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Introduction

Inelastic collisions, e.g.

H + CO(ν, j) −−→ H + CO(ν′, j ′)

• Vibrational quantum number: ν = 0, 1, . . .

• Rotational quantum number: j = 0, 1, . . .

d

dt
nCO(ν′,j′) = kν,j→v ′j′(T ) nH nCO(v ,j)

(m−3s−1) (m3/s) (m−3) (m−3)

Interstellar medium:

• Dominant species: H, He, H2, n ≈ 106 cm−3

• About 200 molecules observed: CO, CN, CH4, H2CO, . . .

• ⇒ lectures Pierre Hily-Blant and Inga Kamp
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Types of collisions

• Elastic: only direction of motion changes

A + B→ A + B

• Inelastic: internal state of molecules changes

A + BC(ν, j)→ A + BC(ν′, j ′)

• Reactive: chemical composition changes

A + BC(ν, j)→ AB(ν′, j ′) + C

⇒ Here: only 2 body collisions
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Overview of lecture

• Classical hard sphere collision
• Cross section
• Collision rates

• Classical central force problem: atom-atom elastic
• Classical Hamiltonian
• Classical trajectories
• Impact parameter and orbital angular momentum

• Quantum scattering in 1 dimension
• Flux

• Quantum scattering in 3 dimensions, elastic and inelastic
• Coupled channels method
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Classical hard spheres, cross section

The classical collisional cross section σcl for for hard spheres with
diameters rA and rB is given by

σcl = π(rA + rB)2.

If the relative velocity is v than the collision rate is given by

rcl = v σcl

(m3/s) (m/s) (m2)
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Classical central force problem

Two particles A and B: masses mA and mB , positions in R3: rA and rB
Center-of-mass coordinates:

RCM =
mArA + mBrB
mA + mB

r = rB − rA, r ≡ |r |.

Classical Hamiltonian: H(r , ṙ) = T + V (r)

T =
1

2
mAṙA · ṙA +

1

2
mB ṙB · ṙB =

1

2
MṘ · Ṙ +

1

2
µṙ · ṙ .

Total mass: M = mA + mB , reduced mass: µ−1 = m−1A + m−1B .
Conjugate momenta:

pi ≡
∂T

∂ ṙi
= µṙi , i = 1, 2, 3

Hamiltonian for relative motion:

H(r ,p) =
p2

2µ
+ V (r)
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Classical Hamilton-Jacobi equations

ṙi =
∂H

∂pi
= pi , ṙ = µ−1p

ṗi = −∂H
∂ri

= −∂V (r)

∂ri
= − ∂r

∂ri

∂V (r)

∂r
, ṗ = −r̂

∂V (r)

∂r

The total angular momentum of the system, ` = r × p, is conserved:

˙̀ = ṙ × p + r × ṗ = µ−1p × p − r
∂V (r)

∂r
r̂ × r̂ = 0.

Rewrite Hamiltonian using:

`2 = ` · ` = (r ×p) · (r ×p) = (r · r)(p ·p)− (r ·p)(r ·p) = r2p2− (r ·p)2

or
r2p2 = `2 + r2p2r ,

so

H =
p2

2µ
+ V (r) =

p2r
2µ

+
`2

2µr2
+ V (r)
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Classical trajectories for central force problem

` = r × p ⇒ ` ⊥ r and ` ⊥ p: scattering plane
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Hamiltonian radial problem: H =
p2r
2µ

+

Effective 1-D potential︷ ︸︸ ︷
l2

2µr2︸ ︷︷ ︸
centrifugal term

+V (r)

` related to impact parameter b: ` = µvb

Solution for the angle: ϕ(t) = ϕ(0) +

∫ t

0

`

µr(t)2
dt.
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Classical to quantum

Observables become operators

pi → p̂i =
~
i

∂

∂ri
, `→ ˆ̀ = r × p̂, Ĥ = − ~2

2µ

1

r

∂2

∂r2
r +

ˆ̀2

2µr2
+ V (r)

For stationairy states, solve time independent Schrödinger equation:

ĤΨ(r) = EΨ(r), condition:
∫
|Ψ(r)|2dr = 1 (Hilbert space)

For moving particles, solve time-dependent Schrödinger equation:

i~
∂Ψ(r , t)

∂t
= ĤΨ(r , t), initial condition: Ψ(r , t = 0)

Weird tricks:

• Use time-independent Schrödinger equation for scattering (fixed E )

• Drop normalization condition (leave Hilbert space)

• Use complex wave functions to describe moving particles (have flux)

• Set up boundary conditions that correspond to colliding particles
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Flux in one dimension

Probability for particle to be in interval [a, b]:

Pab(t) =

∫ b

a

|Ψ(x , t)|2 dx =

∫ b

a

Ψ(x , t)∗Ψ(x , t) dx

Use time-dependent Schrödinger equation to derive:

Ṗab(t) =

∫ b

a

Ψ(x , t)∗ Ψ̇(x , t) dx +

∫ b

a

Ψ̇(x , t)∗Ψ(x , t) dx

= − i

~

∫ b

a

[
Ψ(x , t)∗ĤΨ(x , t)−Ψ(x , t)ĤΨ(x , t)∗

]
dx

=
i~
2µ

∫ b

a

[
Ψ(x , t)∗

d2

dx2
Ψ(x , t)−Ψ(x , t)

d2

dx2
Ψ(x , t)∗

]
dx

=
i~
2µ

∫ b

a

d

dx

[
Ψ(x , t)∗

d

dx
Ψ(x , t)−Ψ(x , t)

d

dx
Ψ(x , t)∗

]
dx

= jb − ja

Flux: jx =
~
µ
Im

[
Ψ(x , t)∗

∂

∂x
Ψ(x , t)

]
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Flux in 1D and 3D

Example in 1D: Ψ(x) = Ne ikx , flux:

j =
~
µ
Im

[
N∗e−ikx

d

dx
Ne ikx

]
= |N|2 ~k

µ
= ρ

p

µ
= ρv

In 3D:

j =
~
µ
Im [Ψ(r , t)∗∇Ψ(r , t)]

Beam of free particles in 3D (a plane wave):

Ψ(r) = Ne ik·r , flux: j = |N|2 ~k
µ

= ρv

In spherical polar coordinates (r , θ, φ):

∇ = r̂
∂

∂r
+ f̂θ

1

r

∂

∂θ
+ f̂φ

1

r sin θ

∂

∂φ

Spherical wave (r > 0):

Ψ(r , θ, φ) = f (θ, φ)
1

r
e ikr , flux: j = |f (θ, φ)|2 ~k

µ r̂ + . . .
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Elastic scattering boundary conditions

Ψ
pw

in

Ψ
sc

Problem: solve

(Ĥ − E )Ψ(r) = 0

with collision energy E = ~2k2

2µ to

find scattering amplitude f (θ, φ)

Ψ(r) '
(large r)

v−
1
2 e ik·r︸ ︷︷ ︸

incoming plane wave

+ v−
1
2

1

r
e ikr f (θ, φ)︸ ︷︷ ︸

outgoing scattered wave

Observable: differential cross section:

σ(θ, φ) =
outgoing flux

incoming flux
= |f (θ, φ)|2
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Plane wave expansion

Ψpw = e ik·r =
∞∑
`=0

i`(2`+ 1)j`(kr)P`(k̂ · r̂)

Spherical Bessel functions of the first kind:

j`(x) '
(large x)

sin(x − `π/2)

x
=
−e−i(x−`π/2) + e i(x−`π/2)

2ix

Legendre polynomials: P0(z) = 1, P1(z) = z , and for ` = 1, 2, . . .

Recursion relation: (`+ 1)P`+1(z) = z(2`+ 1)P`(z)− `P`−1(z)

Orthogonality:

∫ 1

−1
P`′(z)P`(z)dz =

2

2`+ 1
= δ`′,`

Spherical harmonic addition theorem:

P`(k̂ · r̂) =
4π

2`+ 1

∑̀
m`=−`

Y`m`(r̂)Y`m`(k̂)∗
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Spherical harmonics Y`m(θ, φ)

Commutation relations angular momentum operators

[ˆ̀x , ˆ̀
y ] = ˆ̀

x
ˆ̀
y − ˆ̀

y
ˆ̀
x = i~`z

[ˆ̀2, ˆ̀
z ] = 0

Spherical harmonics Y`m(θ, φ), Dirac notation: |`m〉
ˆ̀2|`m〉 = ~2`(`+ 1)|`m〉
ˆ̀
z |`m〉 = ~m|`m〉

Orthogonality relation:∫ 2π

0

dφ

∫ 1

−1
d cos θY`′,m(θ, φ)∗Y`,m(θ, φ) = 〈`′m′|`m〉 = δ`′,`δm′,m

Special cases:

Y`,0(θ, φ) =

√
2`+ 1

4π
P`(cos θ)

Y`m(0, 0) =

√
2`+ 1

4π
δm,0
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S-matrix for 3D elastic scattering

Wave function for free particle, V (r) = 0, for large r

Ψpw ' 2π

ikr

∑
`m

Y`m(r̂)[−e−i(kr−`π/2) + e i(kr−`π/2)]i`Y`m(k̂)∗

A potential V (r) can only affect the outgoing spherical waves,

ΨSC ' 2π

ikr

∑
`m

Y`m(r̂)[−e−i(kr−`π/2) + e i(kr−`π/2)S`]i
`Y`m(k̂)∗

For free particle, S` = 1. Always: conservation of flux |S | = 1
Collect change in outgoing wave as result of potential:

Ψsc−Ψpw =
2π

ikr

∑
`

∑
m

Y`m(r)e i(kr−`π/2)(S`− 1)i`Y`m(k̂)∗ ≡ 1

r
e ikr f (r̂)

So the scattering amplitude is given by [T` ≡ 1− S`, take k̂ = (0, 0)]:

f (r̂) =
2π

ik

∑
`

∑
m

Y`m(r̂)(S` − 1)Y`m(k̂)∗ =
i

k

∞∑
`=0

2`+ 1

2
P`(cos θ)T`
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Integral cross section (ICS) for elastic scattering

Differential cross section (DCS)

σ(θ, φ) = |f (θ, φ)|2

The ICS:

σ =

∫ 1

−1
d cos θ

∫ 2π

0

dφ |f (θ, φ)|2 =
π

k2

∞∑
`=0

(2`+ 1)|T`|2

Fully absorbing hard sphere:

|T`|2 ≈
{

1− Sl ≈ 1, for ` < `max = µvbmax/~
0, otherwise

Using
`max∑
l=0

` ≈ 1

2
`2max

σ ≈ π

k2
`2max = πb2max
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Solving elastic scattering for central potential

Hamiltonian:

Ĥ = − ~2

2µ

1

r

∂2

∂r2
r +

ˆ̀2

2µr2
+ V (r)

Factorize partial wave:

Ψ`,m(r , θ, φ) =
1

r
ϕ`(r)Y`,m(θ, φ)

Radial equation[
− ~2

2µ

∂2

∂r2
+

ˆ̀2

2µr2
+ V (r)− E

]
ϕ`(r) = 0

Boundary condition bound state:
∫
|ϕ(r)|2dr = 1

Boundary conditions for elastic scattering:

ϕ`(r = 0) = 0

ϕ`(r) '
(large x)

N
(
−e−ikr + e ikrS`

)
Groenenboom Belgrade, 2017 collisions 17 / 48



Discretize radial problem

Set up equally spaced radial grid:

ri ≡ r0 + i∆, i=1,2,. . . ,N

Potential (may include centrifugal term) is multiplicative operator:

V (r)ϕ(r)|r=ri = V (ri )ϕ(ri )

Second order derivative using finite difference:

∂2

∂r2
ϕ(r)|r=ri =

ϕ(ri−1)− 2ϕ(ri ) + ϕ(ri+1)

∆2

Represent wave function as vector c with values on the grid ci ≡ ϕ(ri ).
Potential operator: diagonal matrix V with elements Vi,j = V (ri )δi,j
Kinetic energy operator ⇒ tridiagonal matrix:

T = − ~2

2µ∆2


−2 1
1 −2 1

1 −2 1

1
. . .


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Numerical solution of radial problem

Bound states (vibrational wave functions), matrix eigenvalue problem:

Hc = Ec , with N × N Hamiltonian matrix: H = T + V

For scattering problem, rewrite radial Schrödinger equation:

d2

dr2
ϕ`(r) = W (r)ϕ`(r), with W (r) = `(`+1)

r2 + 2µ
~2 [V (r)− E ]

Second order finite difference gives three term recursion relation:

ci−1 − 2ci + ci+1

∆2
= Wici , with Wi ≡W (ri )

Define ratios of wave functions in neighboring points:

ci−1 ≡ Qici , initial condition: Q1 = 0

to obtain two term recursion relation for Q-matrix

Qi+1 = (2 + ∆2Wi − Qi )
−1

Karman et al., J. Chem. Phys. 141, 064102 (2014)
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Obtain S-matrix by matching to free wave

Match radial wave function to asymptotic form:

ϕ`(r) ' N(−e−ikr + e ikrS`)

For last two points on grid (rN must be sufficiently large):

ϕ`(rN−1) = QNϕ`(rN)

Equation for S-matrix:

−e−ikrN−1 + e ikrN−1S` = QN(−e−ikrN + e ikrNS`)

Solve S-matrix

S` =
e−ikrN−1 − QNe

−ikrN

e ikrN−1 − QNe ikrN
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Summary elastic scattering calculation

• Get potential V (r), choose collision energy E

• Setup grid: r0, stepsize ∆, number of points: N

• Select partial waves: ` = 0, 1, . . . , `max

• Compute W -matrices: Wi = `(`+1)
r2i

+ 2µ
~2 [V (ri )− E ]

• Set Q1 = 0, use recursion to find QN

• Match wave function to find S`

• Transition matrix: T` = 1− S`

• Get scattering amplitude f (θ, φ) and DCS σ(θ, φ) = |f (θ, φ)|2

• Obtain integral cross section σ(E ) from T` = 1− S`

• Collision rates k(T ) from thermal average of vσ

Renormalised Numerov: 5nd order finite difference instead of 2nd
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AB+C inelastic scattering

Jacobi (or scattering) coordinates:

r = rB − rA

R =
mArA + mBrB
mA + mB

− rC , reduced mass: µ−1 = (mA + mB)−1 + m−1C

Hamiltonian:

Ĥ = − ~2

2µ

1

R

∂2

∂R2
R +

ˆ̀2

2µR2
+ ĤAB + V (R, r , χ)

Rovibrational molecular states

[ĤAB − ενj ]
φνj(r)

r
Yjmj (r̂) = 0, Dirac notation: |νjmj〉

Asymptotic kinetic energy relative motion:
~2k2

νj

2µ = E − ενj
Wave vector kνj = kνj k̂ ,

Flux normalized plane wave: ΨPW
νjmj

= |νjmj〉v
− 1

2

νj e ikνj ·R
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AB+C asymptotic form

Asympototic partial wave expansion flux normalized plane wave:

ΨPW
νjmj
' |νjmj〉

2π

ikνjR
v
− 1

2

νj

∑
`m`

Y`m`(R̂)[−e−i(kνjR−`π/2)+e i(kνjR−`π/2)]i`Y`m`(k̂)∗

Switching on the potential V (R, r , χ) affects the outgoing part

ΨSC
νjmj
' 2π

ikvjR

∑
ν′j′m′j

∑
`′m′`

∑
`m`

v
− 1

2

ν′j′ |ν
′j ′m′j〉|`′m′`〉i`Y`m`(k̂)∗

× [−δν′νδj′jδm′jmj
δ`′`δm′`m`e

−i(kνjR−`π/2) + e i(kν′ j′R−`
′π/2)Sν′j′m′j `′m′`;νjmj`m` ]

Rewrite as incoming plane wave + outgoing spherical wave:

ΨSC
νjmj
' |νjmj〉v

− 1
2

νj e ik·R +
∑
ν′j′m′j

|v ′j ′m′j〉v
− 1

2

ν′j′
e ikν′ j′R

R
fν′j′m′k←νjmj

(R̂; k̂)

We can now find the expression for the scattering amplitude:

fν′j′m′j←νjmj
(R̂; k̂) =

2π

ikνj

∑
`′m′``ml

i`−`
′
Y`′m′`(R̂)Tν′j′m′j `′m′`;νjmj`m`Y`m`(k̂)∗
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DCS and ICS for inelastic scattering

Differential cross section:

σν′j′m′j←νjmj
(R̂, k̂) =

outgoing flux in direction R̂
incoming flux

= |fν′j′m′j←νjmj
(R̂, k̂)|2

Integral cross section:

σν′j′m′j←νjmj
(k̂) =

∫ ∫
σν′j′m′j←νjmj

(R̂, k̂) dR̂

• Crossed beam experiment: fix direction k̂ = ez (find ICS expression!)

• No orientation, no alignment: average over initial mj , sum over m′j
• Bulk: average over all directions k

σν′j′m′j←νjmj
=

1

4π

∫ ∫
σν′j′m′j←νjmj

(k̂) =
π

k2
νj

∑
`′m′``ml

|Tν′j′m′j `′m′`;νjmj`m` |
2
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Coupled channels = close coupling method

Channel: |n〉 ≡ |νjmj`ml〉
Coupled channel expansion Ψn = R−1

∑
n′ |n′〉Un′,n(R)

Schrödinger equation: [Ĥ − E ]Ψn = 0
Rewrite as:

1

R

d2

dR2
R Ψn =

2µ

~2

[
ˆ̀2

2µR2
+ ĤAB + V (R, r , χ)− E

]
Ψn

Take matrix elements 〈n′|Ψn〉

U ′′n′,n(R) =
∑
n′′

Wn′,n′′(R)Un′′,n(R)

or in matrix notation U ′′(R) = W (R)U(R)
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Boundary conditions

Boundary conditions:
U(R = 0) = 0

and

Un′,n(R) ' −δn′,nv
− 1

2
n e−i(kn−`π/2) + v

− 1
2

n′ e i(kn′−`
′π/2Sn′,n

or in matrix notation

U(R) = −I (R) + O(R)S

where I is a diagonal matrix with flux normalized incoming waves on the
diagonal and O(R) = I (R)∗
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Total angular momentum representation
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Total angular momentum representation

Total angular momentum operators:

Ĵ ≡ ĵ + ˆ̀

Total angular momentum eigenstates:

|(j`)JM〉 =

j∑
mj=−j

∑̀
m`=`

|jmj〉|`m`〉 〈jmj`m`|JM〉︸ ︷︷ ︸
Clebsch-Gordan coefficients

Ĵ2|(j`)JM〉 = ~2J(J + 1)|(j`)JM〉
Ĵz |(j`)JM〉 = ~M|(j`)JM〉

Commutator: [Ĵ2, Ĵz ] = 0.
No external fields (isotropy of space) :

[Ĥ, Ĵ2] = 0

[Ĥ, Ĵz ] = 0
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S-matrix in total angular momentum representation

Transformation of the S-matrix:

SJ′M′;JM
ν′j′`′;νj` =

∑
m′jm

′
`mjm`

〈J ′M ′|j ′m′j`′m′`〉Sν′j′m′j `m`;νj`m`〈jmj`m`|JM〉

Isotropy of space, J and M are good quantum numbers:

SJ′M′;JM
ν′j′`′;νj` = δJ′JδM′MSJ

ν′j′`′;νj`

Inverse relation:

Sν′j′m′j `m`;νjmj`m` =
∑
JM

〈j ′m′j`′m′`|J ′M ′〉SJ
ν′j′`′;νj`〈JM|jmj`m`〉

ICS, after averaging over initial mj and summing over final m′j

σν′j′←νj =
π

k2
νj

1

2j + 1

∑
J

(2J + 1)
∑
``′

|T J
ν′j′`′;νjl |2
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Applications of theoretical chemistry in astrochemistry

• Rovibrational inelastic collision rates for H+CO(v , j)

PhD project Lei Song

• Gauging magnetic field strengths with methanol masers

Boy Lankhaar (Now Onsola, Sweden)

[2014]
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CO is observed in proto-planetary disks

• CO is second most abundant molecule in the universe

• Is is coolant essential for creating stars

• It is probe of temperature and density

Emission of CO from proto-planetary disk at 400 light years:

CO(v = 1, j)→ CO(v ′ = 0, j ′) + hν(λ = 4.7µm, 2120 cm−1)

Pontoppidan, Blake, van Dishoeck et al., Astrophys. J., 684, 1323 (2008)
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Population of CO(v , j) levels

• Emmision of light - Einstein A coefficient

CO(v , j)
A→ CO(v ′, j ′) + hν

• Absorption of light - Einstein B coefficient

CO(v , j) + hν
B→ CO(v ′, j ′)

• Collision rates rvj→v ′j′(T ) ⇐ Missing

CO(v , j) + H/H2/He
r(T )→ CO(v ′, j ′) + H/H2/He

• Local thermal equilibrium

nH2 >
A

r

⇒ Often no equilibrium
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H+CO(v,j)

R

r
θ

• 3-D potential, with MOLPRO

• 4400 ab initio points

• UCCSD(T), d-aug-cc-pVnZ

• extrapolated from n = 3, 4, 5

• De = 0.8 eV ∼ 6500 cm−1

Lei Song, A. van der Avoird, G. C. Groenenboom,

J. Phys. Chem. A, 117, 7571 (2013)
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Good news: HCO bound states (J = 0)

(ν1, ν2, ν3) Experimental Calculated Deviation

(0,0,1) 1080.76 1079.6 −0.11%
(0,1,0) 1868.17 1871.6 0.18%
(0,0,2) 2142 2145.2 0.15%
(1,0,0) 2434.48 2428.5 −0.25%
(0,1,1) 2942 2950.0 0.27%
(0,0,3) 3171 3186.2 0.48%
(1,0,1) 3476 3464.1 −0.34%
(0,2,0) 3709 3719.0 0.27%
(0,1,2) 3997 4013.1 0.40%
(0,0,4) 4209a 4195.7 −0.32%
(1,1,0) 4302 4301.5 −0.01%
(1,0,2) 4501a 4478.7 −0.50%
(2,0,0) 4570a 4546.0 −0.53%
(0,2,1) 4783.2 4797.2 0.29%

Groenenboom Belgrade, 2017 collisions 34 / 48



Bad news: He/H/H2 + CO

De (cm−1) Dissociation barrier
He + CO 23 0 van der Waals
H2+CO 94 0 van der Waals
H + CO 6840 1140 chemical bond

Cost of scattering calculation ∼ channels3

• He+NO: 700 channels, [Vogels et al., Science, 350, 787 (2015)]

• OH+NO: 4 400 channels, [Kirste et al., Science, 338, 1060 (2012)]

• H+CO: 11 000 channels, [Song et al., JCP 142, 204 303 (2015)]

Groenenboom Belgrade, 2017 collisions 35 / 48



H+CO long range potential
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WKS barrier at this R

b

B. C. Shepler, B. H. Yang, T. J. Dhilip Kumar, P. C. Stancil, J. M. Bowman,

N. Balakrishnan, P. Zhang, E. Bodo, and A. Dalgarno Astron. Astrophys.,

475, L15 (2007)

• Barrier our 3-D potential: 1138 cm−1 = 3.25 kcal/mol = 1637 K
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Scattering calculation

Coupled Channels (CC)

• Partial waves J = 0, . . . , 100

• CO(v , j) states:, all v < n, Bn(j1, j2, . . . , jn)

• Big: B9(79,70,59,45,45,30,30,25,25) ∼ 11,000 channels

• Small: B3(61,52,40,22) ∼ 4,300 channels

• R-grid: : 3 - 40 a0

• Variable channel basis

• Code optimized/memory use/parallel code

Coupled States (CS)

• Take K as good quantum number

• Order magnitude faster

Infinite order sudden (IOS)

• Average over fixed orientations

• Vibrational transitions
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State-to-state H+CO cross sections: basis convergence
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(a) v=1, j=0 → v’=0, j’=5
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(b) v=1, j=5 → v’=0, j’=0
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(c) v=1, j=10 → v’=0, j’=5

B9

B3

• Big basis (B9): error 10%

• Small basis (B3): error 25%

⇒ B3 good enough

Groenenboom Belgrade, 2017 collisions 38 / 48



Coupled channels vs coupled states - quenching
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(a) v=1, j=0 → v’=0
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(b) v=1, j=5 → v’=0
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(c) v=1, j=10 → v’=0

CC−B3

CS−B3

Coupled states fails E < 1000 cm−1

⇒ Must use coupled channels

Classical mechanics also fails
(Marc C. van Hemert, Leiden)
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H+CO(v , j) → H+CO(v ′, j ′) - several months later
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(a) v = 1, j = 0 → v’ = 0, j’
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(b) v = 1, j = 5 → v’ = 0, j’
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(c) v = 1, j = 15 → v’ = 0, j’
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(d) v = 1, j = 25 → v’ = 0, j’
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Rotation-translation coupling helps to cross barrier

v = 1, j → v = 0
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Partial wave (J) contributions
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(a) E
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(b) E
vj

 ~ 5000 cm
−1

j = 0
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• Low energy: s-wave

• High energy: many partial
waves
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CO(v , J ′) product distributions
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Collision rates

Boltzmann average of cross section

rvj→v ′j′(T ) =

(
8kBT

πµ

)1/2
1

(kBT )2

∫ ∞
0

σvj→v ′j′(E )e−E/kBTE dE

Vibrational quenching

rv→v ′(T ) =

∑
j,j′ gje

−Evj/kBT rvj→v ′j′(T )∑
j gje

−Evj/kBT

Extrapolation used in astrochemical applications

rvj→v ′j′(T ) = Pvv ′(T )r0,j→0,j′(T )

with

Pvv ′(T ) =
rv→v ′(T )

∑
j gje

−Evj/kBT∑
j gje

−Evj/kBT
∑

j′ r0,j→0,j′(T )
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Vibrational quenching r1→0(T )
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Vibrational quenching: compare IOS with CC
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(a) v = 1 →  v’ = 0
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(b) v = 2 → v’ = 1

CC

IOS

⇒ IOS works well
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Collisions rates H+CO: rv=2,j→v ′=1,j ′(T )
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(a) v = 2, j = 5 → v’ = 1, j = 0
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(b) v = 2, j = 5 → v’ = 1, j = 10
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(c) v = 2, j = 5 → v’ = 1, j = 16
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(d) v = 2, j = 5 → v’ = 1, j = 30

CC

Estimate

• Astro: W. F. Thi, I. Kamp, et al., A&A, 551, A49 (2013)

• Extrapolation formula works well with good input data
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H+CO: application to astrophysical models

Slab model
T = 200K, log nH,H2

= 9, log nHe = 8, log ne = 5
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Disk model
2.2 M� Herbig Ae star
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Lei Song, N. Balakrishnan, Kyle Walker, Phillip Stancil, Wing-Fai Thi, Inga

Kamp, Ad van der Avoird, GCG, Astrophys. J., 813, 96 (2015)
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