Question 1: Counting basis functions

Consider formaldehyde, H_2CO . Count the number of contractions and the number of GTOs in these basis sets:

1a. STO-3G

1b. SV 3-21G

1c. SV $6-31G^*$ (Spherical)

1d. SV $6-31G^*$ (Cartesian)

1e. SV 6-31++G** (Cartesian)

Note: the "+" adds and an extra GTO on valence orbitals. For C/O that is extra orbitals for 2s and for 2p.

Answer:	Contractions	(dimension	of set	t of	[°] Roothaan	equations):
---------	--------------	------------	--------	------	-----------------------	-------------

basis	Н		(C/C	H ₂ CO	
	\mathbf{S}	р	s	р	d	total
STO-3G	1		2	3		12
SV 3-21G	2		3	6		22
$SV 6-31G^*$ (Spherical)	2		3	6	5	32
$SV 6-31G^*$ (Cartesian)	2		3	6	6	34
SV 6-31++ $G^{**}(Cartesian)$	3	3	4	9	6	50

Note: the star in SV 6-31G^{*} indicates polarization functions of second row elements, i.e., d-orbitals for C and O. Two stars (**) indicate also polarization functions on H, i.e., p-orbitals. Similarly for diffuse functions: one + means diffuse s and p functions on C and O, two ++ means also diffuse s functions on H.

Primitive GTOs:							
]	Н		C/O			H_2CO	
s	р	-	\mathbf{s}	р	d	total	
3			6	9		36	
3			6	9		36	
4			10	12	5	62	
4			10	12	6	64	
5	3		11	15	6	80	
		H s p 3 3 4 4	H s p 3 3 4 4 4	$ \begin{array}{c c} H \\ \hline s p \\ 3 \\ 6 \\ 3 \\ 6 \\ 4 \\ 10 \\ 4 \\ 10 \end{array} $	$\begin{array}{c c} H & C/O \\ \hline s & p & s & p \\ \hline 3 & 6 & 9 \\ 3 & 6 & 9 \\ 4 & 10 & 12 \\ 4 & 10 & 12 \\ \end{array}$	$\begin{array}{c c} H & C/O \\ \hline s p & s p d \\ \hline 3 & 6 9 \\ 3 & 6 9 \\ 4 & 10 12 5 \\ 4 & 10 12 6 \\ \end{array}$	

Question 2: Roothaan equations

The Roothaan equations for a closed shell wave function of a molecule with 16 electrons in a m = 50-dimensional one electron basis $\{\phi_1(\mathbf{r}), \ldots, \phi_m(\mathbf{r})\}$ is given by

$$F[P]C = SC\epsilon,$$

where, $\boldsymbol{\epsilon}$ is a diagonal matrix.

2a. Give the dimensions of each of the matrices in this equation.

Answer: A closed shell wave function with 16 electrons has 8 occupied MOs. Dimensions of \mathbf{F} , \mathbf{P} , and \mathbf{S} : 50 × 50. Dimension of \mathbf{C} : 50 × 8. Dimension of $\boldsymbol{\epsilon}$: 8 × 8.

Sometimes the unoccupied orbitals are also needed, e.g., for a subsequent configuration interaction calculation. In that case all matrices are 50×50 .

2b. What is meant by F[P]?

Answer: To compute the Fock matrix F the density matrix P is needed, so F can be considered to be a function of P.

2c. Assuming the equation has been solved, write down the highest occupied molecular orbital.

Answer: The HOMO is orbital number 8:

$$\chi_8(\mathbf{r}) = \sum_{i=1}^{50} \phi_i(\mathbf{r}) C_{i,8}.$$

Question 3: Electron density

A four-electron wave function is given by a single Slater-determinant,

$$\Phi(1,2,3,4) = \frac{1}{\sqrt{n!}} |\chi_1 \overline{\chi}_1 \chi_2 \overline{\chi}_2|.$$
(1)

3a. Give the expression for the electron density in point r in terms of the molecular orbitals χ_1 and χ_2 .

Answer: Electron density is a one-electron property. A one-electron property of a single Slater-determinant wave function is the sum of the contributions of the occupied MOs:

$$\rho(\mathbf{r}) = 2|\chi_1(\mathbf{r})|^2 + 2|\chi_2(\mathbf{r})|^2.$$

Question 4: Antisymmetrizer

The antisymmetrizer for n electrons is given by

$$\hat{\mathcal{A}} = a_n \sum_{i=1}^{n!} (-1)^{p_i} \hat{P}_i.$$
(2)

The antisymmetrizer can be defined with different normalizations a_n . Sometimes, a_n is chosen such that the antisymmetrizer is an *idempotent* operator, i.e.,

$$\hat{\mathcal{A}}^2 = \hat{\mathcal{A}}.\tag{3}$$

4a. Determine the normalization factor a_n such that $\hat{\mathcal{A}}$ is idempotent.

Answer: From question 4b of week 2 we have:

$$(-1)^q \hat{Q} \sum_{i=1}^{n!} (-1)^p \hat{P} = \sum_{i=1}^{n!} (-1)^p \hat{P}.$$

So we find

$$\hat{\mathcal{A}}^2 = a_n^2 \, n! \, \sum_{i=1}^{n!} (-1)^p \hat{P}$$

and hence $\hat{\mathcal{A}}$ is idempotent if

$$a_n^2 n! = a_n,$$

i.e., *if*

$$a_n = \frac{1}{n!}.$$

Question 5: Bosons

The wave function for a system of four bosons with spins s = 0 is given by

$$\Phi(1,2,3,4) = \frac{1}{\sqrt{4!}}\phi(\mathbf{r}_1)\phi(\mathbf{r}_3)\phi(\mathbf{r}_3)\phi(\mathbf{r}_4).$$
(4)

The norm of the one-particle wave function ϕ is 2.

5a. Compute the norm of Φ .

Answer: The square norm of norm of ϕ equals 4,

$$|\phi|^2 \equiv \iiint |\phi(\mathbf{r})|^2 d\mathbf{r} = 4$$

The square of the norm of Φ is

$$\begin{split} |\Phi|^2 &= \iiint \iiint \iiint \iiint \iiint |\Phi(1,2,3,4)|^2 d\mathbf{r}_1 \, d\mathbf{r}_2 \, d\mathbf{r}_3 \, d\mathbf{r}_4 \\ &= \frac{1}{4!} \left(|\phi|^2 \right)^4 = \frac{4^4}{4!} = \frac{32}{3} \end{split}$$

so the norm of Φ is

$$|\Phi| = 4\sqrt{\frac{2}{3}}.$$

Wave functions for bosons must be symmetric under permutations of particles. In analogy to the antisymmetrizer for Fermions, one may define a *symmetrizer* to turn a product of n one-particle functions $\phi_i(\mathbf{r})$ into a proper n-boson wave function:

$$\Phi_{\text{boson}}(1,\ldots,n) = \hat{S}\phi_1(\boldsymbol{r}_1)\phi_2(\boldsymbol{r}_2)\cdots\phi_n(\boldsymbol{r}_n)$$
(5)

5b. Give the expression for \hat{S} , such that Φ_{boson} is normalized, assuming $\langle \phi_i | \phi_j \rangle = \delta_{ij}$.

Answer: The symmetrizer is proportional to the sum of permutation operators \hat{P}_i

$$\hat{S} = b_n \sum_{i=1}^{n!} \hat{P}_i.$$

The symmetrizer is Hermitian, just like the anti-symmetrizer, so the square of the norm of $\Phi = \Phi_{\text{boson}}$ is

$$\langle \hat{S}\Phi | \hat{S}\Phi \rangle = \langle \Phi | \hat{S}^2\Phi \rangle.$$

In analogy to question 4 we may derive

$$\hat{S}^2 = b_n^2 \, n! \sum_{i=1}^{n!} \hat{P}_i.$$

Since the one-particle wave functions are orthonormal only $\hat{P}_i = \hat{1}$ contributes:

$$\langle \Phi | \hat{S}^2 \Phi \rangle = b_n^2 \, n! \langle \phi_1 \phi_2 \cdots \phi_n | \phi_1 \phi_2 \cdots \phi_n \rangle = b_n^2 \, n!$$

and so the wave function is normalized for $b_n = 1/\sqrt{n!}$