Quantum Dynamics, NWI-SM295, exercises week 1
Gerrit C. Groenenboom, April 08, 2023

Question 1: Separating center-of-mass motion

Two particles with Cartesian coordinates x7 and x2, and masses m, and mo move along a line. They are

connected with a spring with force constant k. The equilibrium distance between the particles is rg. The

Hamiltonian for this system is given by

N oot R 9?1

H=—— " — —— — 4 —k(zo —z1 —70)% 1
2m, 92 2m28x%+2(2 1= o) S

la. Rewrite this Hamiltonian in coordinates X and y, where X is the center-of-mass coordinate and

Yy = xo — x1 — 19 and show that the Hamiltonian can be written as the sum of two parts

H =T(X) + Ho(y). (2)

Answer: The C.O.M. coordinate is given by:

mixy1 + MoT2

x = T T e (3)

mi + mo

. PR o)
Use the chain rule to rewrite e and Jog7

9 _0X 0 9o
0r1  Ox1 0X = Oz 0y
mq 8 8

:ml—l—mg@iX_@iy (5)

50
2 _(m 9 9 ’ (6)
0x2  \mi+me0X Oy

m3 0? _2m 0? " iQ
(m1 + TTL2)2 0X2 m1 + mo 8X8y 8y2

In the same way we get

02 m3 0?2 2ma 0?2 02

3~ i+ ma)20X2 T ma+my0X0y | 0g2

Thus, for the kinetic energy part of the Hamiltonian H we have

1 62 1 02 12 1 92 1 1\ 02
s szt )l="5 |77 5t —+— 53| (9)
2 \mq 0z5  mo Oz3 2 |my +mg 0X miy Mo ) Oy

So we have the C.O.M. kinetic energy

- h? 0?
T(X) = S T ) 9 (10)

and the harmonic oscillator Hamiltonian for coordinate y

. h? a2 1
Ho(y) = — = + —ky? 11
where the reduced mass is defined by
1 1 1
—=— 4+ — (12)
12 mq mo
In the new coordinates, the time-independent Schréodinger equation is given by
HU(y, X) = BU(y, X). (13)
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Quantum Dynamics, exercises week 1

To solve this equation, assume that the solution can be written as a product of a function describing the
center-of-mass motion, x(X) and a function describing the relative motion of the particles, ¢(y),

U(y, X) = d(y)x(X). (14)

1b. Derive a time-independent Schrodinger equation for ¢(y), assuming that the expectation value of
the center-of-mass kinetic energy equals K,

X7 (X)X (X))

(xIx) -k (%)

Answer: Substitute the Hamiltonian (Eq. 2) and wave function ansats (Eq. 14) into the Schridinger
equation (13). o
(T + Ho — E)¢(y)x(X) =0, (16)

and project onto x

/OO dX x*(X)(T + Ho — E)o(y)x(X) = (XITx)(y) + (xIx) Hoo(y) — E{x|x)d(y) = 0. (17)

X=—00
If we devide the last equation by (x|x) we get
Hog(y) = (E - K)o(y). (18)
Note that E — K is the total energy (E) minus the kinetic energy of the C.O.M. (K ), so E — K is
the energy associated with the “internal motion” as described by coordinate y.
Question 2: The harmonic oscillator

The one-dimensional harmonic oscillator Hamiltonian is given by

N h?9r 1
= —— —— + —ky* 19
0 20 0y° + oY (19)
The harmonic oscillator wave functions ¢,,(y) with energies F,, are solutions of the Schrédinger equation

ﬁoqﬁn(y) =E,on(y), n=0,1,2,... (20)

To solve this equation one may use the information on Hermite polynomials H, (z) (chapter 22, “orthog-
onal polynomials”, of Ref. [1].).
The differential equation:

82

o3+ (@n+1-a?) Hy(z)e 2" =0, (21)
the recursion relations
Ho(z) = 1 (22)
Hyiq(z) = 2zH,(x)—2nH,_1(z) forn=1,2,... (24)
and orthonormality
+o0 2
H (2)Hp(x)e™™ dz = 2"n!\/T0m n (25)
— 00

2a. Find a suitable coordinate transformation z = ay to solve the Harmonic oscillator problem of Eq.
(20) in terms of Hermite polynomials and normalize the solutions ¢, (y).

Answer: Rewrite Hamiltonian Hy in terms of x = ay. For the kinetic energy operator use

o oxo 0

0 _0z9 _ 0 2
dy  oyor ‘or (26)
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SO

0? 9 0?
87y2 = ‘ax2 (27)
and we can rewrite
5 ha? 92 k
H-E,=————+ —2>—E, 2
0 2u Oz * 202" (28)

7712@2 0? 2uk 5 2uE,

_ Z 29
2u | 022 2m*at v h2a? (29)
——
=l =2n+1
We assigned the factors so that the x-dependent operator matches Eq. (21), so we found

2uk
=1 30
2h2 ot (30)

2uk,
2y =20t L (31)

We can solve the first equation to find a,

o? = %\/ﬁ (32)

2b. Also find the energies F,,.
Answer: Combining Eqs. (32) and (31) we get

h%a? 1
n on 2n+1)=(n+ 2)hw, with w \/: (33)

Question 3: Morse oscillator
The Morse potential a diatomic molecule is given by
V(r) = D[l = 7072, (34)

where r is the interatomic distance, D, is the dissociation energy, r. is the equilibrium distance and « is
a parameter.
The radial Schrodinger equation for a diatomic molecule with rotational quantum number [ and
reduced mass  is given by
h? 02 RA(I+1)
_ b+ —— 2 4 V(r r)=F r). 35
o1 07 + 2yur? + V(1) | Xoa(r) = Epixv,1(r) (35)
3a. Derive an expression for E, ;—o in the harmonic approximation, i.e., for a molecule that is not
rotating.

Answer: The minimum of the Morse potential is at r = r.. The harmonic approximation is thus
1 2
Vo(r) = §k(r —Te) (36)

with 2V (r) .
r _ Il _ —oa(r—re _ 2
52 |r=r, = 2aD, 37’[(1 e Nlr=r. = 2a°D,. (37)

The energy levels of the harmonic oscillator are (n + §)hw, with w = \/k/u, so

k‘:

1 2D
Eni—0 = (n + 2) ha ue' (38)
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3b. Still using the harmonic approximation for the Morse potential, use first order perturbation theory
to derive an expression for E,; for other values of .

Answer:  In first order perturbation theory we partition the Hamiltonian in a zeroth order Hamil-
tonian Hy plus a perturbation Vi. We take the | = 0 Hamiltonian as Hy, and the centrifugal term
as perturbation. The first order perturbed energy is

R21(1 4 1)
2ur?

B2+ 1)

1
B = (u) =

) =

n

1
(0|5 ). (39)

where \II%O) 18 the Harmonic oscillator solution. The harmonic oscillator functions are centered
around r = e, so we could estimate the expectation value from

1 ~—. (40)

To be a little more accurate we can use an expansion r = r. + x,

1 1 1 1
— — — . 41
2 (re+x)?  r2+42zre+22  r2(142z/r.+a?/r2) (41)

(0)

Assuming x is small compared to r. in the region where Uy, " is nonnegligible we can use the Taylor

series 1
—=1 4. 42
T, = ltzt+a+ (42)
with z = —2x/r, — 2% /12, so to second order in x we have
11 2 2 2
— = |i——=— | (43)
i i o 2 FE

In the harmonic oscillator approzimation the expectation value of the term linear in x is zero, but
we can use the analytic result of the previous question (3a) to compute (x?).

Another, probaby more accurate way to approximate the result for nonzero [ is to make the harmonic
approzimation for the effective potential, i.e., the sum of the Morse potential and the centrifugal
term.

Question 4: The harmonic oscillator, part 11
Note: the first three questions prepare for the computerassignment. You can also do this question later.
4a. Use the recursion relations Eqgs. (22-24) to show that
Hy(—x) = (=1)"Hy (). (44)

Answer:  From Egs. (22) and (23) we see that the relation holds for n = 0 and for n = 1. Assuming
the relation holds for H,, and H,_1, then we find for H, 11

Hp1(—2) = 2(—z)Hn(—2) — 2nHp 1 (—2) (45)
= (-1)""'[22H,(2) — 2nH,,_1(z)] (46)
= (=1)"" Hypa (@), (47)
so recursively we find that it holds for all n > 0.
4b. Use symmetry to show that
(Pnlylon) = 0. (48)
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Answer: First we define a symmetry operator that changes the sign of y

iy =Y, (49)
S0 .

1 (y) = On(—y) = (=1)"d(n)(y). (50)
Since 12 = 1 we have 1~! =1, and since symmetry operators are unitary, we also have it =171 =1,

S0
= (inliyln) (52)
= ((=1)"¢nl(=1)"* 'yl 6n) (53)
= (_1)2n+1<¢n|y|¢n> (54)

S0
2{¢nlylon) = 0. (56)

4c. Use the recursion relation twice to write 22H, as a linear combination of Hermite polynomi-
als.

Answer: Fquation 24 can be rewritten as

2H(z) = %Hnﬂ(x) () (57)

so we also have
i ) = %Hn+2(x) + (n+1)Ha() (58)
vHy (z) = %Hn(x) + (n— 1) Hp_s() (59)

o

2 H,(z) = %anH(x) +nxH,_1(z) (60)
= SHoo(@) + 5 (n+ DHa(z) + ngHa(@) + (0 — 1) Ho o) (61)
= Hua(@) + (0 + 2)Ha(@) + nn — )H,a(z). (62)

4d. Use the last result and the orthonogonality of harmonic oscillator functions to compute the expec-

tation value )

2\ __
W= o)

Answer: For a =1 we have y = x and the result would be

Since y = x/a we have

Yo = WCE = ﬂ—w:v (64)
or i . )
W) = (n+ 3) (65)
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To see if this is reasonable, we can use this result to compute the expectation value of the potential
enerqgy
1 1 1 1 1

~ky?) = —k{y®) = =h =)=zE, 66
(5k9) = 3h(?) = shw(n+ 5) = 5 En, (66)

where we used w = \/k/p in the second step. So we find that the expectation value of the potential
energy for ¢, is half of the energy of that state E,,. Thus, the expectation value of the kinetic energy
must als be half of E,,. This is known as the virial theorem for the harmonic oscillator.
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