
Quantum Dynamics, NWI-SM295, exercises week 3
Gerrit C. Groenenboom, June 5, 2019

Question 1: Time dependent wave packet for free particle

The time-dependent Schrödinger equation for a free particle of mass µ is in one dimension is

ih̄
∂Ψ(x, t)

∂t
= − h̄

2

2µ

∂2

∂x2
Ψ(x, t) (1)

Solutions exist that can be written as

Ψ(x, t) = exp[−1

2
αt(x− vt)2 + ikx+ ct] (2)

In this expression v and k are constants that satisfy the relation

h̄k = µv ≡ p (3)

The width of the wave packet is determined by

αt =
α0µ

µ+ ih̄(t− t0)α0
, (4)

where α0 determins the width at t = t0.

1a. Compute the expectation value of the position x

〈x〉 =
〈Ψ|x|Ψ〉
〈Ψ|Ψ〉

. (5)

Answer:

〈x〉 =

∫
e−

1
2α

∗
t (x−vt)

2−ikx+c∗t x e−
1
2αt(x−vt)2+ikx+ctdx∫

e−
1
2α

∗
t (x−vt)2−ikx+c∗t e−

1
2αt(x−vt)2+ikx+ctdx

(6)

=

∫
e−

1
2α

∗
t (x−vt)

2

x e−
1
2αt(x−vt)2dx∫

e−
1
2α

∗
t (x−vt)2 e−

1
2αt(x−vt)2dx

. (7)

Now we use the coordinate transformation y ≡ x− vt, and since dy/dx = 1 we get

〈x〉 =

∫
e−

1
2α

∗
t y

2

(y + vt) e−
1
2αty

2

dy∫
e−

1
2α

∗
t y

2
e−

1
2αty2dy

. (8)

=

∫
e−

1
2α

∗
t y

2

y e−
1
2αty

2

dy∫
e−

1
2α

∗
t y

2
e−

1
2αty2dy︸ ︷︷ ︸

= 0 by symmetry

+

∫
e−

1
2α

∗
t y

2

vt e−
1
2αty

2

dy∫
e−

1
2α

∗
t y

2
e−

1
2αty2dy

(9)

= vt. (10)

1b. Compute the expectation value of the momentm p̂

〈p̂〉 = 〈 h̄
i

∂

∂x
〉 =
〈Ψ|p̂|Ψ〉
〈Ψ|Ψ〉

. (11)

Answer: The derivative of Ψ(x, t) is

∂

∂x
Ψ(x, t) = [−αt(x− vt) + ik]Ψ(x, t) (12)

so
p̂Ψ(x, t) = h̄[iαt(x− vt) + k]Ψ(x, t) (13)

〈p̂〉 =

∫
e−

1
2α

∗
t (x−vt)

2−ikx+c∗t h̄[iαt(x− vt) + k], e−
1
2αt(x−vt)2+ikx+ctdx∫

e−
1
2α

∗
t (x−vt)2−ikx+c∗t e−

1
2αt(x−vt)2+ikx+ctdx

. (14)
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As in the previous question, we can split the integral in two terms, and the integral involving
h̄iαt(x− vt) will be zero by symmetry again, and the second term gives 〈p̂〉 = h̄k.

Question 2: Flux

In one dimension, the flux j of a wave function Ψ(x, t) is given by

j =
h̄

µ
Im

[
Ψ∗

∂

∂x
Ψ

]
, (15)

where µ is the mass of the particle. This expression also applies to time-independent wave functions
Ψ(x).

2a. Compute the flux of
Ψ(x) = aeikx + be−ikx. (16)

Answer: The flux is

j =
h̄

µ
Im

[(
a∗e−ikx + b∗eikx

) ∂

∂x

(
aeikx + be−ikx

)]
(17)

=
h̄

µ
Im
[(
a∗e−ikx + b∗eikx

) (
ikaeikx − ikbe−ikx

)]
(18)

=
h̄

µ
Im
[
ik|a|2 − ik|b|2 + ik

(
b∗ae2ikx − a∗be−2ikx

)]
(19)

The terms b∗ae2ikx and a∗be−2ikx are eachothers complex conjugate, so the difference is purely
imaginary, and after multiplication with the factor (ik) it is real, so it does not contribute to the
flux, and we find

j =
h̄k

µ

(
|a|2 − |b|2

)
. (20)

In three dimensions, the flux is given by

j =
h̄

µ
Im[Ψ∗∇Ψ] (21)

2b. Compute the flux of
Ψ(r) = Neik·r. (22)

Answer: The flux is a vector with three components, and it is parallel to the vector k,

j =
h̄

µ


Im(Ψ∗ ∂∂xΨ)

Im(Ψ∗ ∂∂yΨ)

Im(Ψ∗ ∂∂zΨ)

 = |N |2 h̄
µ
k, (23)

where we used ∂
∂xk · r = kx, ∂

∂yk · r = ky, etc.

Question 3: One-dimensional scattering

The Hamiltonian for a particle with mass µ is given by

Ĥ = − h̄
2

2µ

∂2

∂x2
+ V (x). (24)

For the potential V (x) we consider a step function

V (x) =

{
0, for x < 0
V1, for x > 0.

(25)
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The corresponding time-independent Schrödinger equation is

(Ĥ − E)Ψ(x) = 0. (26)

For x < 0 the solution can be written as the sum of an incoming wave and a reflected wave

ΨL(x) = eik0x + e−ik0xR(E). (27)

For x > 0 there is a transmitted wave

ΨR(x) = eik1xT (E). (28)

3a. Find the energy dependent reflection coefficients R(E) and T (E).

Answer: At x = 0 the wave function and its derivative should be continuous, so we have two
equations

ΨL(0) = ΨR(0), (29)

Ψ′L(0) = Ψ′R(0). (30)

That is

1 +R(E) = T (E), (31)

ik0 − ik0R(E) = ik1T (E) (32)

Substituting the first of these into the second to get an equation for R(E),

k0 − k0R(E) = k1[1 +R(E)] (33)

so
k0 − k1 = (k0 + k1)R(E) (34)

and

R(E) =
k0 − k1
k0 + k1

(35)

T (E) = 1 +
k0 − k1
k0 + k1

=
2k0

k0 + k1
. (36)

Note that if k1 = k0, we have R(E) = 0 and T (E) = 1, i.e., nothing is reflected, as you would
expect. If k1 � k0 we get R(E) = −1 and T (E) = 0, i.e., full reflection. When k1 � k0, we have
R(E) = 1, i.e., full reflection, but still still T (E) = 2. This may be surprising, but note that the
transmitted flux is proportional to k1, so even though the transmission coefficient does not go to
zero, the transmitted flux will go to zero.
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