Question 1: Counting basis functions

Consider formaldehyde, $\mathrm{H}_{2} \mathrm{CO}$. Count the number of contractions and the number of GTOs in these basis sets:

1a. STO-3G
1b. SV 3-21G
1c. SV 6-31G* (Spherical)
1d. SV 6-31G* (Cartesian)
1e. SV 6-31++G** (Cartesian)
Note: the "+" adds and an extra GTO on valence orbitals. For C/O that is extra orbitals for 2 s and for 2 p .
Answer: Contractions (dimension of set of Roothaan equations):

basis	H		C/O			$\begin{gathered} \hline \hline \mathrm{H}_{2} \mathrm{CO} \\ \text { total } \end{gathered}$
	S	p	s	p	d	
STO-3G	1		2	3		12
SV 3-21G	2		3	6		22
SV 6-31G* (Spherical)	2		3	6	5	32
SV 6-31G* (Cartesian)	2		3	6	6	34
SV 6-31++G**(Cartesian)	3	3	4	9	6	50

Note: the star in SV 6-31G* indicates polarization functions of second row elements, i.e., d-orbitals for C and O. Two stars (${ }^{* *)}$ indicate also polarization functions on H, i.e., p-orbitals. Similarly for diffuse functions: one + means diffuse s and p functions on C and O, two ++ means also diffuse s functions on H.

Primitive GTOs:

basis	H		C/O			$\begin{gathered} \mathrm{H}_{2} \mathrm{CO} \\ \text { total } \end{gathered}$
	s	p	S	p	d	
STO-3G	3		6	9		36
SV 3-21G	3		6	9		36
SV 6-31G* (Spherical)	4		10	12	5	62
SV 6-31G* (Cartesian)	4		10	12	6	64
SV 6-31++G**(Cartesian)	5	3	11	15	6	80

Question 2: Roothaan equations

The Roothaan equations for a closed shell wave function of a molecule with 16 electrons in a $m=50$-dimensional one electron basis $\left\{\phi_{1}(\boldsymbol{r}), \ldots, \phi_{m}(\boldsymbol{r})\right\}$ is given by

$$
\boldsymbol{F}[P] C=S C \epsilon
$$

where, $\boldsymbol{\epsilon}$ is a diagonal matrix.
2a. Give the dimensions of each of the matrices in this equation.
Answer: A closed shell wave function with 16 electrons has 8 occupied MOs. Dimensions of $\boldsymbol{F}, \boldsymbol{P}$, and $\boldsymbol{S}: 50 \times 50$. Dimension of $\boldsymbol{C}: 50 \times 8$. Dimension of $\boldsymbol{\epsilon}$: 8×8.
Sometimes the unoccupied orbitals are also needed, e.g., for a subsequent configuration interaction calculation. In that case all matrices are 50×50.
$\mathbf{2 b}$. What is meant by $\boldsymbol{F}[\boldsymbol{P}]$?
Answer: To compute the Fock matrix \boldsymbol{F} the density matrix \boldsymbol{P} is needed, so \boldsymbol{F} can be considered to be a function of \boldsymbol{P}.

2c. Assuming the equation has been solved, write down the highest occupied molecular orbital.
Answer: The HOMO is orbital number 8:

$$
\chi_{8}(\boldsymbol{r})=\sum_{i=1}^{50} \phi_{i}(\boldsymbol{r}) C_{i, 8}
$$

Question 3: Electron density

A four-electron wave function is given by a single Slater-determinant,

$$
\begin{equation*}
\Phi(1,2,3,4)=\frac{1}{\sqrt{n!}}\left|\chi_{1} \bar{\chi}_{1} \chi_{2} \bar{\chi}_{2}\right| \tag{1}
\end{equation*}
$$

3a. Give the expression for the electron density in point \boldsymbol{r} in terms of the molecular orbitals χ_{1} and χ_{2}.
Answer: Electron density is a one-electron property. A one-electron property of a single Slater-determinant wave function is the sum of the contributions of the occupied MOs:

$$
\rho(\boldsymbol{r})=2\left|\chi_{1}(\boldsymbol{r})\right|^{2}+2\left|\chi_{2}(\boldsymbol{r})\right|^{2} .
$$

Question 4: Antisymmetrizer

The antisymmetrizer for n electrons is given by

$$
\begin{equation*}
\hat{\mathcal{A}}=a_{n} \sum_{i=1}^{n!}(-1)^{p_{i}} \hat{P}_{i} . \tag{2}
\end{equation*}
$$

The antisymmetrizer can be defined with different normalizations a_{n}. Sometimes, a_{n} is chosen such that the antisymmetrizer is an idempotent operator, i.e.,

$$
\begin{equation*}
\hat{\mathcal{A}}^{2}=\hat{\mathcal{A}} . \tag{3}
\end{equation*}
$$

4a. Determine the normalization factor a_{n} such that $\hat{\mathcal{A}}$ is idempotent.
Answer: From question $4 b$ of week 2 we have:

$$
(-1)^{q} \hat{Q} \sum_{i=1}^{n!}(-1)^{p} \hat{P}=\sum_{i=1}^{n!}(-1)^{p} \hat{P}
$$

So we find

$$
\hat{\mathcal{A}}^{2}=a_{n}^{2} n!\sum_{i=1}^{n!}(-1)^{p} \hat{P}
$$

and hence $\hat{\mathcal{A}}$ is idempotent if

$$
a_{n}^{2} n!=a_{n},
$$

i.e., if

$$
a_{n}=\frac{1}{n!} .
$$

Question 5: Bosons

The wave function for a system of four bosons with spins $s=0$ is given by

$$
\begin{equation*}
\Phi(1,2,3,4)=\frac{1}{\sqrt{4!}} \phi\left(\boldsymbol{r}_{1}\right) \phi\left(\boldsymbol{r}_{3}\right) \phi\left(\boldsymbol{r}_{3}\right) \phi\left(\boldsymbol{r}_{4}\right) . \tag{4}
\end{equation*}
$$

The norm of the one-particle wave function ϕ is 2 .
5a. Compute the norm of Φ.

Answer: The square norm of norm of ϕ equals 4,

$$
|\phi|^{2} \equiv \iiint|\phi(\boldsymbol{r})|^{2} d \boldsymbol{r}=4
$$

The square of the norm of Φ is

$$
\begin{aligned}
|\Phi|^{2} & =\iiint \iiint \iiint \iiint|\Phi(1,2,3,4)|^{2} d \boldsymbol{r}_{1} d \boldsymbol{r}_{2} d \boldsymbol{r}_{3} d \boldsymbol{r}_{4} \\
& =\frac{1}{4!}\left(|\phi|^{2}\right)^{4}=\frac{4^{4}}{4!}=\frac{32}{3}
\end{aligned}
$$

so the norm of Φ is

$$
|\Phi|=4 \sqrt{\frac{2}{3}}
$$

Wave functions for bosons must be symmetric under permutations of particles. In analogy to the antisymmetrizer for Fermions, one may define a symmetrizer to turn a product of n one-particle functions $\phi_{i}(\boldsymbol{r})$ into a proper n-boson wave function:

$$
\begin{equation*}
\Phi_{\mathrm{boson}}(1, \ldots, n)=\hat{S} \phi_{1}\left(\boldsymbol{r}_{1}\right) \phi_{2}\left(\boldsymbol{r}_{2}\right) \cdots \phi_{n}\left(\boldsymbol{r}_{n}\right) \tag{5}
\end{equation*}
$$

5b. Give the expression for \hat{S}, such that $\Phi_{\text {boson }}$ is normalized, assuming $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{i j}$.
Answer: The symmetrizer is proportional to the sum of permutation operators \hat{P}_{i}

$$
\hat{S}=b_{n} \sum_{i=1}^{n!} \hat{P}_{i} .
$$

The symmetrizer is Hermitian, just like the anti-symmetrizer, so the square of the norm of $\Phi=\Phi_{\text {boson }}$ is

$$
\langle\hat{S} \Phi \mid \hat{S} \Phi\rangle=\left\langle\Phi \mid \hat{S}^{2} \Phi\right\rangle .
$$

In analogy to question 4 we may derive

$$
\hat{S}^{2}=b_{n}^{2} n!\sum_{i=1}^{n!} \hat{P}_{i} .
$$

Since the one-particle wave functions are orthonormal only $\hat{P}_{i}=\hat{\mathbf{1}}$ contributes:

$$
\left\langle\Phi \mid \hat{S}^{2} \Phi\right\rangle=b_{n}^{2} n!\left\langle\phi_{1} \phi_{2} \cdots \phi_{n} \mid \phi_{1} \phi_{2} \cdots \phi_{n}\right\rangle=b_{n}^{2} n!
$$

and so the wave function is normalized for $b_{n}=1 / \sqrt{n!}$

