
Quantum Dynamics, NWI-SM295, exercises week 1
Gerrit C. Groenenboom, April 08, 2023

Question 1: Separating center-of-mass motion

Two particles with Cartesian coordinates x1 and x2, and masses m1 and m2 move along a line. They are
connected with a spring with force constant k. The equilibrium distance between the particles is r0. The
Hamiltonian for this system is given by

Ĥ = − h̄2

2m1

∂2

∂x21
− h̄2

2m2

∂2

∂x22
+

1

2
k(x2 − x1 − r0)2. (1)

1a. Rewrite this Hamiltonian in coordinates X and y, where X is the center-of-mass coordinate and
y ≡ x2 − x1 − r0 and show that the Hamiltonian can be written as the sum of two parts

Ĥ = T̂ (X) + Ĥ0(y). (2)

Answer: The C.O.M. coordinate is given by:

X =
m1x1 +m2x2
m1 +m2

. (3)

Use the chain rule to rewrite ∂
∂x1

and ∂
∂x2

,

∂

∂x1
=
∂X

∂x1

∂

∂X
+

∂y

∂x1

∂

∂y
(4)

=
m1

m1 +m2

∂

∂X
− ∂

∂y
(5)

so

∂2

∂x21
=

(
m1

m1 +m2

∂

∂X
− ∂

∂y

)2

(6)

=
m2

1

(m1 +m2)2
∂2

∂X2
− 2m1

m1 +m2

∂2

∂X∂y
+

∂2

∂y2
(7)

In the same way we get

∂2

∂x22
=

m2
2

(m1 +m2)2
∂2

∂X2
+

2m2

m1 +m2

∂2

∂X∂y
+

∂2

∂y2
. (8)

Thus, for the kinetic energy part of the Hamiltonian Ĥ we have

− h̄
2

2

(
1

m1

∂2

∂x21
+

1

m2

∂2

∂x22

)
= − h̄

2

2

[
1

m1 +m2

∂2

∂X2
+

(
1

m1
+

1

m2

)
∂2

∂y2

]
. (9)

So we have the C.O.M. kinetic energy

T̂ (X) = − h̄2

2(m1 +m2)

∂2

∂X2
(10)

and the harmonic oscillator Hamiltonian for coordinate y

Ĥ0(y) = − h̄
2

2µ

∂2

∂y2
+

1

2
ky2, (11)

where the reduced mass is defined by
1

µ
=

1

m1
+

1

m2
. (12)

In the new coordinates, the time-independent Schrödinger equation is given by

ĤΨ(y,X) = EΨ(y,X). (13)
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To solve this equation, assume that the solution can be written as a product of a function describing the
center-of-mass motion, χ(X) and a function describing the relative motion of the particles, φ(y),

Ψ(y,X) = φ(y)χ(X). (14)

1b. Derive a time-independent Schrödinger equation for φ(y), assuming that the expectation value of
the center-of-mass kinetic energy equals K,

〈χ(X)|T̂ (X)|χ(X)〉
〈χ|χ〉

= K. (15)

Answer: Substitute the Hamiltonian (Eq. 2) and wave function ansats (Eq. 14) into the Schrödinger
equation (13).

(T̂ + Ĥ0 − E)φ(y)χ(X) = 0, (16)

and project onto χ∫ ∞
X=−∞

dX χ∗(X)(T̂ + Ĥ0 − E)φ(y)χ(X) = 〈χ|T̂ |χ〉φ(y) + 〈χ|χ〉Ĥ0φ(y)− E〈χ|χ〉φ(y) = 0. (17)

If we devide the last equation by 〈χ|χ〉 we get

Ĥ0φ(y) = (E −K)φ(y). (18)

Note that E −K is the total energy (E) minus the kinetic energy of the C.O.M. (K), so E −K is
the energy associated with the “internal motion” as described by coordinate y.

Question 2: The harmonic oscillator

The one-dimensional harmonic oscillator Hamiltonian is given by

Ĥ0 = − h̄
2

2µ

∂2

∂y2
+

1

2
ky2. (19)

The harmonic oscillator wave functions φn(y) with energies En are solutions of the Schrödinger equation

Ĥ0φn(y) = Enφn(y), n = 0, 1, 2, . . . (20)

To solve this equation one may use the information on Hermite polynomials Hn(x) (chapter 22, “orthog-
onal polynomials”, of Ref. [1].).

The differential equation: [
∂2

∂x2
+ (2n+ 1− x2)

]
Hn(x)e−

1
2x

2

= 0, (21)

the recursion relations

H0(x) = 1 (22)

H1(x) = 2x (23)

Hn+1(x) = 2xHn(x)− 2nHn−1(x) for n = 1, 2, . . . (24)

and orthonormality ∫ +∞

−∞
H∗m(x)Hn(x)e−x

2

dx = 2nn!
√
πδm,n (25)

2a. Find a suitable coordinate transformation x = αy to solve the Harmonic oscillator problem of Eq.
(20) in terms of Hermite polynomials and normalize the solutions φn(y).

Answer: Rewrite Hamiltonian Ĥ0 in terms of x = αy. For the kinetic energy operator use

∂

∂y
=
∂x

∂y

∂

∂x
= α

∂

∂x
(26)
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so
∂2

∂y2
= α2 ∂

2

∂x2
(27)

and we can rewrite

Ĥ0 − En = − h̄
2α2

2µ

∂2

∂x2
+

k

2α2
x2 − En (28)

= − h̄
2α2

2µ

 ∂2

∂x2
− 2µk

2h̄2α4︸ ︷︷ ︸
=1

x2 +
2µEn

h̄2α2︸ ︷︷ ︸
=2n+1

 . (29)

We assigned the factors so that the x-dependent operator matches Eq. (21), so we found

2µk

2h̄2α4
= 1, (30)

2µEn

h̄2α2
= 2n+ 1. (31)

We can solve the first equation to find α,

α2 =
1

h̄

√
µk. (32)

2b. Also find the energies En.

Answer: Combining Eqs. (32) and (31) we get

En =
h̄2α2

2µ
(2n+ 1) = (n+

1

2
)h̄ω, with ω =

√
k
µ . (33)

Question 3: Morse oscillator

The Morse potential a diatomic molecule is given by

V (r) = De[1− e−α(r−re)]2, (34)

where r is the interatomic distance, De is the dissociation energy, re is the equilibrium distance and α is
a parameter.

The radial Schrödinger equation for a diatomic molecule with rotational quantum number l and
reduced mass µ is given by[

− h̄
2

2µ

∂2

∂r2
+
h̄2l(l + 1)

2µr2
+ V (r)

]
χv,l(r) = Ev,lχv,l(r). (35)

3a. Derive an expression for Ev,l=0 in the harmonic approximation, i.e., for a molecule that is not
rotating.

Answer: The minimum of the Morse potential is at r = re. The harmonic approximation is thus

V0(r) =
1

2
k(r − re)2 (36)

with

k =
∂2V (r)

∂r2
|r=re = 2αDe

∂

∂r
[(1− e−α(r−re)]|r=re = 2α2De. (37)

The energy levels of the harmonic oscillator are (n+ 1
2 )h̄ω, with ω =

√
k/µ, so

En,l=0 =

(
n+

1

2

)
h̄α

√
2De

µ
. (38)
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3b. Still using the harmonic approximation for the Morse potential, use first order perturbation theory
to derive an expression for Ev,l for other values of l.

Answer: In first order perturbation theory we partition the Hamiltonian in a zeroth order Hamil-
tonian Ĥ0 plus a perturbation V1. We take the l = 0 Hamiltonian as Ĥ0, and the centrifugal term
as perturbation. The first order perturbed energy is

E
(1)
l = 〈Ψ(0)

n |
h̄2l(l + 1)

2µr2
|Ψ(0)
n 〉 =

h̄2l(l + 1)

2µ
〈Ψ(0)

n |
1

r2
|Ψ(0)
n 〉. (39)

where Ψ
(0)
n is the Harmonic oscillator solution. The harmonic oscillator functions are centered

around r = re, so we could estimate the expectation value from

1

r2
≈ 1

r2e
. (40)

To be a little more accurate we can use an expansion r = re + x,

1

r2
=

1

(re + x)2
=

1

r2e + 2xre + x2
=

1

r2e(1 + 2x/re + x2/r2e)
. (41)

Assuming x is small compared to re in the region where Ψ
(0)
n is nonnegligible we can use the Taylor

series
1

1− z
= 1 + z + z2 + . . . (42)

with z = −2x/re − x2/r2e , so to second order in x we have

1

r2
=

1

r2e

1−2x

re
− x2

r2e︸ ︷︷ ︸
z

+4
x2

r2e

 . (43)

In the harmonic oscillator approximation the expectation value of the term linear in x is zero, but
we can use the analytic result of the previous question (3a) to compute 〈x2〉.
Another, probaby more accurate way to approximate the result for nonzero l is to make the harmonic
approximation for the effective potential, i.e., the sum of the Morse potential and the centrifugal
term.

Question 4: The harmonic oscillator, part II

Note: the first three questions prepare for the computerassignment. You can also do this question later.

4a. Use the recursion relations Eqs. (22-24) to show that

Hn(−x) = (−1)nHn(x). (44)

Answer: From Eqs. (22) and (23) we see that the relation holds for n = 0 and for n = 1. Assuming
the relation holds for Hn and Hn−1, then we find for Hn+1

Hn+1(−x) = 2(−x)Hn(−x)− 2nHn−1(−x) (45)

= (−1)n+1[2xHn(x)− 2nHn−1(x)] (46)

= (−1)n+1Hn+1(x), (47)

so recursively we find that it holds for all n ≥ 0.

4b. Use symmetry to show that
〈φn|y|φn〉 = 0. (48)
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Answer: First we define a symmetry operator that changes the sign of y

îy = −y, (49)

so
îφn(y) = φn(−y) = (−1)nφ(n)(y). (50)

Since î2 = 1 we have î−1 = î, and since symmetry operators are unitary, we also have î† = î−1 = î,
so

〈φn|y|φn〉 = 〈φn |̂i†îy|φn〉 (51)

= 〈̂iφn |̂iy|φn〉 (52)

= 〈(−1)nφn|(−1)n+1y|φn〉 (53)

= (−1)2n+1〈φn|y|φn〉 (54)

= −〈φn|y|φn〉. (55)

so
2〈φn|y|φn〉 = 0. (56)

4c. Use the recursion relation twice to write x2Hn as a linear combination of Hermite polynomi-
als.

Answer: Equation 24 can be rewritten as

xHn(x) =
1

2
Hn+1(x) + nHn−1(x), (57)

so we also have

xHn+1(x) =
1

2
Hn+2(x) + (n+ 1)Hn(x) (58)

xHn−1(x) =
1

2
Hn(x) + (n− 1)Hn−2(x) (59)

and

x2Hn(x) =
1

2
xHn+1(x) + nxHn−1(x) (60)

=
1

4
Hn+2(x) +

1

2
(n+ 1)Hn(x) + n[

1

2
Hn(x) + (n− 1)Hn−2(x)] (61)

=
1

4
Hn+2(x) + (n+

1

2
)Hn(x) + n(n− 1)Hn−2(x). (62)

4d. Use the last result and the orthonogonality of harmonic oscillator functions to compute the expec-
tation value

〈y2〉 =
〈φn|y2|φn〉
〈φn|φn〉

.

Answer: For α = 1 we have y = x and the result would be

〈x2〉 = n+
1

2
. (63)

Since y = x/α we have

y2 =
h̄√
µk
x2 =

h̄

µω
x2 (64)

or

〈y2〉 =
h̄

µω
(n+

1

2
). (65)
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To see if this is reasonable, we can use this result to compute the expectation value of the potential
energy

〈1
2
ky2〉 =

1

2
k〈y2〉 =

1

2
h̄ω(n+

1

2
) =

1

2
En, (66)

where we used ω =
√
k/µ in the second step. So we find that the expectation value of the potential

energy for φn is half of the energy of that state En. Thus, the expectation value of the kinetic energy
must als be half of En. This is known as the virial theorem for the harmonic oscillator.
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