

I. UNDETERMINED MULTIPLIER METHOD OF LAGRANGE

Let \mathbf{A} be a real, regular, symmetric $n \times n$ matrix, and \mathbf{b} a vector in \mathbb{R}^n . Determine a stationary point of the function $f : \mathbb{R}^n \rightarrow \mathbb{R}$

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T \mathbf{A} \mathbf{x} \quad (1)$$

under the condition that $(g : \mathbb{R}^n \rightarrow \mathbb{R})$

$$g(\mathbf{x}) = \mathbf{b}^T \mathbf{x} - 1 = 0. \quad (2)$$

Solution: according to the undetermined multiplier method of Langrange, we must first solve:

$$\nabla f(\mathbf{x}) = \lambda \nabla g(\mathbf{x}) \quad (3)$$

Compute the gradient of function g :

$$[\nabla g(\mathbf{x})]_k = \frac{\partial}{\partial x_k} \left(\sum_{i=1}^n b_i x_i - 1 \right) = \sum_{i=1}^n b_i \frac{\partial x_i}{\partial x_k} = \sum_{i=1}^n b_i \delta_{ik} = b_i. \quad (4)$$

and the gradient of function f

$$[\nabla f(\mathbf{x})]_k = \frac{\partial}{\partial k} \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n x_i A_{ij} x_j = \frac{1}{2} \left(\sum_{i=1}^n \sum_{j=1}^n \delta_{ik} A_{ij} x_j + \sum_{i=1}^n \sum_{j=1}^n x_i A_{ij} \delta_{jk} \right) \quad (5)$$

$$= \frac{1}{2} \left(\sum_{j=1}^n A_{kj} x_j + \sum_{i=1}^n x_i A_{ik} \right) = \sum_{i=1}^n A_{ki} x_i = (\mathbf{A} \mathbf{x})_k, \quad (6)$$

where we used $A_{kj} = A_{jk}$ (\mathbf{A} is symmetric). Hence, Eq. (3) becomes

$$\mathbf{A} \mathbf{x} = \lambda \mathbf{b}. \quad (7)$$

Since \mathbf{A} is regular, this set of $n \times n$ linear equations can be solved

$$\mathbf{x} = \lambda \mathbf{A}^{-1} \mathbf{b}. \quad (8)$$

The undetermined multiplier λ is found from the condition

$$g(\mathbf{x}) = \mathbf{b}^T (\lambda \mathbf{A}^{-1} \mathbf{b}) - 1 = 0, \quad (9)$$

i.e.,

$$\lambda = (\mathbf{b}^T \mathbf{A}^{-1} \mathbf{b})^{-1} \quad (10)$$

and the stationary point is

$$\mathbf{x} = (\mathbf{b}^T \mathbf{A}^{-1} \mathbf{b})^{-1} \mathbf{A}^{-1} \mathbf{b}. \quad (11)$$

II. METHOD OF LAGRANGE: COMPLEX VARIABLES

Let \mathbf{A} be a regular, Hermitian $n \times n$ matrix, and \mathbf{b} a vector in \mathbb{C}^n . Determine a stationary point of the function $f : \mathbb{C}^n \rightarrow \mathbb{R}$

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^\dagger \mathbf{A} \mathbf{x} \quad (12)$$

under the condition that ($g : \mathbb{C}^n \rightarrow \mathbb{R}$):

$$g(\mathbf{x}) = \frac{1}{2}(\mathbf{b}^\dagger \mathbf{x} + \mathbf{x}^\dagger \mathbf{b}) - 1 = 0. \quad (13)$$

We follow the same procedure as before, except that we treat $\{x_1, x_2, \dots, x_n, x_1^*, x_2^*, \dots, x_n^*\}$ as $2n$ independent variables. In particular, we use for all $i = 1, \dots, n$ and $j = 1, \dots, n$

$$\frac{\partial x_i}{\partial x_j^*} = \frac{\partial x_i^*}{\partial x_j} = 0, \quad (14)$$

even though for $i = j$ these derivatives do not exist for complex variables. For the gradients we find

$$[\nabla g(\mathbf{x})]_k = \frac{\partial}{\partial x_k} \frac{1}{2} \left(\sum_i b_i^* x_i + \sum_i x_i^* b_i - 1 \right) = \frac{1}{2} b_k^* \quad (15)$$

and

$$[\nabla^* g(\mathbf{x})]_k = \frac{\partial}{\partial x_k^*} \frac{1}{2} \left(\sum_i b_i^* x_i + \sum_i x_i^* b_i - 1 \right) = \frac{1}{2} b_k. \quad (16)$$

and

$$[\nabla f(\mathbf{x})]_k = \frac{\partial}{\partial x_k} \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n x_i^* A_{ij} x_j = \frac{1}{2} \sum_{i=1}^n x_i^* A_{ik} = \frac{1}{2} (\mathbf{x}^\dagger \mathbf{A})_k \quad (17)$$

and

$$[\nabla^* f(\mathbf{x})]_k = \frac{\partial}{\partial x_k^*} \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n x_i^* A_{ij} x_j = \frac{1}{2} \sum_{j=1}^n A_{kj} x_j = \frac{1}{2} (\mathbf{A} \mathbf{x})_k \quad (18)$$

Equation (3) now becomes two equations

$$\frac{1}{2} \mathbf{x}^\dagger \mathbf{A} = \lambda \frac{1}{2} \mathbf{b}^\dagger \quad (19)$$

and

$$\frac{1}{2} \mathbf{A} \mathbf{x} = \lambda \frac{1}{2} \mathbf{b} \quad (20)$$

These two equations are the same for real λ since $\mathbf{A}^\dagger = \mathbf{A}$. The solution is

$$\mathbf{x} = \lambda \mathbf{A}^{-1} \mathbf{b} \quad (21)$$

The condition gives

$$\frac{1}{2} [\mathbf{b}^\dagger \lambda \mathbf{A}^{-1} \mathbf{b} + (\lambda \mathbf{A}^{-1} \mathbf{b})^\dagger \mathbf{b}] = 1 \quad (22)$$

and with $(\lambda \mathbf{A}^{-1} \mathbf{b})^\dagger = \lambda \mathbf{b}^\dagger \mathbf{A}^{-1}$ (λ is real and \mathbf{A} is Hermitian) we get

$$\lambda = (\mathbf{b}^\dagger \mathbf{A}^{-1} \mathbf{b})^{-1} \quad (23)$$

and finally

$$\mathbf{x} = (\mathbf{b}^\dagger \mathbf{A}^{-1} \mathbf{b})^{-1} \mathbf{A} \mathbf{b} \quad (24)$$

Notice that since the functions f and g are real, it is sufficient to do only half the work, e.g. only work out the ∇^* part, Eqs. (16), (18), and (20).

Exercise

The expectation value of the Hamiltonian for a wave function expanded in an n -dimensional orthonormal basis may be written as

$$E = \frac{\mathbf{c}^\dagger \mathbf{H} \mathbf{c}}{\mathbf{c}^\dagger \mathbf{c}} \quad (25)$$

where $\mathbf{c} \in \mathbb{C}^n$, and \mathbf{H} is the $n \times n$ Hermitian Hamiltonian matrix. Use the undetermined multiplier method of Lagrange to minimize

$$f(\mathbf{c}) = \mathbf{c}^\dagger \mathbf{H} \mathbf{c} \quad (26)$$

under the condition that the wave function is normalized

$$g(\mathbf{c}) = \mathbf{c}^\dagger \mathbf{c} - 1 = 0. \quad (27)$$