

Quantum Dynamics, NWI-SM295, exercises week 1

Gerrit C. Groenenboom, April 08, 2023

Question 1: Separating center-of-mass motion

Two particles with Cartesian coordinates x_1 and x_2 , and masses m_1 and m_2 move along a line. They are connected with a spring with force constant k . The equilibrium distance between the particles is r_0 . The Hamiltonian for this system is given by

$$\hat{H} = -\frac{\hbar^2}{2m_1} \frac{\partial^2}{\partial x_1^2} - \frac{\hbar^2}{2m_2} \frac{\partial^2}{\partial x_2^2} + \frac{1}{2} k(x_2 - x_1 - r_0)^2. \quad (1)$$

1a. Rewrite this Hamiltonian in coordinates X and y , where X is the center-of-mass coordinate and $y \equiv x_2 - x_1 - r_0$ and show that the Hamiltonian can be written as the sum of two parts

$$\hat{H} = \hat{T}(X) + \hat{H}_0(y). \quad (2)$$

Answer: *The C.O.M. coordinate is given by:*

$$X = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}. \quad (3)$$

Use the chain rule to rewrite $\frac{\partial}{\partial x_1}$ and $\frac{\partial}{\partial x_2}$,

$$\frac{\partial}{\partial x_1} = \frac{\partial X}{\partial x_1} \frac{\partial}{\partial X} + \frac{\partial y}{\partial x_1} \frac{\partial}{\partial y} \quad (4)$$

$$= \frac{m_1}{m_1 + m_2} \frac{\partial}{\partial X} - \frac{\partial}{\partial y} \quad (5)$$

so

$$\frac{\partial^2}{\partial x_1^2} = \left(\frac{m_1}{m_1 + m_2} \frac{\partial}{\partial X} - \frac{\partial}{\partial y} \right)^2 \quad (6)$$

$$= \frac{m_1^2}{(m_1 + m_2)^2} \frac{\partial^2}{\partial X^2} - \frac{2m_1}{m_1 + m_2} \frac{\partial^2}{\partial X \partial y} + \frac{\partial^2}{\partial y^2} \quad (7)$$

In the same way we get

$$\frac{\partial^2}{\partial x_2^2} = \frac{m_2^2}{(m_1 + m_2)^2} \frac{\partial^2}{\partial X^2} + \frac{2m_2}{m_1 + m_2} \frac{\partial^2}{\partial X \partial y} + \frac{\partial^2}{\partial y^2}. \quad (8)$$

Thus, for the kinetic energy part of the Hamiltonian \hat{H} we have

$$-\frac{\hbar^2}{2} \left(\frac{1}{m_1} \frac{\partial^2}{\partial x_1^2} + \frac{1}{m_2} \frac{\partial^2}{\partial x_2^2} \right) = -\frac{\hbar^2}{2} \left[\frac{1}{m_1 + m_2} \frac{\partial^2}{\partial X^2} + \left(\frac{1}{m_1} + \frac{1}{m_2} \right) \frac{\partial^2}{\partial y^2} \right]. \quad (9)$$

So we have the C.O.M. kinetic energy

$$\hat{T}(X) = -\frac{\hbar^2}{2(m_1 + m_2)} \frac{\partial^2}{\partial X^2} \quad (10)$$

and the harmonic oscillator Hamiltonian for coordinate y

$$\hat{H}_0(y) = -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial y^2} + \frac{1}{2} k y^2, \quad (11)$$

where the reduced mass is defined by

$$\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2}. \quad (12)$$

In the new coordinates, the time-independent Schrödinger equation is given by

$$\hat{H}\Psi(y, X) = E\Psi(y, X). \quad (13)$$

To solve this equation, assume that the solution can be written as a product of a function describing the center-of-mass motion, $\chi(X)$ and a function describing the relative motion of the particles, $\phi(y)$,

$$\Psi(y, X) = \phi(y)\chi(X). \quad (14)$$

1b. Derive a time-independent Schrödinger equation for $\phi(y)$, assuming that the expectation value of the center-of-mass kinetic energy equals K ,

$$\frac{\langle \chi(X) | \hat{T}(X) | \chi(X) \rangle}{\langle \chi | \chi \rangle} = K. \quad (15)$$

Answer: *Substitute the Hamiltonian (Eq. 2) and wave function ansatz (Eq. 14) into the Schrödinger equation (13).*

$$(\hat{T} + \hat{H}_0 - E)\phi(y)\chi(X) = 0, \quad (16)$$

and project onto χ

$$\int_{X=-\infty}^{\infty} dX \chi^*(X)(\hat{T} + \hat{H}_0 - E)\phi(y)\chi(X) = \langle \chi | \hat{T} | \chi \rangle \phi(y) + \langle \chi | \chi \rangle \hat{H}_0 \phi(y) - E \langle \chi | \chi \rangle \phi(y) = 0. \quad (17)$$

If we devide the last equation by $\langle \chi | \chi \rangle$ we get

$$\hat{H}_0 \phi(y) = (E - K) \phi(y). \quad (18)$$

Note that $E - K$ is the total energy (E) minus the kinetic energy of the C.O.M. (K), so $E - K$ is the energy associated with the “internal motion” as described by coordinate y .

Question 2: The harmonic oscillator

The one-dimensional harmonic oscillator Hamiltonian is given by

$$\hat{H}_0 = -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial y^2} + \frac{1}{2} k y^2. \quad (19)$$

The harmonic oscillator wave functions $\phi_n(y)$ with energies E_n are solutions of the Schrödinger equation

$$\hat{H}_0 \phi_n(y) = E_n \phi_n(y), \quad n = 0, 1, 2, \dots \quad (20)$$

To solve this equation one may use the information on Hermite polynomials $H_n(x)$ (chapter 22, “orthogonal polynomials”, of Ref. [1].).

The differential equation:

$$\left[\frac{\partial^2}{\partial x^2} + (2n + 1 - x^2) \right] H_n(x) e^{-\frac{1}{2}x^2} = 0, \quad (21)$$

the recursion relations

$$H_0(x) = 1 \quad (22)$$

$$H_1(x) = 2x \quad (23)$$

$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x) \quad \text{for } n = 1, 2, \dots \quad (24)$$

and orthonormality

$$\int_{-\infty}^{+\infty} H_m^*(x) H_n(x) e^{-x^2} dx = 2^n n! \sqrt{\pi} \delta_{m,n} \quad (25)$$

2a. Find a suitable coordinate transformation $x = \alpha y$ to solve the Harmonic oscillator problem of Eq. (20) in terms of Hermite polynomials and normalize the solutions $\phi_n(y)$.

Answer: *Rewrite Hamiltonian \hat{H}_0 in terms of $x = \alpha y$. For the kinetic energy operator use*

$$\frac{\partial}{\partial y} = \frac{\partial x}{\partial y} \frac{\partial}{\partial x} = \alpha \frac{\partial}{\partial x} \quad (26)$$

so

$$\frac{\partial^2}{\partial y^2} = \alpha^2 \frac{\partial^2}{\partial x^2} \quad (27)$$

and we can rewrite

$$\hat{H}_0 - E_n = -\frac{\hbar^2 \alpha^2}{2\mu} \frac{\partial^2}{\partial x^2} + \frac{k}{2\alpha^2} x^2 - E_n \quad (28)$$

$$= -\frac{\hbar^2 \alpha^2}{2\mu} \left(\frac{\partial^2}{\partial x^2} - \underbrace{\frac{2\mu k}{2\hbar^2 \alpha^4}}_{=1} x^2 + \underbrace{\frac{2\mu E_n}{\hbar^2 \alpha^2}}_{=2n+1} \right). \quad (29)$$

We assigned the factors so that the x -dependent operator matches Eq. (21), so we found

$$\frac{2\mu k}{2\hbar^2 \alpha^4} = 1, \quad (30)$$

$$\frac{2\mu E_n}{\hbar^2 \alpha^2} = 2n + 1. \quad (31)$$

We can solve the first equation to find α ,

$$\alpha^2 = \frac{1}{\hbar} \sqrt{\mu k}. \quad (32)$$

2b. Also find the energies E_n .

Answer: Combining Eqs. (32) and (31) we get

$$E_n = \frac{\hbar^2 \alpha^2}{2\mu} (2n + 1) = (n + \frac{1}{2}) \hbar \omega, \quad \text{with } \omega = \sqrt{\frac{k}{\mu}}. \quad (33)$$

Question 3: Morse oscillator

The Morse potential a diatomic molecule is given by

$$V(r) = D_e [1 - e^{-\alpha(r-r_e)}]^2, \quad (34)$$

where r is the interatomic distance, D_e is the dissociation energy, r_e is the equilibrium distance and α is a parameter.

The radial Schrödinger equation for a diatomic molecule with rotational quantum number l and reduced mass μ is given by

$$\left[-\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial r^2} + \frac{\hbar^2 l(l+1)}{2\mu r^2} + V(r) \right] \chi_{v,l}(r) = E_{v,l} \chi_{v,l}(r). \quad (35)$$

3a. Derive an expression for $E_{v,l=0}$ in the harmonic approximation, i.e., for a molecule that is not rotating.

Answer: The minimum of the Morse potential is at $r = r_e$. The harmonic approximation is thus

$$V_0(r) = \frac{1}{2} k (r - r_e)^2 \quad (36)$$

with

$$k = \frac{\partial^2 V(r)}{\partial r^2} \Big|_{r=r_e} = 2\alpha D_e \frac{\partial}{\partial r} [(1 - e^{-\alpha(r-r_e)})] \Big|_{r=r_e} = 2\alpha^2 D_e. \quad (37)$$

The energy levels of the harmonic oscillator are $(n + \frac{1}{2}) \hbar \omega$, with $\omega = \sqrt{k/\mu}$, so

$$E_{n,l=0} = \left(n + \frac{1}{2} \right) \hbar \alpha \sqrt{\frac{2D_e}{\mu}}. \quad (38)$$

3b. Still using the harmonic approximation for the Morse potential, use first order perturbation theory to derive an expression for $E_{v,l}$ for other values of l .

Answer: *In first order perturbation theory we partition the Hamiltonian in a zeroth order Hamiltonian \hat{H}_0 plus a perturbation V_1 . We take the $l = 0$ Hamiltonian as \hat{H}_0 , and the centrifugal term as perturbation. The first order perturbed energy is*

$$E_l^{(1)} = \langle \Psi_n^{(0)} | \frac{\hbar^2 l(l+1)}{2\mu r^2} | \Psi_n^{(0)} \rangle = \frac{\hbar^2 l(l+1)}{2\mu} \langle \Psi_n^{(0)} | \frac{1}{r^2} | \Psi_n^{(0)} \rangle. \quad (39)$$

where $\Psi_n^{(0)}$ is the Harmonic oscillator solution. The harmonic oscillator functions are centered around $r = r_e$, so we could estimate the expectation value from

$$\frac{1}{r^2} \approx \frac{1}{r_e^2}. \quad (40)$$

To be a little more accurate we can use an expansion $r = r_e + x$,

$$\frac{1}{r^2} = \frac{1}{(r_e + x)^2} = \frac{1}{r_e^2 + 2xr_e + x^2} = \frac{1}{r_e^2(1 + 2x/r_e + x^2/r_e^2)}. \quad (41)$$

Assuming x is small compared to r_e in the region where $\Psi_n^{(0)}$ is nonnegligible we can use the Taylor series

$$\frac{1}{1-z} = 1 + z + z^2 + \dots \quad (42)$$

with $z = -2x/r_e - x^2/r_e^2$, so to second order in x we have

$$\frac{1}{r^2} = \frac{1}{r_e^2} \left(1 - \underbrace{\frac{2x}{r_e} - \frac{x^2}{r_e^2}}_z + 4 \frac{x^2}{r_e^2} \right). \quad (43)$$

In the harmonic oscillator approximation the expectation value of the term linear in x is zero, but we can use the analytic result of the previous question (3a) to compute $\langle x^2 \rangle$.

Another, probably more accurate way to approximate the result for nonzero l is to make the harmonic approximation for the effective potential, i.e., the sum of the Morse potential and the centrifugal term.

Question 4: The harmonic oscillator, part II

Note: the first three questions prepare for the computer assignment. You can also do this question later.

4a. Use the recursion relations Eqs. (22-24) to show that

$$H_n(-x) = (-1)^n H_n(x). \quad (44)$$

Answer: From Eqs. (22) and (23) we see that the relation holds for $n = 0$ and for $n = 1$. Assuming the relation holds for H_n and H_{n-1} , then we find for H_{n+1}

$$H_{n+1}(-x) = 2(-x)H_n(-x) - 2nH_{n-1}(-x) \quad (45)$$

$$= (-1)^{n+1} [2xH_n(x) - 2nH_{n-1}(x)] \quad (46)$$

$$= (-1)^{n+1} H_{n+1}(x), \quad (47)$$

so recursively we find that it holds for all $n \geq 0$.

4b. Use symmetry to show that

$$\langle \phi_n | y | \phi_n \rangle = 0. \quad (48)$$

Answer: *First we define a symmetry operator that changes the sign of y*

$$\hat{i}y = -y, \quad (49)$$

so

$$\hat{i}\phi_n(y) = \phi_n(-y) = (-1)^n \phi_n(y). \quad (50)$$

Since $\hat{i}^2 = 1$ we have $\hat{i}^{-1} = \hat{i}$, and since symmetry operators are unitary, we also have $\hat{i}^\dagger = \hat{i}^{-1} = \hat{i}$, so

$$\langle \phi_n | y | \phi_n \rangle = \langle \phi_n | \hat{i}^\dagger \hat{i} y | \phi_n \rangle \quad (51)$$

$$= \langle \hat{i}\phi_n | \hat{i}y | \phi_n \rangle \quad (52)$$

$$= \langle (-1)^n \phi_n | (-1)^{n+1} y | \phi_n \rangle \quad (53)$$

$$= (-1)^{2n+1} \langle \phi_n | y | \phi_n \rangle \quad (54)$$

$$= -\langle \phi_n | y | \phi_n \rangle. \quad (55)$$

so

$$2\langle \phi_n | y | \phi_n \rangle = 0. \quad (56)$$

4c. Use the recursion relation twice to write $x^2 H_n$ as a linear combination of Hermite polynomials.

Answer: *Equation 24 can be rewritten as*

$$xH_n(x) = \frac{1}{2}H_{n+1}(x) + nH_{n-1}(x), \quad (57)$$

so we also have

$$xH_{n+1}(x) = \frac{1}{2}H_{n+2}(x) + (n+1)H_n(x) \quad (58)$$

$$xH_{n-1}(x) = \frac{1}{2}H_n(x) + (n-1)H_{n-2}(x) \quad (59)$$

and

$$x^2 H_n(x) = \frac{1}{2}xH_{n+1}(x) + nxH_{n-1}(x) \quad (60)$$

$$= \frac{1}{4}H_{n+2}(x) + \frac{1}{2}(n+1)H_n(x) + n[\frac{1}{2}H_n(x) + (n-1)H_{n-2}(x)] \quad (61)$$

$$= \frac{1}{4}H_{n+2}(x) + (n + \frac{1}{2})H_n(x) + n(n-1)H_{n-2}(x). \quad (62)$$

4d. Use the last result and the orthonogonality of harmonic oscillator functions to compute the expectation value

$$\langle y^2 \rangle = \frac{\langle \phi_n | y^2 | \phi_n \rangle}{\langle \phi_n | \phi_n \rangle}.$$

Answer: *For $\alpha = 1$ we have $y = x$ and the result would be*

$$\langle x^2 \rangle = n + \frac{1}{2}. \quad (63)$$

Since $y = x/\alpha$ we have

$$y^2 = \frac{\hbar}{\sqrt{\mu k}} x^2 = \frac{\hbar}{\mu \omega} x^2 \quad (64)$$

or

$$\langle y^2 \rangle = \frac{\hbar}{\mu \omega} (n + \frac{1}{2}). \quad (65)$$

To see if this is reasonable, we can use this result to compute the expectation value of the potential energy

$$\langle \frac{1}{2}ky^2 \rangle = \frac{1}{2}k\langle y^2 \rangle = \frac{1}{2}\hbar\omega(n + \frac{1}{2}) = \frac{1}{2}E_n, \quad (66)$$

where we used $\omega = \sqrt{k/\mu}$ in the second step. So we find that the expectation value of the potential energy for ϕ_n is half of the energy of that state E_n . Thus, the expectation value of the kinetic energy must also be half of E_n . This is known as the virial theorem for the harmonic oscillator.

References

- [1] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions*, National Bureau of Standards, Washington, D.C., 1964.