

Question 1: Angular momentum operators

The angular momentum operators $\hat{\mathbf{l}}$ for a single particle with position \mathbf{r} and momentum $\hat{\mathbf{p}} = \frac{\hbar}{i}\nabla$ are given by

$$\hat{\mathbf{l}} = \mathbf{r} \times \hat{\mathbf{p}}.$$

The position \mathbf{r} expressed in spherical polar coordinates (r, θ, ϕ) is given by

$$\mathbf{r} = r \begin{pmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{pmatrix}.$$

1a. Show that \hat{l}_z in spherical polar coordinates is given by

$$\hat{l}_z = \frac{\hbar}{i} \frac{\partial}{\partial \phi}.$$

Question 2: Rotations in \mathbb{R}^3

A rotation in \mathbb{R}^3 around a vector \mathbf{n} with $|\mathbf{n}| = 1$ over an angle ϕ is given by

$$\mathbf{R}(\mathbf{n}, \phi) = e^{\phi \mathbf{N}},$$

where \mathbf{N} is an anti-Hermitian matrix, implicitly defined by

$$\mathbf{n} \times \mathbf{x} = \mathbf{N} \mathbf{x}$$

with

$$\mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}.$$

2a. Find the matrices \mathbf{N}_1 , \mathbf{N}_2 , and \mathbf{N}_3 such that

$$\mathbf{N} = n_1 \mathbf{N}_1 + n_2 \mathbf{N}_2 + n_3 \mathbf{N}_3$$

2b. Show that

$$\mathbf{N}^T = -\mathbf{N}.$$

2c. Derive the commutation relations

$$[\mathbf{N}_1, \mathbf{N}_2] = \mathbf{N}_3.$$

Question 3: Wigner rotation matrices

A rotation operator acting on the $(2l + 1)$ dimensional linear space

$$\{|lm\rangle, m = -l, -l + 1, \dots, l\}$$

is given by

$$\hat{R}(\mathbf{n}, \phi) = e^{-\frac{i}{\hbar}\phi \mathbf{n} \cdot \hat{\mathbf{l}}}.$$

Wigner rotation matrices $\mathbf{D}^{(l)}(\mathbf{n}, \phi)$ are defined by

$$\hat{R}(\mathbf{n}, \phi)|lm\rangle = \sum_{m'=-l}^l |lm'\rangle D_{m', m}^{(l)}(\mathbf{n}, \phi).$$

We will use the short-hand notation $\mathbf{D}^{(l)}(\hat{R}) \equiv \mathbf{D}^{(l)}(\mathbf{n}, \phi)$.

3a. Show that $\mathbf{D}^{(l)}$ is a *representation* of \hat{R} , i.e.,

$$\mathbf{D}^{(l)}(\hat{R}_1 \hat{R}_2) = \mathbf{D}^{(l)}(\hat{R}_1) \mathbf{D}^{(l)}(\hat{R}_2).$$

3b. Show that rotation over $\phi = 0$ is represented by the $(2l + 1) \times (2l + 1)$ identity matrix:

$$\mathbf{D}^{(l)}(\mathbf{n}, 0) = \mathbf{I}_{(2l+1) \times (2l+1)}.$$

3c. Use the representation property to show that

$$\mathbf{D}^{(l)}(\hat{R}^\dagger) = \mathbf{D}^{(l)}(\hat{R})^\dagger.$$

Question 4: Euler angles

A rotation may be expressed in zyz Euler angles by

$$\hat{R}(\alpha, \beta, \gamma) = \hat{R}(\mathbf{e}_z, \alpha) \hat{R}(\mathbf{e}_y, \beta) \hat{R}(\mathbf{e}_z, \gamma). \quad (1)$$

4a. Show that

$$D_{m,k}^{(l)}(\alpha, \beta, \gamma) \equiv \langle lm | \hat{R}(\alpha, \beta, \gamma) | lk \rangle = e^{-im\alpha} d_{m,k}^{(l)}(\beta) e^{-ik\gamma}$$

with

$$\mathbf{d}^{(l)}(\beta) \equiv \mathbf{D}^{(l)}(\mathbf{e}_y, \beta).$$

Note: the matrix $\mathbf{d}^{(l)}(\beta)$ is real.

Question 5: Spherical harmonic addition theorem

Two normalized vectors $\hat{\mathbf{r}}$ and $\hat{\mathbf{k}}$ are defined by rotations of \mathbf{e}_z ,

$$\begin{aligned}\hat{\mathbf{r}} &= \mathbf{R}_1 \mathbf{e}_z, \\ \hat{\mathbf{k}} &= \mathbf{R}_2 \mathbf{e}_z.\end{aligned}$$

The angle between $\hat{\mathbf{r}}$ and $\hat{\mathbf{k}}$ is θ ,

$$\hat{\mathbf{r}} \cdot \hat{\mathbf{k}} = \cos \theta.$$

The scalar product can be written as

$$\hat{\mathbf{r}} \cdot \hat{\mathbf{k}} = (\mathbf{R}_1 \mathbf{e}_z) \cdot (\mathbf{R}_2 \mathbf{e}_z) = \mathbf{e}_z \cdot \mathbf{R}_1^\dagger \mathbf{R}_2 \mathbf{e}_z.$$

The rotation $\mathbf{R}_1^\dagger \mathbf{R}_2$ can be expressed in *zyz* Euler angles (α, β, γ)

$$\mathbf{R}_1^\dagger \mathbf{R}_2 = \mathbf{R}(\alpha, \beta, \gamma) = \mathbf{R}(\mathbf{e}_z, \alpha) \mathbf{R}(\mathbf{e}_y, \beta) \mathbf{R}(\mathbf{e}_z, \gamma)$$

5a. Show that

$$\mathbf{e}_z \cdot \mathbf{R}(\alpha, \beta, \gamma) \mathbf{e}_z = \cos \beta$$

5b. Show that $\cos \beta = \cos \theta$.

We now have established that

$$P_l(\cos \theta) \equiv d_{0,0}^{(l)}(\theta) = \mathbf{D}_{0,0}^{(l)}(\mathbf{R}_1^\dagger \mathbf{R}_2).$$

Spherical harmonics Y_{lm} , Racah normalized spherical harmonics C_{lm} , and Legendre polynomials P_l may be expressed as special cases of Wigner rotations matrices by

$$\begin{aligned}C_{lm}(\theta, \phi) &\equiv D_{m,0}^{(l)}(\phi, \theta, 0)^* \\ P_l(\cos \theta) &\equiv C_{l,0}(\theta, 0) \\ Y_{lm}(\theta, \phi) &\equiv \sqrt{\frac{2l+1}{4\pi}} C_{lm}(\theta, \phi).\end{aligned}$$

5c. Derive the spherical harmonics addition theorem

$$P_l(\cos \theta) = \frac{4\pi}{2l+1} \sum_{m=-1}^l Y_{lm}(\hat{\mathbf{r}}) Y_{lm}(\hat{\mathbf{k}})^*.$$