

Quantum Dynamics, NWI-SM295, exercises week 8

Gerrit C. Groenenboom, June 9, 2019

Question 1: Angular momentum operators

The angular momentum operators $\hat{\mathbf{l}}$ for a single particle with position \mathbf{r} and momentum $\hat{\mathbf{p}} = \frac{\hbar}{i} \nabla$ are given by

$$\hat{\mathbf{l}} = \mathbf{r} \times \hat{\mathbf{p}}. \quad (1)$$

The position \mathbf{r} expressed in spherical polar coordinates (r, θ, ϕ) is given by

$$\mathbf{r} = r \begin{pmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{pmatrix}. \quad (2)$$

1a. Show that \hat{l}_z in spherical polar coordinates is given by

$$\hat{l}_z = \frac{\hbar}{i} \frac{\partial}{\partial \phi}. \quad (3)$$

Answer: *In Cartesian coordinates:*

$$\hat{l}_z = \frac{\hbar}{i} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right). \quad (4)$$

With the chain rule

$$\frac{\partial}{\partial \phi} = \frac{\partial y}{\partial \phi} \frac{\partial}{\partial y} + \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} \quad (5)$$

$$= r \sin \theta \cos \phi \frac{\partial}{\partial y} - r \sin \theta \sin \phi \frac{\partial}{\partial x} \quad (6)$$

$$= x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \quad (7)$$

and hence,

$$\frac{\hbar}{i} \frac{\partial}{\partial \phi} = \hat{l}_z. \quad (8)$$

Question 2: Rotations in \mathbb{R}^3

A rotation in \mathbb{R}^3 around a vector \mathbf{n} with $|\mathbf{n}| = 1$ over an angle ϕ is given by

$$\mathbf{R}(\mathbf{n}, \phi) = e^{\phi \mathbf{N}}, \quad (9)$$

where \mathbf{N} is an anti-Hermitian matrix, implicitly defined by

$$\mathbf{n} \times \mathbf{x} = \mathbf{N} \mathbf{x} \quad (10)$$

with

$$\mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}. \quad (11)$$

2a. Find the matrices \mathbf{N}_1 , \mathbf{N}_2 , and \mathbf{N}_3 such that

$$\mathbf{N} = n_1 \mathbf{N}_1 + n_2 \mathbf{N}_2 + n_3 \mathbf{N}_3. \quad (12)$$

Answer:

$$\mathbf{n} \times \mathbf{x} = \begin{pmatrix} n_2 x_3 - n_3 x_2 \\ n_3 x_1 - n_1 x_3 \\ n_1 x_2 - n_2 x_1 \end{pmatrix} = \begin{pmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{pmatrix} \mathbf{x} = \mathbf{N} \mathbf{x}, \quad (13)$$

so

$$\mathbf{N}_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \mathbf{N}_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \quad \mathbf{N}_3 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \quad (14)$$

2b. Show that

$$\mathbf{N}^T = -\mathbf{N}. \quad (15)$$

Answer:

$$\mathbf{N} = \begin{pmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{pmatrix}. \quad (16)$$

2c. Derive the commutation relations

$$[\mathbf{N}_1, \mathbf{N}_2] = \mathbf{N}_3. \quad (17)$$

Answer: *Using the answer of 2a:*

$$\mathbf{N}_1 \mathbf{N}_2 - \mathbf{N}_2 \mathbf{N}_1 = \mathbf{N}_3. \quad (18)$$

Question 3: Wigner rotation matrices

A rotation operator acting on the $(2l + 1)$ dimensional linear space

$$\{|lm\rangle, m = -l, -l + 1, \dots, l\} \quad (19)$$

is given by

$$\hat{R}(\mathbf{n}, \phi) = e^{-\frac{i}{\hbar} \phi \mathbf{n} \cdot \hat{\mathbf{l}}}. \quad (20)$$

Wigner rotation matrices $\mathbf{D}^{(l)}(\mathbf{n}, \phi)$ are defined by

$$\hat{R}(\mathbf{n}, \phi) |lm\rangle = \sum_{m'=-l}^l |lm'\rangle D_{m', m}^{(l)}(\mathbf{n}, \phi). \quad (21)$$

We will use the short-hand notation $\mathbf{D}^{(l)}(\hat{R}) \equiv \mathbf{D}^{(l)}(\mathbf{n}, \phi)$.

3a. Show that $\mathbf{D}^{(l)}$ is a *representation* of \hat{R} , i.e.,

$$\mathbf{D}^{(l)}(\hat{R}_1 \hat{R}_2) = \mathbf{D}^{(l)}(\hat{R}_1) \mathbf{D}^{(l)}(\hat{R}_2). \quad (22)$$

Answer: *By definition,*

$$(\hat{R}_1 \hat{R}_2) |lm\rangle \equiv \hat{R}_1 (\hat{R}_2 |lm\rangle) \quad (23)$$

The left-hand-side gives

$$(\hat{R}_1 \hat{R}_2) |lm\rangle = \sum_{m'=-l}^l |lm'\rangle D_{m',m}^{(l)} (\hat{R}_1 \hat{R}_2). \quad (24)$$

The right-hand-side gives

$$\hat{R}_1 (\hat{R}_2 |lm\rangle) = \hat{R}_1 \sum_{m''=-l}^l |lm''\rangle D_{m'',m}^{(l)} (\hat{R}_2) \quad (25)$$

$$= \sum_{m''=-l}^l \sum_{m'=-l}^l |lm'\rangle D_{m',m''}^{(l)} (\hat{R}_1) D_{m'',m}^{(l)} (\hat{R}_2) \quad (26)$$

$$= \sum_{m'=-l}^l |lm'\rangle \sum_{m''=-l}^l D_{m',m''}^{(l)} (\hat{R}_1) D_{m'',m}^{(l)} (\hat{R}_2). \quad (27)$$

Combining these results gives

$$D_{m',m}^{(l)} (\hat{R}_1 \hat{R}_2) = \sum_{m''=-l}^l D_{m',m''}^{(l)} (\hat{R}_1) D_{m'',m}^{(l)} (\hat{R}_2), \quad (28)$$

or

$$\mathbf{D}^{(l)} (\hat{R}_1 \hat{R}_2) = \mathbf{D}^{(l)} (\hat{R}_1) \mathbf{D}^{(l)} (\hat{R}_2). \quad (29)$$

3b. Show that rotation over $\phi = 0$ is represented by the $(2l + 1) \times (2l + 1)$ identity matrix:

$$\mathbf{D}^{(l)} (\mathbf{n}, 0) = \mathbf{I}_{(2l+1) \times (2l+1)}. \quad (30)$$

Answer: *Since $e^0 = 1$ we have*

$$D_{m'm}^{(l)} (\mathbf{n}, 0) = \langle lm' | e^0 | lm \rangle = \langle lm' | lm \rangle = \delta_{m'm}. \quad (31)$$

3c. Use the representation property to show that

$$\mathbf{D}^{(l)} (\hat{R}^\dagger) = \mathbf{D}^{(l)} (\hat{R})^\dagger. \quad (32)$$

Answer: *According to the representation property of D-matrices we have*

$$\hat{R} |lm\rangle = \sum_{m'} |lm'\rangle D_{m'm}^{(l)} (\hat{R}). \quad (33)$$

Taking the Hermitian conjugate gives

$$\langle lm | \hat{R}^\dagger = \sum_{m'} D_{m'm}^{(l)} (\hat{R})^* \langle lm' | \quad (34)$$

Taking the scalar product with $|lm'\rangle$ give

$$\langle lm|\hat{R}^\dagger|lm'\rangle = D_{m'm}^{(l)}(\hat{R})^*, \quad (35)$$

so

$$D_{mm'}^{(l)}(\hat{R}^\dagger) = D_{m'm}^{(l)}(\hat{R})^* = [\mathbf{D}^{(l)}(\hat{R})^\dagger]_{m'm}. \quad (36)$$

Question 4: Euler angles

A rotation may be expressed in zyz Euler angles by

$$\hat{R}(\alpha, \beta, \gamma) = \hat{R}(\mathbf{e}_z, \alpha) \hat{R}(\mathbf{e}_y, \beta) \hat{R}(\mathbf{e}_z, \gamma). \quad (37)$$

4a. Show that

$$D_{m,k}^{(l)}(\alpha, \beta, \gamma) \equiv \langle lm|\hat{R}(\alpha, \beta, \gamma)|lk\rangle = e^{-im\alpha} d_{m,k}^{(l)}(\beta) e^{-ik\gamma} \quad (38)$$

with

$$\mathbf{d}^{(l)}(\beta) \equiv \mathbf{D}^{(l)}(\mathbf{e}_y, \beta). \quad (39)$$

Note: the matrix $\mathbf{d}^{(l)}(\beta)$ is real.

Answer: For the γ dependent factor:

$$\hat{R}(\mathbf{e}_z, \gamma)|lk\rangle = e^{-\frac{i}{\hbar}\gamma\mathbf{e}_z \cdot \hat{\mathbf{l}}}|lk\rangle = e^{-\frac{i}{\hbar}\gamma\hat{l}_z}|lk\rangle = e^{-\frac{i}{\hbar}\gamma\hbar k}|lk\rangle = |lk\rangle e^{-ik\gamma}. \quad (40)$$

For the α dependent factor:

$$[e^{i\alpha\hat{l}_z}|lm\rangle]^\dagger = [e^{i\alpha m}|lm\rangle]^\dagger \quad (41)$$

so

$$\langle lm|e^{-i\alpha\hat{l}_z} = \langle lm|e^{-im\alpha}. \quad (42)$$

Question 5: Spherical harmonic addition theorem

Two normalized vectors $\hat{\mathbf{r}}$ and $\hat{\mathbf{k}}$ are defined by rotations of \mathbf{e}_z ,

$$\hat{\mathbf{r}} = \mathbf{R}_1 \mathbf{e}_z, \quad (43)$$

$$\hat{\mathbf{k}} = \mathbf{R}_2 \mathbf{e}_z. \quad (44)$$

The angle between $\hat{\mathbf{r}}$ and $\hat{\mathbf{k}}$ is θ ,

$$\hat{\mathbf{r}} \cdot \hat{\mathbf{k}} = \cos \theta. \quad (45)$$

The scalar product can be written as

$$\hat{\mathbf{r}} \cdot \hat{\mathbf{k}} = (\mathbf{R}_1 \mathbf{e}_z) \cdot (\mathbf{R}_2 \mathbf{e}_z) = \mathbf{e}_z \cdot \mathbf{R}_1^\dagger \mathbf{R}_2 \mathbf{e}_z. \quad (46)$$

The rotation $\mathbf{R}_1^\dagger \mathbf{R}_2$ can be expressed in zyz Euler angles (α, β, γ)

$$\mathbf{R}_1^\dagger \mathbf{R}_2 = \mathbf{R}(\alpha, \beta, \gamma) = \mathbf{R}(\mathbf{e}_z, \alpha) \mathbf{R}(\mathbf{e}_y, \beta) \mathbf{R}(\mathbf{e}_z, \gamma) \quad (47)$$

5a. Show that

$$\mathbf{e}_z \cdot \mathbf{R}(\alpha, \beta, \gamma) \mathbf{e}_z = \cos \beta \quad (48)$$

Answer: *First note that \mathbf{e}_z is invariant under rotations around \mathbf{e}_z*

$$\mathbf{R}(\mathbf{e}_z, \gamma) \mathbf{e}_z = \mathbf{e}_z \quad (49)$$

so

$$\mathbf{e}_z \cdot \mathbf{R}(\alpha, \beta, \gamma) \mathbf{e}_z = \mathbf{e}_z \cdot \mathbf{R}(\mathbf{e}_y, \beta) \mathbf{e}_z \quad (50)$$

and

$$\mathbf{R}(\mathbf{e}_y, \beta) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \sin \beta \\ 0 \\ \cos \beta \end{pmatrix}, \quad (51)$$

i.e., the z component is $\cos \beta$.

5b. Show that $\cos \beta = \cos \theta$.

Answer: *From the definitions we have*

$$\cos \theta = \hat{\mathbf{r}} \cdot \hat{\mathbf{k}} = \mathbf{e}_z \cdot \mathbf{R}_1^\dagger \mathbf{R}_2 \mathbf{e}_z = \mathbf{e}_z \cdot \mathbf{R}(\alpha, \beta, \gamma) \mathbf{e}_z = \cos \beta. \quad (52)$$

We now have established that

$$P_l(\cos \theta) \equiv d_{0,0}^{(l)}(\theta) = \mathbf{D}_{0,0}^{(l)}(\mathbf{R}_1^\dagger \mathbf{R}_2). \quad (53)$$

Spherical harmonics Y_{lm} , Racah normalized spherical harmonics C_{lm} , and Legendre polynomials P_l may be expressed as special cases of Wigner rotations matrices by

$$C_{lm}(\theta, \phi) \equiv D_{m,0}^{(l)}(\phi, \theta, 0)^* \quad (54)$$

$$P_l(\cos \theta) \equiv C_{l,0}(\theta, 0) \quad (55)$$

$$Y_{lm}(\theta, \phi) \equiv \sqrt{\frac{2l+1}{4\pi}} C_{lm}(\theta, \phi). \quad (56)$$

5c. Derive the spherical harmonics addition theorem

$$P_l(\cos \theta) = \frac{4\pi}{2l+1} \sum_{m=-l}^l Y_{lm}(\hat{\mathbf{r}}) Y_{lm}(\hat{\mathbf{k}})^*. \quad (57)$$

Answer: *The representation property of D -matrices (22) and the result of (32) give*

$$\mathbf{D}^{(l)}(\mathbf{R}_1^\dagger \mathbf{R}_2) = \mathbf{D}^{(l)}(\mathbf{R}_1^\dagger) \mathbf{D}^{(l)}(\mathbf{R}_2) = \mathbf{D}^{(l)}(\mathbf{R})^\dagger \mathbf{D}^{(l)}(\mathbf{R}_2). \quad (58)$$

The $(0,0)$ component:

$$D_{0,0}^{(l)}(\mathbf{R}_1^\dagger \mathbf{R}_2) = \sum_{m=-l}^l \left[D^{(l)}(\mathbf{R}_1)^\dagger \right]_{0,m} D_{m,0}^{(l)}(\mathbf{R}_2) = \sum_{m=-l}^l D_{m,0}^{(l)}(\mathbf{R}_1)^* D_{m,0}^{(l)}(\mathbf{R}_2), \quad (59)$$

so

$$P_l(\cos \theta) = \sum_{m=-l}^l C_{lm}(\hat{\mathbf{r}}) C_{lm}(\hat{\mathbf{k}})^* = \frac{4\pi}{2l+1} \sum_{m=-l}^l Y_{lm}(\hat{\mathbf{r}}) Y_{lm}(\hat{\mathbf{k}})^*. \quad (60)$$