

Quantum Dynamics, NWI-SM295, exercises week 7

Gerrit C. Groenenboom, June 9, 2019

Question 1: Inelastic scattering

The boundary conditions for inelastic scattering are given by

$$\Psi_n(\mathbf{r}) \cong |n\rangle v_n^{-\frac{1}{2}} e^{i\mathbf{k}_n \cdot \mathbf{r}} + \sum_{n'} |n'\rangle v_{n'}^{-\frac{1}{2}} \frac{e^{i\mathbf{k}_{n'} \cdot \mathbf{r}}}{r} f_{n' \leftarrow n}(\hat{r}, \hat{k})$$

where n stands for all quantum numbers of the collision partners, \mathbf{k}_n is the wave vector and \mathbf{r} the vector connecting the centers-of-mass, f is the scattering amplitude, $k = |\mathbf{k}|$, $\mathbf{k} = k\hat{\mathbf{k}}$, $r = |\mathbf{r}|$, and $\mathbf{r} = r\hat{\mathbf{r}}$, and v_n is the velocity.

Using the partial wave expansion of the plane wave

$$e^{i\mathbf{k} \cdot \mathbf{r}} \cong \sum_{l=0}^{\infty} i^l (2l+1) j_l(kr) P_l(\hat{k} \cdot \hat{r}).$$

and the spherical harmonic addition theorem

$$P_l(\hat{k} \cdot \hat{r}) = \frac{4\pi}{2l+1} \sum_{m_l=-l}^l Y_{lm_l}(\hat{r}) Y_{lm_l}^*(\hat{k})$$

the boundary conditions can be written in S -matrix form

$$\begin{aligned} \Psi_n(\mathbf{r}) \cong & \frac{2\pi}{ik_n r} \sum_{n'} \sum_{l' m'_l} \sum_{l m_l} |n'\rangle Y_{l' m'_l}(\hat{r}) v_{n'}^{-\frac{1}{2}} \\ & \left[-e^{-i(k_{n'} r - \frac{1}{2} l' \pi)} \delta_{n' n} \delta_{l' l} \delta_{m'_l, m_l} + e^{i(k_{n'} r - \frac{1}{2} l' \pi)} S_{n' l' m'_l; n l m_l} \right] i^l Y_{l m_l}(\hat{k})^*. \end{aligned}$$

The S -matrix is related to the T -matrix by

$$S_{n' l' m'_l; n l m_l} = \delta_{n' n} \delta_{l' l} \delta_{m'_l m_l} - T_{n' l' m'_l; n l m_l}. \quad (1)$$

1a. Derive an expression of the scattering amplitude $f_{n' \leftarrow n}(\hat{r}, \hat{k})$ in terms of T -matrix elements.

The state-to-state differential cross section is given by

$$\frac{d\sigma_{n' \leftarrow n}}{d\Omega}(\hat{r}, \hat{k}) = \frac{j_{\text{out}}}{j_{\text{in}}} = |f_{n' \leftarrow n}(\hat{r}, \hat{k})|^2 \quad (2)$$

and the state-to-state integral cross section is given by

$$\sigma_{n' \leftarrow n} = \iint \frac{d\sigma_{n' \leftarrow n}}{d\Omega}(\hat{r}, \hat{k}) d\hat{r}. \quad (3)$$

1b. Derive an expression for the integral cross section. Use the orthonormality of spherical harmonics Y_{lm} . Also, take the incoming direction to be the z -axis $\hat{\mathbf{k}} = \mathbf{e}_z$ and use

$$Y_{lm}(\mathbf{e}_z) \equiv Y_{lm}(0, 0) = \sqrt{\frac{2l+1}{4\pi}} \delta_{m,0}. \quad (4)$$