

Quantum Dynamics, NWI-SM295, exercises week 4

Gerrit C. Groenenboom, June 7, 2019

Question 1: Kinetic energy operator in 3D

In this exercise we derive

$$-\frac{\hbar^2}{2\mu}\nabla^2 = -\frac{\hbar^2}{2\mu}\frac{1}{r}\frac{\partial^2}{\partial r^2}r + \frac{\hat{l}^2}{2\mu r^2}. \quad (1)$$

The angular momentum operator is defined by

$$\hat{l} = \mathbf{r} \times \hat{\mathbf{p}}, \quad (2)$$

where the linear momentum operator is

$$\hat{\mathbf{p}} = -i\hbar\nabla. \quad (3)$$

The first step is to work out the \hat{l}^2 operator and to show that

$$\hat{l}^2 = -\hbar^2(\mathbf{r} \times \nabla) \cdot (\mathbf{r} \times \nabla) = \hbar^2[-r^2\nabla^2 + \mathbf{r} \cdot \nabla + (\mathbf{r} \cdot \nabla)^2]. \quad (4)$$

A convenient way to work with cross products,

$$\mathbf{a} = \mathbf{b} \times \mathbf{c}, \quad (5)$$

is to write the components using the Levi-Civita tensor ϵ_{ijk} ,

$$a_i = \epsilon_{ijk}b_jc_k \equiv \sum_{j=1}^3 \sum_{k=1}^3 \epsilon_{ijk}b_jc_k, \quad (6)$$

where we introduced the Einstein summation convention: whenever an index appears twice one assumes there is a sum over this index.

1a. Write the cross product in components and show that

$$\epsilon_{1,2,3} = \epsilon_{2,3,1} = \epsilon_{3,1,2} = 1, \quad (7)$$

$$\epsilon_{3,2,1} = \epsilon_{2,1,3} = \epsilon_{1,3,2} = -1, \quad (8)$$

and all other component of the tensor are zero. Note: the tensor is +1 for $\epsilon_{1,2,3}$, it changes sign whenever two indices are permuted, and as a result it is zero whenever two indices are equal.

1b. Check this relation

$$\epsilon_{ijk}\epsilon_{ij'k'} = \delta_{jj'}\delta_{kk'} - \delta_{jk'}\delta_{j'k}. \quad (9)$$

(Remember the implicit summation over index i).

1c. Use Eq. (9) to derive Eq. (4).

1d. Show that

$$r\frac{\partial}{\partial r} = \mathbf{r} \cdot \nabla \quad (10)$$

1e. Show that

$$\frac{1}{r}\frac{\partial^2}{\partial r^2}r = \frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} \quad (11)$$

1f. Combine the results to derive Eq. (1).

Question 2: Coupled channels equation for collinear $A + BC$

Three particles move along a line. Their coordinates are x_A , x_B , and x_C , and their masses m_A , m_B , and m_C . The kinetic energy operator is given by

$$\hat{T} = -\frac{\hbar^2}{2m_A} \frac{\partial^2}{\partial x_A^2} - \frac{\hbar^2}{2m_B} \frac{\partial^2}{\partial x_B^2} - \frac{\hbar^2}{2m_C} \frac{\partial^2}{\partial x_C^2}. \quad (12)$$

The center of mass coordinate is

$$X \equiv \frac{m_A x_A + m_B x_B + m_C x_C}{m_A + m_B + m_C} \quad (13)$$

and the Jacobi-coordinates for the $A + BC$ arrangement are

$$r \equiv x_B - x_C. \quad (14)$$

$$R \equiv x_A - \frac{m_B x_B + m_C x_C}{m_B + m_C}. \quad (15)$$

2a. Rewrite the kinetic energy in Jacobi/center-of-mass coordinates (X, R, r) .

The potential V is assumed to be independent of X , so the Hamiltonian can be written as

$$\hat{H} = \hat{T} + V(R, r). \quad (16)$$

For large R we find the potential for molecule BC:

$$V_{BC}(r) = \lim_{R \rightarrow \infty} V(R, r). \quad (17)$$

2b. Derive the Schrödinger equation for the vibrational wave functions $\phi_v(r)$ of molecule BC.

The multichannel expansion is given by

$$\Psi(R, r) = \sum_v \phi_v(r) u_v(R). \quad (18)$$

2c. Derive the coupled channels equation

$$\mathbf{u}''(R) = \mathbf{W}(R) \mathbf{u}(R) \quad (19)$$

and find an expression for the \mathbf{W} matrix.