

Quantum Dynamics, NWI-SM295, exercises week 1

Gerrit C. Groenenboom, April 08, 2023

Question 1: Separating center-of-mass motion

Two particles with Cartesian coordinates x_1 and x_2 , and masses m_1 and m_2 move along a line. They are connected with a spring with force constant k . The equilibrium distance between the particles is r_0 . The Hamiltonian for this system is given by

$$\hat{H} = -\frac{\hbar^2}{2m_1} \frac{\partial^2}{\partial x_1^2} - \frac{\hbar^2}{2m_2} \frac{\partial^2}{\partial x_2^2} + \frac{1}{2} k(x_2 - x_1 - r_0)^2. \quad (1)$$

1a. Rewrite this Hamiltonian in coordinates X and y , where X is the center-of-mass coordinate and $y \equiv x_2 - x_1 - r_0$ and show that the Hamiltonian can be written as the sum of two parts

$$\hat{H} = \hat{T}(X) + \hat{H}_0(y). \quad (2)$$

In the new coordinates, the time-independent Schrödinger equation is given by

$$\hat{H}\Psi(y, X) = E\Psi(y, X). \quad (3)$$

To solve this equation, assume that the solution can be written as a product of a function describing the center-of-mass motion, $\chi(X)$ and a function describing the relative motion of the particles, $\phi(y)$,

$$\Psi(y, X) = \phi(y)\chi(X). \quad (4)$$

1b. Derive a time-independent Schrödinger equation for $\phi(y)$, assuming that the expectation value of the center-of-mass kinetic energy equals K ,

$$\frac{\langle \chi(X) | \hat{T}(X) | \chi(X) \rangle}{\langle \chi | \chi \rangle} = K. \quad (5)$$

Question 2: The harmonic oscillator

The one-dimensional harmonic oscillator Hamiltonian is given by

$$\hat{H}_0 = -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial y^2} + \frac{1}{2} ky^2. \quad (6)$$

The harmonic oscillator wave functions $\phi_n(y)$ with energies E_n are solutions of the Schrödinger equation

$$\hat{H}_0\phi_n(y) = E_n\phi_n(y), \quad n = 0, 1, 2, \dots \quad (7)$$

To solve this equation one may use the information on Hermite polynomials $H_n(x)$ (chapter 22, “orthogonal polynomials”, of Ref. [1].).

The differential equation:

$$\left[\frac{\partial^2}{\partial x^2} + (2n + 1 - x^2) \right] H_n(x) e^{-\frac{1}{2}x^2} = 0, \quad (8)$$

the recursion relations

$$H_0(x) = 1 \quad (9)$$

$$H_1(x) = 2x \quad (10)$$

$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x) \quad \text{for } n = 1, 2, \dots \quad (11)$$

and orthonormality

$$\int_{-\infty}^{+\infty} H_m^*(x) H_n(x) e^{-x^2} dx = 2^n n! \sqrt{\pi} \delta_{m,n} \quad (12)$$

2a. Find a suitable coordinate transformation $x = \alpha y$ to solve the Harmonic oscillator problem of Eq. (7) in terms of Hermite polynomials and normalize the solutions $\phi_n(y)$.

2b. Also find the energies E_n .

Question 3: Morse oscillator

The Morse potential a diatomic molecule is given by

$$V(r) = D_e [1 - e^{-\alpha(r-r_e)}]^2, \quad (13)$$

where r is the interatomic distance, D_e is the dissociation energy, r_e is the equilibrium distance and α is a parameter.

The radial Schrödinger equation for a diatomic molecule with rotational quantum number l and reduced mass μ is given by

$$\left[-\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial r^2} + \frac{\hbar^2 l(l+1)}{2\mu r^2} + V(r) \right] \chi_{v,l}(r) = E_{v,l} \chi_{v,l}(r). \quad (14)$$

- 3a. Derive an expression for $E_{v,l=0}$ in the harmonic approximation, i.e., for a molecule that is not rotating.
- 3b. Still using the harmonic approximation for the Morse potential, use first order perturbation theory to derive an expression for $E_{v,l}$ for other values of l .

Question 4: The harmonic oscillator, part II

Note: the first three questions prepare for the computer assignment. You can also do this question later.

- 4a. Use the recursion relations Eqs. (9-11) to show that

$$H_n(-x) = (-1)^n H_n(x). \quad (15)$$

- 4b. Use symmetry to show that

$$\langle \phi_n | y | \phi_n \rangle = 0. \quad (16)$$

- 4c. Use the recursion relation twice to write $x^2 H_n$ as a linear combination of Hermite polynomials.

- 4d. Use the last result and the orthonogonality of harmonic oscillator functions to compute the expectation value

$$\langle y^2 \rangle = \frac{\langle \phi_n | y^2 | \phi_n \rangle}{\langle \phi_n | \phi_n \rangle}.$$

References

- [1] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions*, National Bureau of Standards, Washington, D.C., 1964.