
Quantum Dynamics, NWI-SM295, exercises week 8
Gerrit C. Groenenboom, June 9, 2019

Question 1: Angular momentum operators

The angular momentum operators l̂ for a single particle with position r and momentum p̂ = ~
i∇

are given by
l̂ = r × p̂. (1)

The position r expressed in spherical polar coordinates (r, θ, φ) is given by

r = r

sin θ cosφ
sin θ sinφ

cos θ

 . (2)

1a. Show that l̂z in spherical polar coordinates is given by

l̂z =
~
i

∂

∂φ
. (3)

Answer: In Cartesian coordinates:

l̂z =
~
i

(
x
∂

∂y
− y ∂

∂x

)
. (4)

With the chain rule

∂

∂φ
=
∂y

∂φ

∂

∂y
+
∂x

∂φ

∂

∂x
(5)

= r sin θ cosφ
∂

∂y
− r sin θ sinφ

∂

∂x
(6)

= x
∂

∂y
− y ∂

∂x
(7)

and hence,
~
i

∂

∂φ
= l̂z. (8)

Question 2: Rotations in R3

A rotation in R3 around a vector n with |n| = 1 over an angle φ is given by

R(n, φ) = eφN , (9)

where N is an anti-Hermitian matrix, implicitly defined by

n× x = Nx (10)

with

n =

n1n2
n3

 . (11)

2a. Find the matrices N1, N2, and N3 such that

N = n1N1 + n2N2 + n3N3. (12)
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Answer:

n× x =

n2x3 − n3x2n3x1 − n1x3
n1x2 − n2x1

 =

 0 −n3 n2
n3 0 −n1
−n2 n1 0

x = Nx, (13)

so

N1 =

0 0 0
0 0 −1
0 1 0

 , N2 =

 0 0 1
0 0 0
−1 0 0

 , N3 =

0 −1 0
1 0 0
0 0 0

 . (14)

2b. Show that
NT = −N . (15)

Answer:

N =

 0 −n3 n2
n3 0 −n1
−n2 n1 0

 . (16)

2c. Derive the commutation relations

[N1,N2] = N3. (17)

Answer: Using the answer of 2a:

N1N2 −N2N1 = N3. (18)

Question 3: Wigner rotation matrices

A rotation operator acting on the (2l + 1) dimensional linear space

{|lm〉, m = −l,−l + 1, . . . , l} (19)

is given by

R̂(n, φ) = e−
i
~φn·l̂. (20)

Wigner rotation matrices D(l)(n, φ) are defined by

R̂(n, φ)|lm〉 =

l∑
m′=−l

|lm′〉D(l)
m′,m(n, φ). (21)

We will use the short-hand notation D(l)(R̂) ≡D(l)(n, φ).

3a. Show that D(l) is a representation of R̂, i.e.,

D(l)(R̂1R̂2) = D(l)(R̂1)D
(l)(R̂2). (22)
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Answer: By definition,
(R̂1R̂2)|lm〉 ≡ R̂1(R̂2|lm〉) (23)

The left-hand-side gives

(R̂1R̂2)|lm〉 =
l∑

m′=−l
|lm′〉D(l)

m′,m(R̂1R̂2). (24)

The right-hand-sie gives

R̂1(R̂2|lm〉) = R̂1

l∑
m′′=−l

|lm′′〉D(l)
m′′,m(R̂2) (25)

=
l∑

m′′=−l

l∑
m′=−l

|lm′〉D(l)
m′,m′′(R̂1)D

(l)
m′′,m(R̂2) (26)

=

l∑
m′=−l

|lm′〉
l∑

m′′=−l
D

(l)
m′,m′′(R̂1)D

(l)
m′′,m(R̂2). (27)

Combining these results gives

D
(l)
m′,m(R̂1R̂2) =

l∑
m′′=−l

D
(l)
m′,m′′(R̂1)D

(l)
m′′,m(R̂2), (28)

or
D(l)(R̂1R̂2) = D(l)(R̂1)D

(l)(R̂2). (29)

3b. Show that rotation over φ = 0 is represented by the (2l + 1)× (2l + 1) identity matrix:

D(l)(n, 0) = I(2l+1)×(2l+1). (30)

Answer: Since e0 = 1 we have

D
(l)
m′m(n, 0) = 〈lm′|e0|lm〉 = 〈lm′|lm〉 = δm′m. (31)

3c. Use the representation property to show that

D(l)(R̂†) = D(l)(R̂)†. (32)

Answer: According to the representation property of D-matrices we have

R̂|lm〉 =
∑
m′

|lm′〉D(l)
m′m(R̂). (33)

Taking the Hermitian conjugate gives

〈lm|R̂† =
∑
m′

D
(l)
m′m(R̂)∗〈lm′| (34)
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Taking the scalar product with |lm′〉 give

〈lm|R̂†|lm′〉 = D
(l)
m′m(R̂)∗, (35)

so
D

(l)
mm′(R̂

†) = D
(l)
m′m(R̂)∗ =

[
D(l)(R̂)†

]
m′m

. (36)

Question 4: Euler angles

A rotation may be expressed in zyz Euler angles by

R̂(α, β, γ) = R̂(ez, α)R̂(ey, β)R̂(ez, γ). (37)

4a. Show that
D

(l)
m,k(α, β, γ) ≡ 〈lm|R̂(α, β, γ)|lk〉 = e−imαd

(l)
m,k(β)e−ikγ (38)

with
d(l)(β) ≡D(l)(ey, β). (39)

Note: the matrix d(l)(β) is real.

Answer: For the γ dependent factor:

R̂(ez, γ)|lk〉 = e−
i
~γez ·l̂|lk〉 = e−

i
~γl̂z |lk〉 = e−

i
~γ~k|lk〉 = |lk〉e−ikγ . (40)

For the α dependent factor: [
eiαl̂z |lm〉

]†
=
[
eiαm|lm〉

]†
(41)

so
〈lm|e−iαl̂z = 〈lm|e−imα. (42)

Question 5: Spherical harmonic addition theorem

Two normalized vectors r̂ and k̂ are defined by rotations of ez,

r̂ = R1ez, (43)

k̂ = R2ez. (44)

The angle between r̂ and k̂ is θ,
r̂ · k̂ = cos θ. (45)

The scalar product can be written as

r̂ · k̂ = (R1ez) · (R2ez) = ez ·R†1R2ez. (46)

The rotation R†1R2 can be expressed in zyz Euler angles (α, β, γ)

R†1R2 = R(α, β, γ) = R(ez, α)R(ey, β)R(ez, γ) (47)

5a. Show that
ez ·R(α, β, γ)ez = cosβ (48)
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Answer: First note that ez is invariant under rotations around ez

R(ez, γ)ez = ez (49)

so
ez ·R(α, β, γ)ez = ez ·R(ey, β)ez (50)

and

R(ey, β)

0
0
1

 =

sinβ
0

cosβ

 , (51)

i.e., the z component is cosβ.

5b. Show that cosβ = cos θ.

Answer: From the definitions we have

cos θ = r̂ · k̂ = ez ·R†1R2ez = ez ·R(α, β, γ)ez = cosβ. (52)

We now have established that

Pl(cos θ) ≡ d(l)0,0(θ) = D
(l)
0,0(R

†
1R2). (53)

Spherical harmonics Ylm, Racah normalized spherical harmonics Clm, and Legendre polynomials
Pl may be expressed as special cases of Wigner rotations matrices by

Clm(θ, φ) ≡ D(l)
m,0(φ, θ, 0)∗ (54)

Pl(cos θ) ≡ Cl,0(θ, 0) (55)

Ylm(θ, φ) ≡
√

2l + 1

4π
Clm(θ, φ). (56)

5c. Derive the spherical harmonics addition theorem

Pl(cos θ) =
4π

2l + 1

l∑
m=−1

Ylm(r̂)Ylm(k̂)∗. (57)

Answer: The representation property of D-matrices (22) and the result of (32) give

D(l)(R†1R2) = D(l)(R†1)D
(l)(R2) = D(l)(R)†D(l)(R2). (58)

The (0, 0) component:

D
(l)
0,0(R

†
1R2) =

l∑
m=−l

[
D(l)(R1)

†
]
0,m

D
(l)
m,0(R2) =

l∑
m=−l

D
(l)
m,0(R1)

∗D
(l)
m,0(R2), (59)

so

Pl(cos θ) =

l∑
m=−l

Clm(r̂)Clm(k̂)∗ =
4π

2l + 1

l∑
m=−1

Ylm(r̂)Ylm(k̂)∗. (60)

Page 5 of 5


