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Introduction

Inelastic collisions, e.g.

H + CO(v,j) — H+ CO(V,)")

e Vibrational quantum number: v =0,1,...
o Rotational quantum number: j =0,1,...

d

E”CO(V’J’) = ku,j—w’j/(T) NH Nco(v.,j)

(m=3s7)  (m®/s) (m™) (m™)

Interstellar medium:
e Dominant species: H, He, Hy, n =~ 10% cm—3
e About 200 molecules observed: CO, CN, CHg4, H,CO, ...

o = lectures Pierre Hily-Blant and Inga Kamp
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Types of collisions

e Elastic: only direction of motion changes
A+B—-A+B
e Inelastic: internal state of molecules changes
A+ BC(v,j) = A+ BC(V, ")
e Reactive: chemical composition changes
A +BC(v,j) — AB(V,j')+ C

= Here: only 2 body collisions
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Overview of lecture

Classical hard sphere collision

e Cross section
e Collision rates

Classical central force problem: atom-atom elastic
e Classical Hamiltonian
o Classical trajectories
e Impact parameter and orbital angular momentum

Quantum scattering in 1 dimension
o Flux
e Quantum scattering in 3 dimensions, elastic and inelastic

e Coupled channels method
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Classical hard spheres, cross section

B

< y
e
r B
@ )
r - .
2 UGCI = ﬂ-rzf

The classical collisional cross section o for for hard spheres with
diameters r4 and rg is given by

2
oa=m(ra+re)".
If the relative velocity is v than the collision rate is given by
fel] =V Ocl

(m*/s)  (m/s) (m?)
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Classical central force problem

Two particles A and B: masses ma and mg, positions in R3: rs and rg
Center-of-mass coordinates:
mara + mpgrp
ma+ mg
r=rg—ra, r=]|rl.

Rcy =

Classical Hamiltonian: H(r,f) =T + V(r)

1 1 r . . 1
TI*mAf'A~f'A+§me‘B~f'BIEMR'R+§/M.’~I.’.

2

Total mass: M = mp + mg, reduced mass: p~t = my* + mg'.
Conjugate momenta:

oT

P = =uf, =123
Pi= g = M
Hamiltonian for relative motion:
P
H(r,p) = — + V(r
(rp)= £+ V(1)
collisions 6 /48
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Classical Hamilton-Jacobi equations

OH

Foo— = D; F — -1

Fi ap; Pi, r=upu p
. _OH _ ov(r) _ oroVv(r) B _F8V(r)
pi = or; 9 9r or P= or

The total angular momentum of the system, £ = r x p, is conserved-

oVv(r)
or

Fxr=0.

é:r’xp+r><p:;[1p><p—r
Rewrite Hamiltonian using:

P =t-L=(rxp)-(rxp)=(r-r)(p-p)—(r-p)(r-p)=r’p’—(r-p)’

or
r2p2 =02+ rzpf7
50 2 2 72
p Py
H="—+V(r)==L v
o + V(r) 2 + 2r + V(r)
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Classical trajectories for central force problem

L=rxp = £ 1L rand¥f L p: scattering plane

Effective 1-D potential
2

3 R
24 24ur2
——

Hamiltonian radial problem: H = +V(r)

centrifugal term
{ related to impact parameter b: ¢ = uvb
t
l
Solution for the angle: ¢(t) = ¢(0 +/ ——dt
(=20 ) urtey
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Classical to quantum

Observables become operators

R S 2
A
24 r Or? 2ur?

h 0

———, L—of=rxp, H=
jor TTETIRR

pi — pi = + V(r)

For stationairy states, solve time independent Schrodinger equation:
AW(r) = EW(r), condition: [|W(r)[?dr =1 (Hilbert space)
For moving particles, solve time-dependent Schrodinger equation:

ov(r,t ~
ih% = HW(r,t), initial condition: W(r,t =0)
Weird tricks:
o Use time-independent Schrodinger equation for scattering (fixed E)
e Drop normalization condition (leave Hilbert space)

o Use complex wave functions to describe moving particles (have flux)

Set up boundary conditions that correspond to colliding particles
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Flux in one dimension

Probability for particle to be in interval [a, b]:

b b
Pap(t) = / |W(x, t)]> dx = / W(x, t)*W(x, t) dx
Use time-dependent Schrodinger equation to derive:

Pas(t) = /b W(x, t)* W(x, t) dx + /b W(x, t)* W(x, t) dx

—
— / [w(x, £) AW (x, t) — W(x, t)AV(x, t)*} dx

h
L W(x, t)* 2w v d2\u | d

TG COR S N P
ih [ d d d

=2 Ll o) 2w —W(x, t)—W(x, t)*
) dx{ (x,t) ™ (x, 1) (x, t)dx (x, 1) } dx

:.jb_.ja

Ox
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Flux in 1D and 3D

Example in 1D: W(x) = Ne™, flux:

. . k
j= [N*e"kXdNe’kX} SV
p dx Iz jz
In 3D: 5
= (e, £) VU, £)]
I

Beam of free particles in 3D (a plane wave):

. hk
U(r)=Ne*r  flux: j=|N?— = pv
1
In spherical polar coordinates (r, 8, ¢)
0 10 ~» 1 0
=F— -—+1f
v r8r+ 9r80 rsmﬂ@gzb

Spherical wave (r > 0):

1. i .
W(r,0,0) = F(0,0) -¢",  flux: j = |F(0, )1 P+
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Elastic scattering boundary conditions

Problem: solve
(H=E)V(r)=0

with collision energy E = % to
"
find scattering amplitude 1 (0, ¢)

1 .
+  viZEeF(9,¢)

P

. .

incoming plane wave -
outgoing scattered wave

Observable: differential cross section:

outgoing flux

o(0,¢) = = |f(0.9)?

incoming flux
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Plane wave expansion

o0

WP = ek r =N "0+ 1)y (kr) Po(k - 7)
£=0

Spherical Bessel functions of the first kind:
Sin(X _ 671_/2) - _efi(xffﬂ/2) + ei(xffﬂ’/2)

(Iarge x) X 2ix

Je(x)

Legendre polynomials: Py(z) =1, Pi(z) =z, and for £ =1,2,...

Recursion relation: (£ +1)Ppi1(z) = z(20 + 1) Py(z) — LPr—1(2)
1
Orthogonality: /_1 Py (2)Po(z)dz = Miﬂ =dp

Spherical harmonic addition theorem:

Po(k - #) = 2€+1 Z Yom, (P) Yom, (k)

mg——e
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Spherical harmonics Y;,(6, ¢)

Commutation relations angular momentum operators
00 0,] = b4, — 0,0 — int,
[?,0.]=0
Spherical harmonics Yym(6, ¢), Dirac notation: |£m)
PP)em) = K20(L + 1)|¢m)
2,1¢m) = Em|¢m)

Orthogonality relation:

27 1
/ d(b/ dcost Yo m(0,0) Yom(0,0) = ('m' |tm) = ¢ 0py m
0 1

Special cases:

20+1
Yeo(0,¢) = yp Py(cos )
20+1
ng(O, 0) = 4 5m,0
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S-matrix for 3D elastic scattering

Wave function for free particle, V/(r) =0, for large r

w A —i(kr—0m/2) i(kr—0m/2)
YP Ierngr[ e + e 1i Yg()

A potential V/(r) can only affect the outgoing spherical waves,

2m P —i(kr—fm i(kr—4m P L\*
WSO o 2T Sy (B ) g it (k)

For free particle, Sy = 1. Always: conservation of flux |S| =1
Collect change in outgoing wave as result of potential:

N 1 .
_ W i(kr—07/2) _ - x _ — ikre(o
Yo — WPV = lkr E E Yem(r (St —1)i*Yom(k)* = e f(7)
So the scattering amplitude is given by [Ty =1 — Sy, take k= (0,0)]:

. OO

ZZ Yém Sé_]- Yfm Z

@

Pg cosf) Ty

W)
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Integral cross section (ICS) for elastic scattering

Differential cross section (DCS)

a(0,9) = [f(0,¢)?
The ICS:

1 27 o)
i
= d cos 0 do|f(o 75 (20 +1)| T2
o [1 cos/0 o|f(0,0)|? ke: +1)| Ty

Fully absorbing hard sphere:

T |2 ~ 1-5 =1, forl < lmax = pbmax/h
¢ 0, otherwise

Using
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Solving elastic scattering for central potential

Hamiltonian:
h2 1 62 7~

o mre oy,
2ur8r2r+2ur2+ (r)

Factorize partial wave:
1
wl,m(rv 97 (b) = ;@Z(r) Yl,m(ea ¢)
Radial equation

h2 92 72

Y V() -E -
2u6r2+2,ur2+ () we(r) =0

Boundary condition bound state: [ |p(r)|?dr =1
Boundary conditions for elastic scattering:

we(r=0) = 0

Sﬁl(r) ~ N (_efikr + eikrsl)
(large x)
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Discretize radial problem

Set up equally spaced radial grid:
r=rn+iA, i=12,...,N

Potential (may include centrifugal term) is multiplicative operator:
V(r)e(r)lr=r = V(ri)e(r))

Second order derivative using finite difference:

H? p(ri—1) — 2p(ri) + @(ri
Oy = 21 =200+ i)

Represent wave function as vector ¢ with values on the grid ¢; = ¢(r;).
Potential operator: diagonal matrix V with elements V;; = V(r,-)5,-7j
Kinetic energy operator = tridiagonal matrix:

-2 1
ol 1 -2 1

T:—W 1 -2 1
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Numerical solution of radial problem

Bound states (vibrational wave functions), matrix eigenvalue problem:
Hc = Ec, with N x N Hamiltonian matrix: H=T + V

For scattering problem, rewrite radial Schrodinger equation:

d? .
Zet(r) = W(D)eu(r),  with W(r) = 252 + [V(r) — E]
Second order finite difference gives three term recursion relation:

* = Wi, with W, = W(r)
Define ratios of wave functions in neighboring points:

¢i—1 = Qjci, initial condition: @; =0
to obtain two term recursion relation for @-matrix

Qiy1=(+20%W, —Q)!

Karman et al., J. Chem. Phys. 141, 064102 (2014)
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Obtain S-matrix by matching to free wave

Match radial wave function to asymptotic form:
@u(r) = N(—e ™ 4 e*S))
For last two points on grid (ry must be sufficiently large):
ee(rn-1) = Quepe(rn)
Equation for S-matrix:
_emikm g gkmo1g, — Qu(—e~km 4 kg,
Solve S-matrix

e—l‘kI‘N,1 _ QNe—ikrN
el‘kr/\/71 _ QNeikrN

Se =
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Summary elastic scattering calculation

e Get potential V/(r), choose collision energy E
e Setup grid: rp, stepsize A, number of points: N
e Select partial waves: £ =0,1,...,0nax
— o041 | 2
e Compute W-matrices: W; = (r’? )4 H[V(r) - E]

e Set Q; = 0, use recursion to find Qn

e Match wave function to find S,

e Transition matrix: T, =1-5,

o Get scattering amplitude (6, ¢) and DCS (0, ¢) = |f(0, ¢)|?
o Obtain integral cross section o(E) from T, =1— 5,

e Collision rates k(T) from thermal average of vo

Renormalised Numerov: 5nd order finite difference instead of 2nd
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AB+C inelastic scattering

Jacobi (or scattering) coordinates:

r=1rp—rp
mara + mgrg _ _ —
——AA_ BB duced = 1 1
e c, reduced mass: u (ma+mg)™" + mg¢
Hamiltonian:
. 21 62 ”
H=————R+— —|—HAB—|—V(R rx)

2u R OR? 2u 2uR?
Rovibrational molecular states

¢w( r)

[Aas — €uj] Yim;(f) = 0, Dirac notation: |vjm;)

S . . R2k2;
Asymptotic kinetic energy relative motion: 7“’ =E —¢)
Wave vector k,; = k,jk,

\UPW

1
. SNy T2 ik R
Flux normalized plane wave: W, ;i = |vjmj)v, ;€'
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AB+C asymptotic form

Asympototic partial wave expansion flux normalized plane wave:

vjmj —

2 1 A A
\UPW |ijj>lk TFR ” Zngg R)[ e~ i(kyjR— F7r/2)_|_e i(kyjR—{m/2) ]I Y@ (k)*

£Lmy

Switching on the potential V(R, r, x) affects the outgoing part

SC

vjm; —

\y, mp ¢ my) i Yem, (k)*

v'j
l/_]m £'my, €my

i(kyjR—em /2) + e i(ky 1y R=0'm/2) 5 .

X [_6l/’u5j’j5mjfmj5€/€6m2mg v j'm! /’mi ijjémg]

Rewrite as incoming plane wave + outgoing spherical wave:

ik, R

le v'y A A
wEJCm 7|ij> IkR+ Z |V Tfulj/m,ik’/jmj(R; k)

v m’
J J

We can now find the expression for the scattering amplitude:

A~ 271' ’ A ~
. _ E —1 *
fu’j’m/f(—l/jmj(Rv k) ik ! YE’mZ(R) Tl/’j’mjf[f/mi;ujmjfmg Yémg(k)
v
J 2'myLm,
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DCS and ICS for inelastic scattering

Differential cross section:

outgoing flux in direction R

O‘V’j’mj(*l/jmj(ﬁ7 I’%) = = ‘fl/lj/mj%l/jmj(k7 I;)|2

incoming flux

Integral cross section:

O’Iﬂj'mjf{—l/jmj'(k)://O'V'j’mj%l/jmj(ﬁi k)di?

e Crossed beam experiment: fix direction k = e, (find ICS expression!)
® No orientation, no alignment: average over initial m;, sum over mj’-

e Bulk: average over all directions k

1 A s
— _ E 2
Uu’j’mjﬂ—ujmj - 4 Uu’j’mjf(—ujmj(k) - k2 |T1/’j’mjf£/m2;l/jmjﬂmg
g Vi gt mbem,
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Coupled channels = close coupling method

Channel: |n) = |vjmjfm;)

Coupled channel expansion W, = R Y |n")Un n(R)
Schrédinger equation: [H — E]JW, = 0

Rewrite as:

1 d? 2u| 2 .
RdR? ,,Zﬁ W-FHAB-I—V(RJ,X)—E v,

Take matrix elements (n'|V,)

1/1/’,n(R) = Z Wo ' (R)Un n(R)

n'

or in matrix notation U”(R) = W(R)U(R)
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Boundary conditions

Boundary conditions:

and

1
Un n(R) >~ —6n nVn 2 g ilkn—tm/2) 4 v

Nl
rb\
=
=\
[
X
3
~
N
L

or in matrix notation
UR)=-I(R)+ O(R)S

where I is a diagonal matrix with flux normalized incoming waves on the
diagonal and O(R) = I(R)*
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tal angular m um representation

o e S S"’-") S9Yc— 55+ (+560)
The theory of scattering by a rigid rotator

By A. M. ARTHURS aND A. DaLgarNO
Department of Applied Mathematics, The Queen’s University of Belfast

(Communicated by D. R. Bates, F.R.S.—Received 8 February 1960)

A theory of scattering by a rigid rotator in which the oouplmg between the different energy
levels of the rotator is taken into account is . mdexphcat pressions, which do not
depend upon. the ic q b are ined fur vnnnus elastic and inelastic
Several i i d tbed, being paid to the
mturmg of heavy pu‘f.:cles for which it is shown that at low temperatures the orientation-
dent part of the i mybomammpnmnthm:hulpboneouvmm
part. The seattering nﬂnmrgy is d and som:
tions are the effect of the mr.a.mm dupend.mwo
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Total angular momentum representation

Total angular momentum operators:

~ ~

J=j+2¢

Total angular momentum eigenstates:
J 1
GOIM) = > > lmy)|eme) (mjme M)
mj=—j my=~{ —_— ..
Clebsch-Gordan coefficients
P)(e)IMY = B2 J(J + 1)|(j)IM)
Jo|(j€)IM) = M| (j€)IM)
Commutator: [J2, J;] = 0.
No external fields (isotropy of space) :
[A, ] =0
[A,J]=0
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S-matrix in total angular momentum representation

Transformation of the S-matrix:

J M IM 2 : Iyt d gl ] .
Su’j’é’;l/jf = <J M |_j mjé mé>5y/j/mj{gml;uj€mz<leU€mg‘JM>
mjmémjmg
Isotropy of space, J and M are good quantum numbers:
py p g q
JM M J
Sl/j/@/;ujé = 5J,J5M,M5V/j/l’;l/jz

Inverse relation:

_ STl TN .
Su’j'mjflmg;ujmjémg - E <./ mjg m€|-/ M >Su’j’l’;uj€<JM|./mj£m@>
Y
ICS, after averaging over initial m; and summing over final mJ’.

T 1 J 2
Oujievj = gm ZJ:(QJ +1) %: | Torjreril
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Applications of theoretical chemistry in astrochemistry

o Rovibrational inelastic collision rates for H+-CO(v, j)

PhD project Lei Song

e Gauging magnetic field strengths with methanol masers

Boy Lankhaar (Now Onsola, Sweden)

[2014]
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CO is observed in proto-planetary disks

e CO is second most abundant molecule in the universe
e |s is coolant essential for creating stars

e |t is probe of temperature and density

Emission of CO from proto-planetary disk at 400 light years:

CO(v = 1,j) = CO(v' = 0,;") + hv(\ = 4.7um, 2120 cm ™ ')

Pontoppidan, Blake, van Dishoeck et al., Astrophys. J., 684, 1323 (2008)
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Population of CO(v,j) levels

e Emmision of light - Einstein A coefficient

CO(v,j) & co(V',j') + hv

Absorption of light - Einstein B coefficient

CO(v,j) + hv 5 Cco(v', )

Collision rates ryj_,/;(T) < Missing

CO(v,j) + H/Hy/He "5 CO(V', j') + H/H, /He

Local thermal equilibrium
I'IH2 > 7
= Often no equilibrium
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H+CO(v,j)

e 3-D potential, with MOLPRO
4400 ab initio points
UCCSD(T), d-aug-cc-pVnZ

e extrapolated from n = 3,4,5

e D.=0.8eV ~ 6500 cm™?

Potential (mEh)

6737.9cm?

Lei Song, A. van der Avoird, G. C. Groenenboom,
J. Phys. Chem. A, 117, 7571 (2013)

Groenenboom Belgrade, 2017 collisions 33 /48



Good news: HCO bound states (J = 0)

(v1,12,v3)  Experimental  Calculated  Deviation
(0,0,1) 1080.76 1079.6 —0.11%
(0,1,0) 1868.17 1871.6 0.18%
(0,0,2) 2142 2145.2 0.15%
(1,0,0) 2434.48 2428.5 —0.25%
(0,1,1) 2942 2950.0 0.27%
(0,0,3) 3171 3186.2 0.48%
(1,01) 3476 3464.1 —0.34%
(0.2,0) 3709 3719.0 0.27%
(0,1,2) 3997 4013.1 0.40%
(0,0,4) 4209° 4195.7 ~0.32%
(1,1,0) 4302 4301.5 —0.01%
(1,0,2) 4501° 4478.7 —0.50%
(2,0,0) 4570° 4546.0 —0.53%
(0,2,1) 4783.2 4797.2 0.29%
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Bad news: He/H/H, + CO

D. (cm~!) Dissociation barrier

He + CO 23 0 van der Waals
H,+CO 94 0 van der Waals
H + CO 6840 1140 chemical bond

Cost of scattering calculation ~ channels®
e He+NO: 700 channels,  [Vogels et al., Science, 350, 787 (2015)]
e OH+NO: 4400 channels, [Kirste et al., Science, 338, 1060 (2012)]
e H+CO: 11000 channels, [Song et al., JCP 142, 204303 (2015)]

Groenenboom Belgrade, 2017 collisions 35 /48



H+CO long range potential

| T T T T T T T T T T T T T T T
0. : b
0.05 - ]
s —————————
2 4
- ]
>A MRCI -
om0 CCSD(T) 4
---- BBH i
----- WKS i

1 1 1 1 1 1 1 1 1 1 1
55 6 6.5 7 7.5 8

R (a)

B. C. Shepler, B. H. Yang, T. J. Dhilip Kumar, P. C. Stancil, J. M. Bowman,
N. Balakrishnan, P. Zhang, E. Bodo, and A. Dalgarno Astron. Astrophys.,
475, L15 (2007)

e Barrier our 3-D potential: 1138 cm™! = 3.25 kcal/mol = 1637 K
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Scattering calculation

Coupled Channels (CC)
e Partial waves J=10,...,100
o CO(v,j) states:, all v < n, Bn(j1, j2, -+, Jjn)
e Big: B9(79,70,59,45,45,30,30,25,25) ~ 11,000 channels
e Small: B3(61,52,40,22) ~ 4,300 channels
e R-grid: : 3-40 ag
e Variable channel basis
e Code optimized/memory use/parallel code
Coupled States (CS)
e Take K as good quantum number
e Order magnitude faster
Infinite order sudden (10S)
o Average over fixed orientations
o Vibrational transitions
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State-to-state H+CO cross sections: basis conv

107 T T T

(@) v=1,j=0 = v'=0, =5

)
E\

16,2
cm’
3

Cross section (10
=

107E L TR L L
T T T T T

3 (b) v=1,j=5 = v'=0,'=0

)
=
T

e Big basis (B9): error 10%
e Small basis (B3): error 25%

cm ™

162
T

Cross section (10

H
'
2
ool v ool 3o o v ol b o o ool ol S

= B3 good enough

(c) v=1,j=10 > v'=0, j’=5

)

cm’

16, -2

Cross section (10

Cood ol ol ol ol Nl

10 10' 10° 10’ 10
Collision energy (cm™")

Groenenboom Belgrade, 2017 collisions 38 /48



Coupled channels vs coupled states - quenching

"em™)
3

Cross section (107!

(@) v=1, =0 - v'=0 ~

Cross section (10™'°cm™)

em™)

)16

Cross section (10

Groenenboom

L L
10' 10° 10 10
Collision energy (cm™")

Belgrade, 2017

Coupled states fails E < 1000 cm™!
= Must use coupled channels

Classical mechanics also fails
(Marc C. van Hemert, Leiden)
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-2

cm

-16

Cross section (10

107" 10° 10' 10° 10° 10
Collision energy (cm’l)

T T

Cross section (10_]60m_z)

Collision energy (cm'])

Groenenboom Belgrade, 2017

H+CO(v, j) — H+CO(V', /') - several months later

Cross section (lO“écm‘z)

3

1 0

@v=1,j=25-5v=0,j
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Rotation-translation coupling helps to cross barrier

v=1j—->v=0

T T IIIIIII T T IIIIIII T T IIIIIII T T IIIIIII T T IIIIIII
10 3
10 E
¢ E =
g r ]
< y
o 1072? =
‘; E =
S r ]

5

210° e
2 3
e E
O iC1 4
o —j=1 _J
10 oy 3
‘‘‘‘‘ j=15 7
e -o--- ——j=20 ]
10 E ——j=30 3
E 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII =

107" 10° 10' 10° 10° 10"

Collision energy (em™)
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Partial wave (J) contributions

x10™ ‘ ‘ ‘
* @E, =01 em™!
1.5 : —
7 B
T 7
I T
é 05k :E " " —6-j=0 (xin)
SR oo " -‘i Za5- 100
S : e Low energy: s-wave
O A X , | ! |
b =T T 1 T 1 1] e High energy: many partial
’ &£ () E,; = 5000 em™
oT2AR waves
 0.041 o v |
i &
£y
2 003} - i 2 i
8 &
o0 or 4 .R -, B
A L
S 054 . 2 ? b, **'&* -A-j=10
[ ] A -8-j=20
0.01 of o ? 7:7;:30
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Collision rates

Boltzmann average of cross section
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Vibrational quenching

_Xge e i (T)
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Extrapolation used in astrochemical applications

rv—)v’(T)

rj—vj (T) = P (T)roj0j(T)
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resv(T) Y e~ BulkeT

Pn:(T) =
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Vibrational quenching r;_,o(T)
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Vibrational quenching: compare 10S with CC
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Collisions rates H+CO: r,—o j
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o Astro: W. F. Thi, I. Kamp, et al., A&A, 551, A49 (2013)
e Extrapolation formula works well with good input data
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H+CO: application to astrophysical models

Slab model Disk model
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Groenenboom Belgrade, 2017 collisions 48 / 48



