

Ψ(r, θ, φ) =
i

2k

∞∑
l=0

il(2l + 1)
ψl(kr)

r
Pl(cos θ) (7.35)

where the partial wave ψl(kr) satisfies the boundary condition

ψl(kr) ' e−i(kr−
lπ
2

) − ei(kr−
lπ
2

)Sl. (7.36)

If we set the “S-matrix” Sl to one, we recover the asymptotic form of the expansion of a free
particle wave function [Eq. (7.33)]. Thus, if the potential is nonzero, Sl may deviate from
one. To see this more clearly we define the “T-matrix” as

Tl = 1− Sl (7.37)

and we separate the part of the wave function that depends on Tl

Ψ(r, θ, φ) ' eikr cos θ +
i

2k

∞∑
l=0

il(2l + 1)
ei(kr−

lπ
2

)

r
TlPl(cos θ). (7.38)

By comparing this expression with the boundary condition in Eq. (7.23) we find this expres-
sion for the scattering amplitude

f(θ, φ) =
i

2k

∞∑
l=0

(2l + 1)TlPl(cos θ), (7.39)

where we used

e−i
lπ
2 =

(
ei
π
2

)−l
= i−l. (7.40)

We can now evaluate the differential cross section as the square of the absolute value of the
scattering amplitude, see Eq. (7.28).

The integral cross section is found by integrating over all angles

σtot =

∫ 2π

0
dφ

∫ 1

−1
d cos θ |f(θ)|2. (7.41)

Using the orthogonality relation of Legendre polynomials, Eq. (7.30) we find

σtot =
π

k2

∞∑
l=0

(2l + 1)|Tl|2. (7.42)

7.4 Numerical method for elastic scattering

Just as for bound states of a diatomic molecule, the angular momentum quantum is conserved,
i.e., l is a good quantum number, and we can solve the radial Schrödinger equation for each
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partial wave with angular momentum l separately. Thus, the function ψl(kr) in Eq. (7.35)
must be a solution of [

− ~2

2µ

∂2

∂r2
+

~2l(l + 1)

2µr2
+ V (r)− E

]
ψl(kr) = 0 (7.43)

and it must satisfy the boundary condition given in Eq. (7.36). Since the wave function
Ψ(r, θ, φ) must be finite, and we included a factor 1/r in Eq. (7.35), the function ψl(kr) must
be zero for r = 0. We can use the same numerical approach as in Chapter 4.3, by introducing
a “Q-matrix” [Eq. (4.23)] and deriving a two term recursion relation for it [Eq. (4.33)].

7.5 Alternative boundary conditions

The S-matrix boundary condition in Eq. (7.36) was derived using the long range behavior of
spherical Bessel functions jl [Eq. (7.34)]. Numerically, this is not the most convenient form:
one has to propagate to a large value of r where the approximation is sufficiently accurate.
To converge the result one has to propagate to a larger distance as a check, but then the
numerical error in the propagation becomes larger. That, in turn, means that one has to
re-check the propagation step size. Thus, numerically, it is better to use the exact long range

form of the free waves. For this purpose, spherical Hankel functions h
(1)
l and h

(2)
l can be used

instead of the exponential functions (with z = kr):

h
(1)
l (z) = jl(z) + iyl(z) '

−iei(z−l
π
2

)

z
(7.44)

h
(2)
l (z) = jl(z)− iyl(z) '

ie−i(z−l
π
2

)

z
, (7.45)

where the yl(z) are spherical Bessel functions of the second kind. Thus, we have the exact
expression

jl(kr) =
h

(2)
l (kr) + h

(1)
l (kr)

2
, (7.46)

where the h
(2)
l are the incoming waves and the h

(1)
l are the outgoing waves. Instead of

Eq. (7.36) we can now use

Ψl(kr) ' (−2ikr)
[
h

(2)
l (kr) + h

(1)
l (kr)Sl

]
. (7.47)

Asymptotically, these are the same boundary conditions as before. However, in a calculation
we can now match the propagated solution to the free wave at the point where the potential
becomes negligible compared to the scattering energy and we no longer have to worry about
the approximation of the free waves at finite value of r.
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Chapter 8

Inelastic scattering

We consider the collision of diatomic molecules A and B,

A(va, ja,ma) +B(vb, jb,mb)→ A(v′a, j
′
a,m

′
a) +B(v′b, j

′
b,m

′
b). (8.1)

where va is the vibrational quantum number of molecule A, ja is its total angular momentum
quantum number, and ma is the quantum number corresponding to the projection of the
angular momentum of molecule A on the space-fixed z-axis, and vb, jb, and mb are the
corresponding quantum numbers for molecule B.

For compactness we will denote the molecular eigenstates in Dirac notation by

|na〉 ≡ |vajama〉 (8.2)

|nb〉 ≡ |vbjbmb〉 (8.3)

and the corresponding energies are εna and εnb . We further shorten the notation by intro-
ducing

|n〉 ≡ |na〉|nb〉 (8.4)

εn ≡ εna + εnb . (8.5)

Before the collision molecules A and B are described by plane waves with wave vectors
ka and kb, respectively, so the incoming wave in Dirac notation is

Ψnaka;nbkb(ra, rb) = |na〉|nb〉︸ ︷︷ ︸
|n〉

ei(ka·ra+kb·rb), (8.6)

where ra and rb are the center-of-mass of molecule A and B, respectively.
As before, we introduce center-of-mass coordinates for the complex X [as in Eq. (2.2)]

and r ≡ rb − ra. The exponent in the plane wave can be written in these coordinates using

ka · ra + kb · rb = ka ·
(
X − mb

ma +mb
r

)
+ kb ·

(
X +

ma

ma +mb
r

)
(8.7)

= (ka + kb) ·X +
makb −mbkb
ma +mb

· r (8.8)

= kcom ·X + k · r. (8.9)
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In a center-of-mass frame X = 0 and the total energy of the system is given by

E =
~2k2

n

2µ
+ εn, (8.10)

where µ is the reduced mass. We label kn with the quantum numbers n, because we assume
that the total energy is fixed, so that the kinetic energy depends on the states of the atoms.
Although the magnitude kn depends on the state of the molecules, the directions are the
same

kn = knk̂. (8.11)

We can now write the flux-normalized plane wave in the center-of-mass frame with the
molecules in quantum state n as

|Ψ(in)
n (r〉) = |n〉 v−1/2

n eikn·r, (8.12)

where the vn is the velocity given by vn = ~kn/µ. In inelastic scattering the states of the
molecules can change, so the boundary conditions are given by

|Ψn(r)〉 ' |n〉 v−1/2
n eikn·r +

∑
n′

|n′〉v−1/2
n′

eikn′r

r
fn′,n(r̂, k̂), (8.13)

where fn′,n(r̂, k̂) is the scattering amplitude for excitation from initial state n to final

state n′, for products moving in the direction r̂, while k̂ is the initial direction of the relative
velocity. Again, the hat in r̂ indicates it is a unit vector and r = rr̂.

To find the expression for the scattering amplitude we first expand the incoming plane
wave in partial waves,

|Ψ(in)
n (r)〉 = |n〉v−1/2

n

∞∑
l=0

il(2l + 1)jl(knr)Pl(k̂ · r̂), (8.14)

As before, we rewrite the asymptotic form of the spherical Bessel functions of the first kind
as the sum of an incoming and outgoing part for large r,

jl(knr) '
1

2ikn

−e−i(knr−lπ2 )

r︸ ︷︷ ︸
in

+
ei(knr−l

π
2

)

r︸ ︷︷ ︸
out

 . (8.15)

Furthermore, we use the spherical harmonic addition theorem, to factor the Legendre
polynomial into products of spherical harmonics that depend on either the orientation of r,
or the direction of the incoming wave k̂n

Pl(k̂n · r̂) =
4π

2l + 1

l∑
m=−l

Ylm(r̂)Y ∗lm(k̂). (8.16)

Substituting Eqs. (8.15) and (8.16) into Eq. (8.14) gives

|Ψ(in)
n (r)〉 =

2π

ikn

∞∑
l=0

l∑
m=−l

|n〉Ylm(r̂)v
−1/2
n

−e−i(knr−lπ2 )

r︸ ︷︷ ︸
in

+
ei(knr−l

π
2

)

r︸ ︷︷ ︸
out

 ilY ∗lm(k̂). (8.17)
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We see that the outgoing part is

2π

ikn

∞∑
l=0

l∑
m=−l

|n〉Ylm(r̂)v
−1/2
n

ei(knr−l
π
2

)

r
ilY ∗lm(k̂). (8.18)

In the derivation of the expression for the scattering amplitude for elastic scattering, we
introduced the factor Sl in the outgoing part. For inelastic scattering, however, l is not a
good quantum number, so l can change as a result of the anisotropic interaction potential, but
also the states of the molecules can change. Therefore, we replace the spherically outgoing
part for each term with a given l and m by

2π

ikn

∑
n′

∞∑
l′=0

l′∑
m′=−l′

|n′〉Yl′m′(r̂)v
−1/2
n′

ei(kn′r−l
′ π

2
)

r
Sn′,l′,m′;n,l,m i

l Y ∗lm(k̂). (8.19)

The result is

|Ψ+
n(r)〉 ' 2π

ikn

∞∑
l=0

l∑
m=−l

∑
n′

∞∑
l′=0

l′∑
m′=−l′

|n′〉v−1/2
n′ Yl′m′(r̂)[

−e
−i(kn′r−l′

π
2

)

r
δn′nδl′lδm′m +

ei(kn′r−l
′ π

2
)

r
Sn′,l′,m′;n,l,m

]
ilY ∗lm(k̂). (8.20)

As before, we define the T -matrix

Sn′,l′,m′;n,l,m = δn′nδl′lδm′m − Tn′,l′,m′;n,l,m, (8.21)

such that setting all T -matrix elements to zero results in the S-matrix being equal to the
identity matrix, and the wave function becomes a plane wave where the molecule remains in
the initial state |n〉. Substituting this relation into Eq. (8.20) and comparing the result to
the boundary condition Eq. (8.13) gives the expression for the scattering amplitude

fn′,n(r̂, k̂) =
2πi

kn

∞∑
l=0

l∑
m=−l

∞∑
l′=0

l′∑
m′=−l′

il−l
′
Yl′m′(r̂)Tn′,l′,m′;n,l,mY

∗
l,m(k̂). (8.22)

Since all the channels are flux normalized, the state-to-state differential cross section
(DCS) is given by

σn′,n(r̂,k) = |fn′,n(r̂, k̂)|2. (8.23)

This is the most detailed information that we obtain on the cross sections. When we are
interested only in the final state of the molecule, but not the direction it is moving in, we
integrate the DCS over all final directions r̂ to obtain the state-to-state integral cross sections
(ICS),

σn′,n(k̂) =

∫∫
σn′,n(r̂, k̂)dr̂. (8.24)

Note for the integral over directions written in spherical polar coordinates is∫∫
dr̂ ≡

∫ 2π

0
dφ

∫ π

0
sin θ dθ =

∫ 2π

0
dφ

∫ 1

−1
d cos θ. (8.25)
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In a bulk gas, collisions occur from any direction, so we may take the average of all incoming
directions k̂

σn′,n =
1

4π

∫∫
σn′,n(k̂)dk̂ =

π

k2
n

∞∑
l=0

l∑
m=−l

∞∑
l′=0

l′∑
m′=−l′

|Tn′l′m′;nlm|2. (8.26)

Notice that the general approach for obtaining less detailed information is found by (i) taking
the average over initial states or directions and (ii) summation or integration over all final
states or directions that we do not want to distinguish.

We can use the present derivation of cross sections for ro-vibrational transitions in molecule-
molecule collisions also to describe the simpler process of atom - diatom rotationally inelastic
collisions. First, we drop the the quantum numbers va, ja, and ma, i.e., we assume A to
be the atom. We also drop vb and assume molecule B remains in its vibrational ground
state, and we replace jb and mb by j and mj , respectively, for a more compact notation.
Furthermore, we assume the molecule is prepared in a rotational state with quantum number
j before the collision, but all substates m are equally likely, and also we are only interested in
the final rotational state j′, but do not care about the distribution of the final m′ substates.
The expression for the cross section then becomes

σ(j′, j) =
π

k2
j (2j + 1)

j′∑
m′j=−j′

j∑
mj=−j

∞∑
l=0

l∑
ml=−l

∞∑
l′=0

l′∑
m′l=−l′

|Tj′m′j l′m′l;jmj lml |
2. (8.27)

8.0.1 Properties of the S-matrix

The S-matrix is complex symmetric,
ST = S (8.28)

this is a consequence of what is called “microscopic reversibility”. The T -matrix has the
same property. From the expression of the integral cross section, Eq. (8.26) we find

σn′,nk
2
n = σn,n′k

2
n′ , (8.29)

i.e., the cross section matrix is not symmetric, but σn′,n and σn,n′ are related by the ratio
of the kinetic energies in state |n〉 and |n′〉 for a given total energy E.

The S-matrix is also unitary
S†S = 1. (8.30)

This is a consequence of flux conservation. It shows that for any given initial state n with
partial wave l,m we have ∑

n′l′m′

|Sn′,l′,m′;n,l,m|2 = 1 (8.31)

8.1 Coupled channels equation

As before, we expand the wave function in the channel basis, with r-dependent coefficients.
The dependence of the wave function on the orientation r̂ is described by an expansion in
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spherical harmonics Ylm(r̂), so these functions have to be included in the channel basis:

Ψn,lm(r) =
1

r

∑
n′l′m′

|n′〉Yl′m′(r̂)Un′,l′,m′;n,l,m(r). (8.32)

To find the coupled channels equation, we substitute this expansion into the time-independent
Schrödinger equation and project onto the channel basis. Furthermore, we separate the
Hamiltonian into a radial kinetic energy and the remainder

Ĥ = − ~2

2µ

1

r

∂2

∂r2
r + ∆Ĥ, (8.33)

where the last term includes the molecular Hamiltonians and the interaction potential

∆Ĥ = Ĥa + Ĥb + ∆V (r, r̂, ra, rb) (8.34)

and the interaction potential vanishes for large r

lim
r→∞

V (r, r̂, ra, rb) = 0. (8.35)

Multiplying the resulting equation with 2µr/~2 gives

U ′′(r) = W (r)U(r), (8.36)

where the matrix elements of W are given by

Wn′,l′,m′;n,l,m(r) =
2µ

~2
〈n′, l′,m′|∆Ĥ − E|n, l,m〉, (8.37)

and the integral is over all coordinates, except r. We impose the boundary conditions for
large r

Un′l′m′;nln(r) ' v−
1
2

n′

[
−e−i(kn′r−l′

π
2

)δn′nδl′lδm′m + ei(kn′r−l
′ π

2
)Sn′l′m′;nlm

]
, (8.38)

so that we can write the full solution satisfying the boundary conditions of Eq. (8.20) as

|Ψ+
n(r)〉 =

2π

ikn

∑
n′

∞∑
l′=0

l′∑
m′=−l′

∞∑
l=0

l∑
m=−l

|n′〉Yl′m′(r̂)
Un′l′m′;nlm(r)

r
ilY ∗lm(k̂). (8.39)

Solving the coupled channels equation numerically can be done with the algorithm that we
described for multichannel collinear scattering in Chapter 5. Matching the wave function
to the asympotic form to extract the S-matrix is also very similar, but of course the phase
factors e±il

π
2 must be included in the incoming and outgoing waves.

When there are no external fields, the Hamiltonian is invariant under rotations, or, in
other words, the total angular momentum is conserved. This may be exploited to give a huge
reduction in both CPU time and memory usage of a coupled channels. The next chapter
gives the required angular momentum theory. Also, the theory in the next chapter can be
used to prove the spherical harmonic addition theorem that we already used [Eq. (8.16)].
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Chapter 9

Angular momentum theory

9.1 Unitary transformations in place and time

Angular momentum and rotation are closely connected. To better understand this relation,
it is instructive to first have a look at a simpler problem: translation of functions in 1D.
Figure 9.1 shows a function f(x) translated to the right over a (positive) distance a to give
function g(x),

g(x) ≡ (T̂af)(x) = f(x− a). (9.1)

We note that translating the function to the right corresponds to applying the inverse op-
eration to the argument. This is called the Wigner convention. We can derive an explicit
expression for the translation operator T̂a from the Taylor expansion

f(x− a) = f(x)− af ′(x) +
1

2
a2f ′′(x) + . . . (9.2)

=
∞∑
n=0

(−a)n

n!

∂n

∂xn
f(x) (9.3)

= e−a
∂
∂x f(x) (9.4)

so we may define

T̂a ≡ e−a
∂
∂x . (9.5)

f(x) g(x)

x

a

Figure 9.1: Translation of a function: g(x) = f(x− a).
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Note that the first derivative operator ∂
∂x is anti-Hermitian

〈 ∂
∂x
f |g〉 = −〈f | ∂

∂x
g〉. (9.6)

and that a translation of a function leaves its norm invariant, i.e., it is a unitary trans-
formation. We can rewrite the translation operator in terms of the Hermitian momentum
operator

p̂x ≡
~
i

∂

∂x
(9.7)

so
T̂a = e−a

∂
∂x = e−

i
~ap̂x . (9.8)

Mathematically, solving the time-dependent Schrödinger equation may be thought of as a
translation of the wave function in time,

Ψ(r, t+ τ) = eτ
∂
∂tΨ(r, t) (9.9)

= e−
i
~ ĤτΨ(r, t), (9.10)

where we used ∂
∂t = − i

~Ĥ in the second step, and again we see that an anti-Hermitian

operator (iĤ) in the exponential gives a unitary operator.
Next, we consider translation in 3D. We can translate a function over a vector

a =

axay
az

 = λn̂, (9.11)

where n̂ is a unit vector, |n̂| = 1, and λ is the length of the vector a. The translation operator
can now be written using the momentum vector operator p̂,

T̂ (a) = e−
i
~axp̂x e−

i
~ay p̂y e−

i
~az p̂z (9.12)

= e−
i
~λn̂·p̂. (9.13)

The last step is only allowed because the linear momentum operators commute

[p̂x, p̂y] = [p̂x, p̂z] = [p̂y, p̂z] = 0. (9.14)

We are now ready to introduce rotation operators in 3D.

9.2 Rotation operator

The rotation operator in 3D around a unit vector n̂ over an angle α is given by

R̂(n, α) = e−
i
~αn̂·l̂, (9.15)

where the angular momentum vector operator is given by

l̂ = r × p̂ =

xy
z

×
p̂xp̂y
p̂z

 =

l̂xl̂y
l̂z

 . (9.16)
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To check this expression, we first consider a rotation around the z-axis, i.e., n̂ = ez,

R̂(ez, α) = e−
i
~αez ·l̂ = e−

i
~αl̂z (9.17)

The l̂z operator is given by

l̂z = xp̂y − yp̂x (9.18)

=
~
i
(x

∂

∂y
− y ∂

∂x
). (9.19)

We introduce polar coordinates

x = r cosφ sin θ (9.20)

y = r sinφ sin θ (9.21)

z = r cos θ. (9.22)

The l̂z operator in polar coordinates is given by

l̂z =
~
i

∂

∂φ
, (9.23)

so the rotation operator is

R̂z(α) ≡ R̂(ez, α) = e
−α ∂

∂φ . (9.24)

Applying this operator to a wave function expressed in spherical polar coordinates amounts
to a tranlation of the φ coordinate

R̂z(α)Ψ(r, θ, φ) = Ψ(r, θ, φ− α). (9.25)

Although this only verifies the expression for the rotation operator in Eq. (9.15) for rotations
around the z-axis, it is easy to see that it will work for any rotation axis n̂, since the scalar
product n̂ · l̂ in the exponent is invariant under rotations of the coordinate frame – so we can
always choose a coordinate frame where n is the z-axis.

There is one very important difference between rotation and translation: the momentum
operators commute [Eq. (9.14)], but the angular momentum operators do not. Essentially
everything in angular momentum theory derives from these commutation relations. In the
next section we will summarize the elementary results without derivations, since they can be
found in most books on quantum mechanics.

9.3 Rotations in R3

Rotating a vector x around a normalized vector n̂ over an infinitesimal angle ε gives

R(n̂, ε)x = x + εn̂× x. (9.26)
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The cross product is given by

n̂× x =

n1

n2

n3

×
x1

x2

x3

 =

n2x3 − n3x2

n3x1 − n1x3

n1x2 − n2x1

 (9.27)

=

 0 −n3 n2

n3 0 −n1

−n2 n1 0

x1

x2

x3

 (9.28)

≡Nx (9.29)

so we may write
R(n̂, ε) = (13×3 + εN)x, (9.30)

where 13×3 is the 3× 3 identity matrix. The rotation operator is unitary

RTR = (1 + εN)T (1 + εN) (9.31)

= 1 + ε(NT + N) + ε2NTN (9.32)

= 1 +O(ε2) (9.33)

The term linear in ε is zero, because the matrix N is anti-Hermitian

NT = −N . (9.34)

We can find the expression for the rotation over a finite angle φ by applying n rotations over
an angle φ/n, and taking the limit of n→∞,

R(n̂, φ) = lim
n→∞

R(n̂,
φ

n
)n = lim

n→∞
(1 +

φ

n
N)n = eφN . (9.35)

The matrix N can be written as a linear combination of anti-Hermitian matrices,

N = n1

0 0 0
0 0 −1
0 1 0

+ n2

 0 0 1
0 0 0
−1 0 0

+ n3

0 −1 0
1 0 0
0 0 0

 (9.36)

= n1N1 + n2N2 + n3N3 (9.37)

= n ·N (9.38)

where N is a “vector” of the matrices N1, N2, and N3. These matrices satisfy the commu-
tation relation

[N1,N2] = N3, (9.39)

and two other commutation relations that are found by cyclic permutation of the indices.
These commutation relations can also be written in a single expression using the Levi-Civita
tensor εi,j,k,

[Ni,Nj ] =

3∑
k=1

εi,j,kNk. (9.40)
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The Levi-Civita tensor is defined by ε1,2,3 = 1, and the requirement that it changes sign when-
ever you permute two indices. The matrices are anti-Hermitian and so we obtain Hermitian
matrices if we multiply them by the imaginairy number i

L ≡ i~N (9.41)

for which the components satisfy the commutation relations

[Li,Lj ] = i~
3∑

k=1

εi,j,kLk. (9.42)

We can now express the rotation matrix in terms of the Hermitian matrices as

R(n̂, φ) = e−
i
~φn̂·L. (9.43)

The relation between rotations in 3D and in the Hilbert space is given by

R̂(n̂, φ)Ψ(r) = Ψ[R(n̂,−φ) r] (9.44)

or explicitly, (
e−

i
~ n̂·l̂Ψ

)
(r) = Ψ

(
e
i
~φn̂·L r

)
. (9.45)

9.4 Summary of elementary angular momentum theory

The commutation relations of the angular momentum operators are

[l̂i, l̂j ] = i~
3∑

k=1

εi,j,k l̂k. (9.46)

In this notation the labels i, j, and k, can be 1, 2, or 3, and they correspond to the components
x, y, and z.

l̂2 = l̂2x + l̂2y + l̂2z , (9.47)

commutes with l̂x, l̂y, and l̂z. Since, in particular, [l̂2, l̂z] = 0, these two Hermitian operators
have a common set of eigenvectors, which we will denote in Dirac notation with |lm〉

l̂2|lm〉 = ~2l(l + 1)|lm〉, l = 0, 1, . . . (9.48)

l̂z|lm〉 = ~m|lm〉, m = −l,−l + 1, . . . , l (9.49)

For orbital angular momentum, the l quantum number must be integer. The commutation
relations also allow half integer quantum numbers, which can describe, e.g., electron spin.
The angular momentum states are not eigenfunctions of l̂x and l̂y. To find the action of these
operators on the angular momentum states it is convenient to introduce the ladder operators
l̂+ and l̂−,

l̂± ≡ l̂x ± il̂y. (9.50)

When acting on angular momentum states, they change the m quantum number:

l̂±|lm〉 = ~
√
l(l + 1)−m(m± 1)|l,m± 1〉. (9.51)
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The action of the l̂x and l̂y operators can then be found by expressing them in ladder operators

l̂x =
1

2
(l̂+ + l̂−) (9.52)

l̂y =
1

2i
(l̂+ − l̂−). (9.53)

We assume that the angular momentum states are orthonormal

〈lm|l′m′〉 = δll′δmm′ . (9.54)

9.5 Wigner rotation matrices

We will now evaluate the action of a rotation operator on an angular momentum state

R̂(n, φ)|lm〉 = e−
i
~φn·l̂|lm〉. (9.55)

Formally, the exponential operator is defined by its Taylor series, so in principle it can be
written as a polynomial in l̂x, l̂y, and l̂z. Since these operators do not change the l quantum
number, the result must be some linear combination of angular momentum states with the
same l, but potentially contributions from all 2l + 1 values of m′,

R̂(n, φ)|lm〉 =

(l)∑
m′=−l

|lm′〉D(l)
m′m(n, φ), (9.56)

where the coefficients D
(l)
m′m(n, φ) are matrix elements of the so called Wigner D-matrix. For

compactness, we will also write this relation as

R̂|lm〉 =
l∑

m′=−l
|lm′〉D(l)

m′m(R̂). (9.57)

By projecting the equation from the left with 〈lm′| and using the orthonormality of the
angular momentum states [Eq. (1.12)] we find an explicit expression for theD-matrix elements

D
(l)
m′,m(R̂) = 〈lm′|R̂|lm〉. (9.58)

For rotations around the z-axis, these matrix elements can be found easily,

D
(l)
m′,m(ez, φ) = δm′me

−imφ. (9.59)

For other rotation angles, one way to compute WignerD-matrices uses matrix exponentiation.
For example, to compute the matrix D(l)(ey, β),

D
(l)
m′,m(ey, β) = 〈lm′|e−

i
~βl̂y |lm〉, (9.60)

one first computes the (2l + 1)× (2l + 1) matrix Ly with matrix elements

Ly(m,m
′) = 〈lm|l̂y|lm′〉 (9.61)
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and then the (2l + 1)× (2l + 1) rotation matrix is given by

D(l)(ey, β) = e−
i
~βLy . (9.62)

The matrix D(l)(R̂) is said to be a (2l+ 1)-dimensional matrix representation of the operator
R̂, since for any two rotation operators R̂1 and R̂2 the matrix representing the product R̂1R̂2

is the product of the matrix representations of R̂1 and R̂2

D(l)(R̂1R̂2) = D(l)(R̂1)D(l)(R̂2). (9.63)

It is left as an exercise to derive this from the definition of the WignerD-matrices in Eq. (9.57).
From the definition one also finds the representation of the identity operator 1̂ (a rotation
over zero degrees) is the identity matrix,

D(l)(1̂) = 1(2l+1)×(2l+1). (9.64)

From the representation property Eq. (9.63) one can derive many useful relations, e.g., where
1̂ is the identity operator, i.e., some rotation over 0 degrees. Rotations are unitary operators

R̂R̂† = 1̂ (9.65)

or
R̂−1 = R̂† (9.66)

and their representations have the same properties,

D(l)(R̂−1) = [D(l)(R̂)]−1 = [D(l)(R̂)]†. (9.67)

9.6 Wigner D-matrix elements as wave functions

We define the action of a rotation operator on a Wigner D-matrix following the Wigner
convention

R̂1D
(l)(R̂2) ≡D(l)(R̂−1

1 R̂2) (9.68)

= D(l)(R̂1)†D(l)(R̂2). (9.69)

From this result one finds the action of a rotation operator R̂1 on the complex conjugate of
a Wigner D-matrix element

R̂1D
(l),∗
mk (R̂2)︸ ︷︷ ︸
|(k)lm〉

=

l∑
m′=−l

D
(l),∗
m′k (R̂2)︸ ︷︷ ︸
|(k)lm′〉

D
(l)
m′m(R̂1). (9.70)

By comparing this equation to Eq. (9.57) we find the complex conjuagates of D-matrix
elements transform exactly as angular momentum states

R̂|(k)lm〉 =
l∑

m′=−l
|(k)lm′〉D(l)

m′m(R̂), (9.71)

where we use Dirac notation |(k)lm〉 to represent D
(l),∗
mk (R̂2).
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9.7 Euler angles

So far, we used the so-called (n̂, φ) parameterization of rotations. Another parameterization
that is particularly convenient in quantum mechanics is the zyz-Euler angles paramerization.
The two are related by

R̂(n̂, φ) = R̂(ez, α)R̂(ey, β)R̂(ez, γ) ≡ R̂(α, β, γ). (9.72)

This relation uniquely defines the Euler angles α, β, and γ. The ranges for α and γ are
[0, 2π], and β ∈ [0, π], when n̂ can take all directions on a sphere, and φ ∈ [0, 2π]. Although
there is a one-to-one mapping (n̂, φ) ↔ (α, β, γ), it is a little bit of work to find the Euler
angles corresponding to some vector n̂ and angle φ and vice versa, except when n̂ = ez, in
which case we can easily find that β = 0 and α+ γ = φ. Since l̂y and l̂z do not commute, the
rotation matrices R̂y(β) ≡ R̂(ey, β) and R̂z(γ) ≡ R̂(ez, γ) do not commute in general. The
Wigner D-matrix representation in zyz-Euler representation is denoted by

D(l)(α, β, γ) ≡D(l)[R̂(α, β, γ)]. (9.73)

The reason zyz Euler angles are particularly convenient is that the D-matrix corresponding
to rotation around the z-axis is diagonal and very simple, so

D
(l)
mk(α, β, γ) = e−imαd

(l)
mk(β)e−ikγ (9.74)

where the “little-d matrix” d(l)(β) is the representation of the rotation around the y-axis,

d
(l)
mk(β) ≡ 〈lm|e−

i
~βl̂y |lk〉. (9.75)

It is left as an exercise to show that this matrix is real [hint: use Eqs. (9.62), (9.61), (9.53),
and (9.50)].

The Wigner D-matrix elements satisfy the orthogonality relation∫ 2π

0
dα

∫ π

0
sinβdβ

∫ 2π

0
dγ D

(l),∗
mk (α, β, γ)D

(l′)
m′k′(α, β, γ) =

8π2

2l + 1
δmm′δkk′δll′ . (9.76)

When we set k = 0, the D-matrix becomes independent of the third Euler angle. The so
called Racah-normalized spherical harmonics are defined by the relation

Clm(θ, φ) ≡ D(l),∗
m,0 (φ, θ, 0) = eimφd

(l)
m,0(θ). (9.77)

When we also set m to zero we find functions that depend only on θ which turn out be related
to Legendre polynomials through

Pl(cos θ) = Cl,0(θ, 0). (9.78)

Since Clm(θ, φ) Racah normalized spherical harmonics only differ from the spherical harmon-
ics that we used before by a normalization factor:

Ylm(θ, φ) =

√
2l + 1

4π
Clm(θ, φ), (9.79)

it is eay to show that
Clm(0, 0) = δm,0, (9.80)

whereas the Ylm’s are normalized by condition Eq. (2.15).
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r̂

θ
k̂

Figure 9.2: Coordinates in derivation of spherical harmonic addition theorem.

9.8 Spherical harmonics addition theorem

To derive the spherical harmonic addition theorem, we first define the directions r̂ and k̂ by
rotating the ez unit vector.

r̂ = R1ez (9.81)

k̂ = R2ez, (9.82)

where R1 and R2 are 3×3 orthonormal matrices (with determinant +1). We may now write
the cosine of the angle between these two vectors as

cos θ = r̂ · k̂ (9.83)

= R1ez ·R2ez (9.84)

= ez ·R†1R2ez. (9.85)

We now define the Euler angles α, β, and γ by expressing R†1R2 in zyz-Euler angles

R†1R2 = Rz(α)Ry(β)Rz(γ). (9.86)

We may now rewrite cos θ as (Figure 9.2)

cos θ = ez ·Rz(α)Ry(β)Rz(γ)ez (9.87)

= ez ·Ry(β)ez (9.88)

=

0
0
1

 ·
sinβ

0
cosβ

 (9.89)

= cosβ, (9.90)

so θ = β. Without having to find the angles α and γ, we can already evaluate Wigner
D-matrix elements with m = k = 0,

D
(l)
0,0(R†1R2) = D

(l)
0,0[Rz(α)Ry(β)Rz(γ)] = D

(l)
0,0(α, θ, γ) = Pl(cos θ). (9.91)

The representation property of D-matrices gives

D
(l)
0,0(R†1R2) =

∑
m

D
(l)
0,m(R†1)D

(l)
m,0(R2) (9.92)

=
∑
m

D
(l),∗
m,0 (R1)D

(l)
m,0(R2) (9.93)

=
∑
m

Clm(r̂)C∗lm(k̂). (9.94)
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[Exercise: show that D
(l),∗
m,0 (R) = Clm(r̂) when r̂ = Rez]. Changing from Racah normalized

spherical harmonics to normal regular harmonics we find the spherical harmonics addition
theorem,

Pl(cos θ) =
4π

2l + 1

∑
lm

Ylm(r̂)Y ∗lm(k̂). (9.95)
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