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Quantum Chemistry, lecture notes, 24-Nov-2010, Gerrit C. Groenenboom

I. UNDETERMINED MULTIPLIER METHOD OF LAGRANGE

Let A be a real, regular, symmetric n×nmatrix, and b a vector in Rn. Determine a stationary point of the function
f : Rn → R

f(x) =
1

2
x
T
Ax (1)

under the condition that (g : Rn → R)

g(x) = b
T
x− 1 = 0. (2)

Solution: according to the undetermined multiplier method of Langrange, we must first solve:

∇f(x) = λ∇g(x) (3)

Compute the gradient of function g:

[∇g(x)]k =
∂

∂xk

(

n
∑

i=1

bixi − 1

)

=

n
∑

i=1

bi
∂xi

∂xk

=

n
∑

i=1

biδik = bi. (4)

and the gradient of function f

[∇f(x)]k =
∂

∂k

1

2

n
∑

i=1

n
∑

j=1

xiAijxj =
1

2





n
∑

i=1

n
∑

j=1

δikAijxj +

n
∑

i=1

n
∑

j=1

xiAijδjk



 (5)

=
1

2





n
∑

j=1

Akjxj +

n
∑

i=1

xiAik



 =

n
∑

i=1

Akixi = (Ax)k, (6)

where we used Akj = Ajk (A is symmetric). Hence, Eq. (3) becomes

Ax = λb. (7)

Since A is regular, this set of n× n linear equations can be solved

x = λA−1
b. (8)

The undetermined multiplier λ is found from the condition

g(x) = b
T (λA−1

b)− 1 = 0, (9)

i.e.,

λ = (bTA−1
b)−1 (10)

and the stationary point is

x = (bTA−1
b)−1

A
−1

b. (11)

II. METHOD OF LAGRANGE: COMPLEX VARIABLES

Let A be a regular, Hermitian n × n matrix, and b a vector in Cn. Determine a stationary point of the function
f : Cn → R

f(x) =
1

2
x
†
Ax (12)
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under the condition that (g : Cn → R):

g(x) =
1

2
(b†x+ x

†
b)− 1 = 0. (13)

We follow the same procedure as before, except that we treat {x1, x2, . . . , xn, x
∗
1
, x∗

2
, . . . , x∗

n} as 2n independent
variables. In particular, we use for all i = 1, . . . , n and j = 1, . . . , n

∂xi

∂x∗
j

=
∂x∗

i

∂xj

= 0, (14)

even though for i = j these derivatives do not exist for complex variables. For the gradients we find

[∇g(x)]k =
∂

∂xk

1

2

(

∑

i

b∗i xi +
∑

i

x∗
i bi − 1

)

=
1

2
b∗k (15)

and

[∇∗g(x)]k =
∂

∂x∗
k

1

2

(

∑

i

b∗i xi +
∑

i

x∗
i bi − 1

)

=
1

2
bk. (16)

and

[∇f(x)]k =
∂

∂xk

1

2

n
∑

i=1

n
∑

j=1

x∗
iAijxj =

1

2

n
∑

i=1

x∗
iAik =

1

2
(x†

A)k (17)

and

[∇∗f(x)]k =
∂

∂x∗
k

1

2

n
∑

i=1

n
∑

j=1

x∗
iAijxj =

1

2

n
∑

j=1

Akjxj =
1

2
(Ax)k (18)

Equation (3) now becomes two equations

1

2
x
†
A = λ

1

2
b
† (19)

and

1

2
Ax = λ

1

2
b (20)

These two equations are the same for real λ since A
† = A. The solution is

x = λA−1
b (21)

The condition gives

1

2
[b†λA−1

b+ (λA−1
b)†b] = 1 (22)

and with (λA−1
b)† = λb†A−1 (λ is real and A is Hermitian) we get

λ = (b†A−1
b)−1 (23)

and finally

x = (b†A−1
b)−1

Ab (24)

Notice that since the functions f and g are real, it is sufficient to do only half the work, e.g. only work out the ∇
∗

part, Eqs. (16), (18), and (20).
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Exercise

The expectation value of the Hamiltonian for a wave function expanded in an n-dimensional orthonormal basis may
be written as

E =
c
†
Hc

c†c
(25)

where c ∈ Cn, and H is the n × n Hermitian Hamiltonian matrix. Use the undetermined multiplier method of
Lagrange to minimize

f(c) = c
†
Hc (26)

under the condition that the wave function is normalized

g(c) = c
†
c − 1 = 0. (27)


