
Quantum Dynamics, NWI-SM295, exercises week 4
Gerrit C. Groenenboom, June 7, 2019

Question 1: Kinetic energy operator in 3D

In this exercise we derive

− h̄
2

2µ
∇2 = − h̄

2

2µ

1

r

∂2

∂r2
r +

l̂2

2µr2
. (1)

The angular momentum operator is defined by

l̂ = r × p̂, (2)

where the linear momentum operator is
p̂ = −ih̄∇. (3)

The first step is to work out the l̂2 operator and to show that

l̂2 = −h̄2(r ×∇) · (r ×∇) = h̄2[−r2∇2 + r ·∇ + (r ·∇)2]. (4)

A convenient way to work with cross products,

a = b× c, (5)

is to write the components using the Levi-Civita tensor εijk,

ai = εijkbjck ≡
3∑
j=1

3∑
k=1

εijkbjck, (6)

where we introduced the Einstein summation convention: whenever an index appears twice one assumes
there is a sum over this index.

1a. Write the cross product in components and show that

ε1,2,3 = ε2,3,1 = ε3,1,2 = 1, (7)

ε3,2,1 = ε2,1,3 = ε1,3,2 = −1, (8)

and all other component of the tensor are zero. Note: the tensor is +1 for ε1,2,3, it changes sign when-
ever two indices are permuted, and as a result it is zero whenever two indices are equal.

Answer: The cross product in components is:a1a2
a3

 =

b1b2
b3

×
c1c2
c3

 =

b2c3 − b3c2b3c1 − b1c3
b1c2 − b2c3

 . (9)

1b. Check this relation
εijkεij′k′ = δjj′δkk′ − δjk′δj′k. (10)

(Remember the implicit summation over index i).

Answer: First consider j = j′, then the equation reads

εijkεijk′ = δkk′ − δjk′δjk (11)

When k 6= k′ we get zero on the left-hand-side (lhs) since i, j, k and at the same time i, j, k′ have
to be distinct, which is not possible. The right-hand-side (rhs) also gives zero, since δjk′ and δjk
cannot both be nonzero.

When k = k′ we get ∑
i

ε2ijk = 1− δ2jk (12)

This relation is also correct: if j = k we get zero on both sides, and when j 6= k there is always one
i that makes εijk nonzeros, and we get one on both sides of the equation.

Next, we consider j 6= j′, which gives

εijkεij′k′ = −δjk′δj′k (13)

When k = k′ both sides must be zero.
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When k 6= k′ we first consider k = j, for which both sides are zero (on the lhs εijk will be zero, and
on the rhs k = j means k 6= j′, so δj′k is zero).

Finally, when j 6= j′, k 6= k′, and k 6= j we have two cases: k = j′ and k 6= j′. First, when k = j′,
we only get nonzero on the lhs when k′ = j - and both lhs and rhs will be −1. When k 6= j′ (and
k 6= j), both sides are zero.

1c. Use Eq. (10) to derive Eq. (4).

Answer:

(r ×∇) · (r ×∇) =

3∑
i=1

(r ×∇)i (r ×∇)i (14)

= εijk rj∇k εij′k′ rj′∇k′ (15)

= [δjj′δkk′ − δjk′δj′k]rj∇krj′∇k′ (16)

= δjj′δkk′rj∇krj′∇k′ − δjk′δj′krj∇krj′∇k′ (17)

= δjj′δkk′rj(δkj′ + rj′∇k)∇k′ − δjk′δj′krj(δkj′ + rj′∇k)∇k′ (18)

= δjj′δkk′rjrj′∇k∇k′ + (δjj′δkk′ − δjk′δj′k)δkj′rj∇k′ − δjk′δj′krjrj′∇k∇k′ (19)

= r2∇2 + δjj′δkk′δkj′︸ ︷︷ ︸
=δjk′

rj∇k′ − δjk′ δj′kδkj′︸ ︷︷ ︸
=3

rj∇k′ − δjk′rj(r ·∇)∇k′ (20)

= r2∇2 − 2r ·∇− δjk′{ [rj , r ·∇]︸ ︷︷ ︸
=[rj ,rj∇j ]=−rj

+(r ·∇)rj}∇k′ (21)

= r2∇2 − 2r ·∇ + δjk′rj∇k′︸ ︷︷ ︸
=r·∇

−(r ·∇) δjk′rj∇k′︸ ︷︷ ︸
=r·∇

(22)

= r2∇2 − r ·∇− (r ·∇)2. (23)

1d. Show that

r
∂

∂r
= r ·∇ (24)

Answer: The vector r can be written as
r = rr̂, (25)

where r = |r| and r̂ is the unit vector in the direction r. Taking the derivative with respect to r,
for a fixed direction r̂ gives

∂

∂r
r =

∂

∂r
rr̂ = r̂. (26)

The may be written in components
∂

∂r
ri =

ri
r
. (27)

The chain rule gives
∂

∂r
=
∂ri
∂r

∂

∂ri
=
ri
r

∂

∂ri
=

1

r
ri∇i =

1

r
r ·∇. (28)

If we multiply this equation with r we get

r
∂

∂r
= r ·∇. (29)

1e. Show that
1

r

∂2

∂r2
r =

∂2

∂r2
+

2

r

∂

∂r
(30)
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Answer:

1

r

∂2

∂r2
r =

1

r

∂

∂r

(
1 + r

∂

∂r

)
(31)

=
1

r

∂

∂r
+

1

r

(
∂

∂r
+ r

∂2

∂r2

)
(32)

=
2

r

∂

∂r
+

∂2

∂r2
. (33)

1f. Combine the results to derive Eq. (1).

Answer: From Eq. 4 we get

h̄2∇2 = h̄2
1

r2
[r ·∇︸ ︷︷ ︸
r ∂

∂r

+ (r ·∇)2︸ ︷︷ ︸
(r ∂

∂r )
2

]− l̂2

r2
(34)

= h̄2[
1

r

∂

∂r
+

1

r

∂

∂r
r
∂

∂r
]− l̂2

r2
(35)

= h̄2[
2

r

∂

∂r
+

∂2

∂r2
]− l̂2

r2
(36)

= h̄2
1

r

∂2

∂r2
r − l̂2

r2
(37)

so

− h̄
2

2µ
∇2 = − h̄

2

2µ

1

r

∂2

∂r2
r +

l̂2

2µr2
. (38)

Question 2: Coupled channels equation for collinear A+BC

Three particles move along a line. Their coordinates are xA, xB , and xC , and their masses mA, mB , and
mC . The kinetic energy operator is given by

T̂ = − h̄2

2mA

∂2

∂x2A
− h̄2

2mB

∂2

∂x2B
− h̄2

2mC

∂2

∂x2C
. (39)

The center of mass coordinate is

X ≡ mAxA +mBxB +mCxC
mA +mB +mC

(40)

and the Jacobi-coordinates for the A+BC arrangement are

r ≡ xB − xC . (41)

R ≡ xA −
mBxB +mCxC
mB +mC

. (42)

2a. Rewrite the kinetic energy in Jacobi/center-of-mass coordinates (X,R, r).

Answer: The chain rule gives

∂

∂xA
=

∂X

∂xA

∂

∂X
+

∂R

∂xA

∂

∂R
+

∂r

∂xA

∂

∂r
(43)

∂

∂xB
=

∂X

∂xB

∂

∂X
+

∂R

∂xB

∂

∂R
+

∂r

∂xB

∂

∂r
(44)

∂

∂xC
=

∂X

∂xC

∂

∂X
+

∂R

∂xC

∂

∂R
+

∂r

∂xC

∂

∂r
(45)
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so (with M = mA +mB +mC and MBC = mB +mC)

∂

∂xA
=
mA

M

∂

∂X
+

∂

∂R
(46)

∂

∂xB
=
mB

M

∂

∂X
− mB

MBC

∂

∂R
+

∂

∂r
(47)

∂

∂xC
=
mC

M

∂

∂X
− mC

MBC

∂

∂R
− ∂

∂r
(48)

The second derivatives including the mass factors

1

mA

∂2

∂x2A
=
mA

M2

∂2

∂X2
+

1

mA

∂2

∂R2
+

2

M

∂2

∂X∂R
(49)

1

mB

∂2

∂x2B
=
mB

M2

∂2

∂X2
+

mB

M2
BC

∂2

∂R2
+

1

mB

∂2

∂r2
− 2mB

MMBC

∂2

∂X∂R
+

2

M

∂2

∂X∂r
− 2

MBC

∂2

∂R∂r
(50)

1

mC

∂2

∂x2C
=
mC

M2

∂2

∂X2
+

mC

M2
BC

∂2

∂R2
+

1

mC

∂2

∂r2
− 2mC

MMBC

∂2

∂X∂R
− 2

M

∂2

∂X∂r
.+

2

MBC

∂2

∂R∂r
. (51)

In the sum all the cross terms cancel, and the kinetic energy operator becomes

T̂ = − h̄2

2M

∂2

∂X2
− h̄2

2µ

∂2

∂R2
− h̄2

2µBC

∂2

∂r2
(52)

with the reduced masses

1

µ
=

1

mA
+

1

MBC
(53)

1

µBC
=

1

mB
+

1

mC
. (54)

The potential V is assumed to be independent of X, so the Hamiltonian can be written as

Ĥ = T̂ + V (R, r). (55)

For large R we find the potential for molecule BC:

VBC(r) = lim
R→∞

V (R, r). (56)

2b. Derive the Schrödinger equation for the vibrational wave functions φv(r) of molecule BC.

Answer: [
− h̄2

2µBC

∂2

∂r2
+ VBC(r)

]
︸ ︷︷ ︸

≡ĤBC

φv(r) = εvφv(r). (57)

The multichannel expansion is given by

Ψ(R, r) =
∑
v

φv(r)uv(R). (58)

2c. Derive the coupled channels equation

u′′(R) = W (R)u(R) (59)

and find an expression for the W matrix.

Answer: In a center-of-mass coordinate system we may drop the C.O.M. kinetic energy term. The
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time-independent Schrödinger equation is[
Ĥ − E

]
Ψ(R, r) = 0 (60)[

T̂R + T̂r + V (R, r)− E
]

Ψ(R, r) = 0, (61)

where we defined

T̂R = − h̄
2

2µ

∂2

∂R2
(62)

T̂r = − h̄2

2µBC

∂2

∂r2
(63)

We furtermore define the interaction potential

∆V (R, r) = V (R, r)− VBC(r) (64)

so the Schrödinger equation becomes[
T̂R + T̂r + VBC(r) + ∆V (R, r)− E

]
Ψ(R, r) = 0 (65)[

T̂R + ĤBC + ∆V (R, r)− E
]∑

v

φv(r)uv(R) = 0. (66)

Projecting with 〈φv′ | gives

∑
v

[
− h̄

2

2µ

∂2

∂R2
δv′v + δv′v(εv − E) + 〈φv′ |∆V (R, r)|φv〉

]
uv(R) = 0 (67)

or
∂2

∂R2
uv′(R) =

2µ

h̄2

∑
v

[δv′v(εv − E) + 〈φv′ |∆V (R, r)|φv〉]uv(R) (68)

In matrix notation this becomes Eq. (59) with W -matrix elements

Wv′v(R) =
2µ

h̄2
[δv′v(εv − E) + 〈φv′ |∆V (R, r)|φv〉] . (69)
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