
Quantum Chemistry: week 5

Question 1

Consider a single electron, having the ground state density n(x) = Ce−γx
2
. For our convenience this

electron lives only in one dimension. Find the external potential Vext that yields this density.

Answ: For a one electron system, the real hamiltonian is very simple:

H = T + Vext .

We are going the guess the ground state wave function |Ψ〉, and then demand that Vext is such that
|Ψ〉 is an eigenfunction:

H|Ψ〉 = E|Ψ〉 .

Let’s start:
n(x) = Ce−γx

2 → Ψ(x) =
√
Ce−γx2

Of course we could multiply Ψ(x) with any phase factor eiφ, but why make life difficult? The same
holds for the spin. We’d have to give Ψ either an α spin or a β spin or some mixture. But it doesn’t
mater...

Now have the kinetic energy operator T work on |Ψ〉:
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Here we could easily factorize out the wave function. So the eigenvalue equation yields:

− h̄2

2me

(
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)
+ Vext = E

This determines Vext besides the “trivial additive constant” that defines the ground state energy.

Question 2

We consider the DFT expression for the total energy and the Kohn-Sham (KS) eigenvalue equations.

(a) The total energy can be written as a sum of the eigenvalues (for the occupied states) plus so-called
“double counting” corrections. Give the expression for these double counting corrections.

Answ: Let’s first summarize the expressions. The energy:

E[n] =

occ∑
i

〈φi|
p2

2m
|φi〉+

e2

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ +

∫
Vext(r)n(r) dr + EXC[n]

The eigenvalue equation with the Kohn-Sham Hamiltonian:{
p2

2m
+ e2

∫
n(r′)

|r− r′|
dr′ + Vext(r) + V XC[n]

}
φi(r) = εiφi(r) (1)

where V XC(r) =
δEXC[n(r)]

δn(r)

Now we’ll construct the eigenvalue sum applying on the right and left hand side of the eigenvalue
equation the following operation: ∫ occ∑

i

φ∗i (r) . . . dr (2)
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We obtain:∫ ∑
i

φ∗i (r)

{
p2

2m
+ e2

∫
n(r′)

|r− r′|
dr′ + Vext(r) + V XC[n]

}
φi(r) dr =

∫ ∑
i

φ∗i (r)εiφi(r) dr =
∑
i

εi

On the right hand side we thus have our sum of eigenvalues (using normalization of the |φi〉). On the
left hand side we get several terms. The first is exactly the kinetic energy of the energy functional.
Also the interaction energy with the external potential is exactly retrieved (remember how n(r) is
obtained from the orbitals). So that’s fine. The other terms yield differences. Let’s be more specific:∫ ∑

i

φ∗i (r)

{
e2
∫

n(r′)

|r− r′|
dr′
}
φi(r) dr = e2

∫ ∫
n(r′)

|r− r′|

(∑
i

φ∗i (r)φi(r)

)
drdr′ = e2

∫ ∫
n(r′)n(r)

|r− r′|
drdr′

This is twice the Hartree energy of E[n], so we have to correct for double counting by subtracting half.
We also have a correction in the XC part. The XC contribution to E[n] is EXC[n] whereas applying
(2) to the eigenvalue equation yields and XC contribution:∫ ∑

i

φ∗i (r)
{
V XC[n(r)]

}
φi(r) dr =

∫
V XC[n(r)]n(r) dr

(note that after inserting n(r) into the functional V XC[n] just a function of r results, i.e. not some
weird operator, so it commutes with φi and you are able to join it with its complex conjugate and
obtain the density n(r).) Putting things together:

E =
occ∑
i

εi −
e2

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ + EXC[n]−

∫
V XC[n(r)]n(r) dr

So here you see that corrections only occur for those terms in the KS Hamiltonian that depend on the
density, i.e. on the orbitals.

(b) The eigenvalues in the KS equations are Lagrange multipliers introduced to handle the orthornoma-
lity constraints on the KS orbitals. A physical interpretation of these eigenvalues is problematic. A
well-defined meaning of the eigenvalues, however, exists within the theory. To derive this, write the
density as

n(r) =
occ∑
i

ni|φi(r)|2

Here the ni are the “filling factors”, usually we just take them to be 1 and 0 for occupied and empty
orbitals respectively. However, now we consider them as variables, and calculate the derivatives
dE/dni where E is the DFT energy functional. Using the result, relate the derivatives dE/dni to the
KS eigenvalues εi. The result is the “Janak” theorem.

Now consider the highest occupied state, and integrate. What is the physical interpretation of the
highest occupied state?

Note: in Hartree-Fock you have Koopman’s theorem, that relates the i-th eigenvalue to the removal
energy of an electron in the i-th orbital:

εHF
i = E(n1, . . . , ni, . . . , nN )− E(n1, . . . , ni − 1, . . . , nN )

(neglecting the change of orbitals when an electron is removed). This powerful theorem allows for
an immediate connection with experiment: photo-emission measures the energy needed to remove an
electron from a material. In DFT things are not that straightforward.
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Answ: We follow the prescription, and obtain:

E[n] =
occ∑
i

ni〈φi|
p2

2m
|φi〉+

e2

2

∑
ij

∫ ∫
ni|φi(r)|2 nj |φj(r′)|2

|r− r′|
drdr′

+
∑
i

∫
ni|φi(r)|2Vext(r) dr + EXC[

∑
i

ni|φi(r)|2]

We now single out one specific orbital, let’s for clarity call it k, and differentiate this expression with
respect to nk. The result:

dE

dnk
= 〈φk|

p2

2m
|φk〉+

e2

2

∑
i

∫ ∫
ni|φi(r)|2 |φk(r′)|2

|r− r′|
drdr′ +

e2

2

∑
j

∫ ∫ |φk(r)|2 nj |φj(r′)|2

|r− r′|
drdr′+

∫
|φk(r)|2Vext(r) dr +

∫
δEXC[n(r)]

δn(r)
|φk(r)|2 dr

The two Hartree terms are identical (just relabel r↔ r′). Taken together they yield:

e2
∫ ∫

n(r′)

|r− r′|
|φk(r)|2drdr′

For the XC part we had to be more creative. We don’t have the tools to do it formally exact, but
realize that (a) the nk is in the argument of the functional, so we had to apply some kind of chain
rule, moreover (b) we have to get a number out, hence the integration. Now compare to the eigenvalue
equation (1) and observe that:

dE

dnk
= 〈φk|HKS|φk〉 = εk

Now we remove an “electron” from a KS level:

E(n1, . . . , ni, . . . , nN )− E(n1, . . . , ni − 1, . . . , nN ) =

∫ 1

0

dE(n1, . . . , ni − 1 + n, . . . , nN )

dni
dn =∫ 1

0
εi(n1, . . . , ni − 1 + n, . . . , nN ) dn

Doing this for the highest occupied orbital, yields (minus) the ionization potential (IP):

−IP ≈ εh

With εh the KS eigenvalue of the highest occupied orbital. Here we had to assume that the eigenvalue
did not (or weakely) depend on ni, for 0 < nN < 1 (see notes). We have a “Koopmans”-like expres-
sion, relating the HOMO eigenvalue and the IP. For the LUMO one might expect a similar result,
however, it should be calculated with just a tiny amount of charge δN added, i.e. N + δN (see notes
of next week). Moreover, in practise one works with approximations to the real density functional,
which makes for even more trouble.

Question 3

Show that in Hartree-Fock the exchange-correlation hole intergrates to −1:∫
ñHF
X (r, r′) dr′ = −1

As starting point you could take the energy expression in terms of spin-orbitals from the first week,
which is the same at the X(C) energy expressed as the Coulomb interaction of the charge density and
the XC hole:

EXC =
e2

2

∫ ∫
n(r)ñXC(r, r′)

|r− r′|
dr dr′
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Answ: In terms of spin-orbitals the X energy in HF is (atomic units):

−1

2

N∑
i

N∑
j

〈ψi(1)ψj(2)|ĝ(1, 2)|ψj(1)ψi(2)〉 = −1

2

∫ ∫ N∑
i

N∑
j

ψ∗i (r)ψ∗j (r
′)ψj(r)ψi(r

′)

|r− r′|
dr dr′

=
1

2

∫ ∫
n(r)

|r− r′|

− N∑
i

N∑
j

ψ∗i (r)ψ∗j (r
′)ψj(r)ψi(r

′)

n(r)

 dr dr′

In the last step we took care to “split off” the exchange-correlation hole between the large brackets.
Now let’s integerate this expression over r′:∫
−

N∑
i

N∑
j

ψ∗i (r)ψ∗j (r
′)ψj(r)ψi(r

′)

n(r)
dr′ = −

N∑
i

N∑
j

δij
ψ∗i (r)ψj(r)

n(r)
= −

N∑
i

ψ∗i (r)ψi(r)

n(r)
= −n(r)

n(r)
= −1
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