

Quantum Dynamics, NWI-SM295, exercises week 1

Gerrit C. Groenenboom, June 5, 2019

Question 1: Time propagator

1a. Show that

$$\lim_{n \rightarrow \infty} \left(1 + \frac{x}{n}\right)^n = \sum_{k=0}^{\infty} \frac{1}{k!} x^k. \quad (1)$$

Hint: use

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k, \quad (2)$$

with binomial coefficients

$$\binom{n}{k} \equiv \frac{n!}{(n-k)! k!}. \quad (3)$$

Answer:

$$\left(1 + \frac{x}{n}\right)^2 = \sum_{k=0}^n \binom{n}{k} \left(\frac{x}{n}\right)^k \quad (4)$$

$$= \sum_{k=0}^n \frac{n!}{(n-k)! k!} \left(\frac{x}{n}\right)^k \quad (5)$$

$$\equiv \sum_{k=0}^n c_k^{(n)} x^k \quad (6)$$

so

$$c_k^{(n)} = \frac{n!}{(n-k)! k!} \frac{1}{n^k} \quad (7)$$

$$= \frac{n(n-1)(n-2)\dots(n-k+1)}{n^k} \frac{1}{k!} \quad (8)$$

$$= \frac{n}{n} \frac{n-1}{n} \frac{n-2}{n} \dots \frac{n-k+1}{n} \frac{1}{k!} \quad (9)$$

Since for any fixed k we have

$$\lim_{n \rightarrow \infty} \frac{n-k+1}{n} = 1, \quad (10)$$

we find

$$\lim_{n \rightarrow \infty} c_k^{(n)} = \frac{1}{k!}. \quad (11)$$

Question 2: Autocorrelation function and spectrum

Let $\{\phi_1, \phi_2, \dots, \phi_N\}$ be solutions of the time-independent Schrödinger equation

$$\hat{H}\phi_i = \epsilon_i \phi_i, \quad i = 1, \dots, N.$$

with Hamiltonian \hat{H} and eigenvalues ϵ_i . Assume that the eigenfunctions are orthonormal $\langle \phi_i | \phi_j \rangle = \delta_{ij}$.

The time-dependent Schrödinger equation is given by

$$i\hbar \frac{\partial}{\partial t} \Psi(t) = \hat{H} \Psi(t).$$

The solution can be expanded in the solutions of the time-independent Schrödinger equation

$$\Psi(t) = \sum_{i=1}^N c_i(t) \phi_i$$

2a. Find the expansion coefficients $c_i(t)$ for given initial state $\Psi(0) = \Theta$.

Answer: At $t = 0$ the wave function is given by

$$\Psi(0) = \Theta = \sum_{j=1}^N c_j(0) \phi_j. \quad (12)$$

The coefficients $c_i(0)$ can be found by projecting with $\langle \phi_i |$

$$\langle \phi_i | \Theta \rangle = \sum_{j=1}^N c_j(0) \langle \phi_i | \phi_j \rangle \quad (13)$$

$$= \sum_{j=1}^N c_j(0) \delta_{i,j} = c_i(0), \quad (14)$$

so

$$c_i(0) = \langle \phi_i | \Theta \rangle. \quad (15)$$

The time-dependent expansion coefficients are (see lecture notes)

$$c_i(t) = e^{-\frac{i}{\hbar} \epsilon_i t} c_i(0) = e^{-\frac{i}{\hbar} \epsilon_i t} \langle \phi_i | \Theta \rangle. \quad (16)$$

2b. Find an expression for the autocorrelation function

$$P(t) = \langle \Psi(t) | \Psi(0) \rangle.$$

Answer: The time-dependent wave function is

$$|\Psi(t)\rangle = \sum_{i=1}^N |\phi_i\rangle e^{-\frac{i}{\hbar} \epsilon_i t} \langle \phi_i | \Theta \rangle \quad (17)$$

For the autocorrelation function we get

$$P(t) = \langle \Psi(t) | \Theta \rangle = \langle \Theta | \Psi(t) \rangle^* = \sum_{i=1}^N |\langle \phi_i | \Theta \rangle|^2 e^{\frac{i}{\hbar} \epsilon_i t}. \quad (18)$$

The Fourier transform is given by

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt. \quad (19)$$

2c. Compute the Fourier transform of the autocorrelation function $P(t)$. Hint:

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ixt} dt = \delta(x). \quad (20)$$

The delta function $\delta(x)$ has the property

$$\int_{-\infty}^{\infty} f(x) \delta(x-y) dx = f(y) \quad (21)$$

for any reasonably smooth function f .

Answer:

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} P(t) e^{-i\omega t} dt \quad (22)$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \sum_{i=1}^N |\langle \phi_i | \Theta \rangle|^2 e^{i(\omega_i - \omega)t}, \quad (23)$$

where we defined $\omega_i \equiv \epsilon_i/\hbar$. Using Eq. (20) and $\delta(x) = \delta(-x)$, we find for the “stick” spectrum

$$F(\omega) = \sum_{i=1}^N |\langle \phi_i | \Theta \rangle|^2 \delta(\omega - \omega_i). \quad (24)$$

With a properly chosen $\Psi(0)$, the Fourier transform of the autocorrelation corresponds to a stick spectrum. The spectrum calculated in this way has infinitely sharp peaks. A more realistic spectrum is obtain by introducing the effect of a finite lifetime:

$$\tilde{P}(t) = P(t) e^{-\Gamma|t|}$$

2d. Compute the Fourier transform of $\tilde{P}(t)$ and show that a Lorentzian line shape arises, with width Γ .

Answer:

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} P(t) e^{-\Gamma|t|} e^{-i\omega t} dt \quad (25)$$

$$= \frac{1}{2\pi} \sum_{i=1}^N |\langle \phi_i | \Theta \rangle|^2 \int_{-\infty}^{\infty} e^{i(\omega_i - \omega)t} e^{-\Gamma|t|} dt. \quad (26)$$

We can split the integral for $t < 0$ and $t \geq 0$,

$$\int_{-\infty}^{\infty} e^{i(\omega_i - \omega)t} e^{-\Gamma|t|} dt = \int_0^{\infty} e^{i(\omega_i - \omega)t} e^{-\Gamma t} dt + \int_{-\infty}^0 e^{i(\omega_i - \omega)t} e^{\Gamma t} dt, \quad (27)$$

and we can rewrite the second term as

$$\int_{-\infty}^0 e^{i(\omega_i - \omega)t} e^{\Gamma t} dt = \int_0^{\infty} e^{-i(\omega_i - \omega)t} e^{-\Gamma t} dt. \quad (28)$$

Note that this integral is the complex conjugate of the first term on the right-hand-side in Eq. (27). For a complex number z we have $z + z^* = 2\Re(z)$ (i.e., two times the real part of z), so

$$\int_{-\infty}^{\infty} e^{i(\omega_i - \omega)t} e^{-\Gamma|t|} dt = 2\Re \left(\int_0^{\infty} e^{i(\omega_i - \omega)t} e^{-\Gamma t} dt \right). \quad (29)$$

This integral is easy, for $\alpha = -\Gamma + i(\omega_i - \omega)$ we have

$$\int_0^{\infty} e^{\alpha t} dt = \frac{1}{\alpha} e^{\alpha t} \Big|_0^{\infty} = \frac{1}{\alpha} (e^{\alpha \infty} - e^0) = -\frac{1}{\alpha} = -\frac{\alpha^*}{|\alpha|^2}. \quad (30)$$

so

$$\int_{-\infty}^{\infty} e^{i(\omega_i - \omega)t} e^{-\Gamma|t|} dt = -2\Re \left(\frac{\alpha^*}{|\alpha|^2} \right) = -2 \frac{\Re(\alpha)}{|\alpha|^2} = 2 \frac{\Gamma}{\Gamma^2 + (\omega - \omega_i)^2} \quad (31)$$

Substituting this into Eq. (26) gives

$$F(\omega) = \sum_{i=1}^N |\langle \phi_i | \Theta \rangle|^2 \frac{1}{\pi} \frac{\Gamma}{\Gamma^2 + (\omega - \omega_i)^2}. \quad (32)$$

The function

$$L(\omega) = \frac{1}{\pi} \frac{\Gamma}{\Gamma^2 + (\omega - \omega_i)^2} \quad (33)$$

is called a Lorentzian. Its maximum value occurs at $\omega = \omega_i$ and for $\omega = \omega_i \pm \Gamma$ it has half the maximum value

$$L(\omega_i \pm \Gamma) = \frac{1}{\pi} \frac{\Gamma}{\Gamma^2 + \Gamma^2} = \frac{1}{2} L(\omega_i). \quad (34)$$

The integral of a Lorentzian is one, so for $\Gamma \rightarrow 0$, it approaches a delta function.