Question 1: Undetermined multiplier method of Lagrange (I)

The real functions of two variables, $f(x, y)$ and $g(x, y)$ are given by

$$
\begin{align*}
f(x, y) & =x^{2}+y^{2} \tag{1}\\
g(x, y) & =x+y-2 \tag{2}
\end{align*}
$$

1a. Draw a contour map of $f(x, y)$ with contours $f(x, y)=c$ for $c=1,2$, and 4 .
1b. In the same figure draw the line $g(x, y)=0$.

Answer:

1c. Use the undetermined multiplier method of Lagrange to find the minimum of $f(x, y)$ with the constraint that $g(x, y)=0$, i.e., solve

$$
\boldsymbol{\nabla} f(x, y)=\lambda \nabla g(x, y),
$$

where λ is the undetermined multiplier and

$$
\boldsymbol{\nabla}=\binom{\partial / \partial x}{\partial / \partial y}
$$

After solving the equation, find the value of λ by using the constraint $g(x, y)=0$.
Answer:

$$
\nabla f(x, y)=\binom{2 x}{2 y}=\lambda \nabla g(x, y)=\lambda\binom{1}{1}
$$

Solution: $x=\lambda / 2, y=\lambda / 2$. The constraint gives $x+y-2=\lambda-2=0$, so $\lambda=2$ and $(x, y)=(1,1)$.

Question 2: Undetermined multiplier method of Lagrange (II)

The column vector $\boldsymbol{x} \in \mathbb{R}^{n}$ has components x_{i}. The real functions $f(\boldsymbol{x})$ and $g(\boldsymbol{x})$ are given by

$$
\begin{align*}
f(\boldsymbol{x}) & =\boldsymbol{x}^{T} \boldsymbol{H} \boldsymbol{x} \tag{3}\\
g(\boldsymbol{x}) & =\boldsymbol{x}^{T} \boldsymbol{x}-1 \tag{4}
\end{align*}
$$

where \boldsymbol{H} is a real, symmetric, $n \times n$ matrix, i.e. $H_{i j}=H_{j i}$ for $i, j=1, \ldots, n$.

2a. Show that minimization of $f(\boldsymbol{x})$ with the constraint that $g(\boldsymbol{x})=0$ leads to an eigenvalue problem.
Answer: We need to solve

$$
\boldsymbol{\nabla} f(\boldsymbol{x})=\lambda \boldsymbol{\nabla} g(\boldsymbol{x}) .
$$

In components:

$$
\frac{\partial}{\partial x_{k}} \sum_{i, j} x_{i} H_{i, j} x_{j}=\lambda \frac{\partial}{\partial x_{k}}\left(\sum_{i} x_{i}^{2}-1\right) .
$$

Use the chain rule and

$$
\frac{\partial x_{i}}{\partial x_{k}}=\delta_{i, k} .
$$

The left hand side:

$$
\sum_{i, j}\left(\delta_{i, k} H_{i, j} x_{j}+x_{i} H_{i, j} \delta_{j, k}\right)=\sum_{j} H_{k, j} x_{j}+\sum_{i} x_{i} H_{i, k}=2 \sum_{i} H_{k, i} x_{i} .
$$

In the last step we used $H_{i, k}=H_{k, i}$. The right hand side gives:

$$
\frac{\partial}{\partial x_{k}} \sum_{i} x_{i}^{2}=\sum_{i} \frac{\partial x_{i}}{\partial x_{k}} \frac{\partial}{\partial x_{i}} x_{i}^{2}=\sum_{i} \delta_{k, i} 2 x_{i}=2 x_{k} .
$$

Combining the left and the right hand side:

$$
\sum_{i} H_{k, i} x_{i}=\lambda x_{k}
$$

In matrix notation

$$
\boldsymbol{H} \boldsymbol{x}=\lambda \boldsymbol{x}
$$

This is matrix eigenvalue problem.

Question 3: Hartree-Fock equations for a two electron system

A two electron Slater-determinant is given by

$$
\begin{equation*}
\Phi(1,2)=\frac{1}{\sqrt{2}}|\phi \bar{\phi}| . \tag{5}
\end{equation*}
$$

The molecular orbital $\phi(\boldsymbol{r})$, with electron coordinate $\boldsymbol{r} \in \mathbb{R}^{3}$, is expanded in the m dimensional AO basis $\left\{\chi_{1}(\boldsymbol{r}), \chi_{2}(\boldsymbol{r}), \ldots, \chi_{m}(\boldsymbol{r})\right\}$,

$$
\begin{equation*}
\phi(\boldsymbol{r})=\sum_{\lambda=1}^{m} \chi_{\lambda}(\boldsymbol{r}) c_{\lambda} . \tag{6}
\end{equation*}
$$

The electronic Hamiltonian, expressed in one- and two-electron operators \hat{h} and \hat{g} is

$$
\begin{equation*}
\hat{H}=\hat{h}(1)+\hat{h}(2)+\hat{g}(1,2) . \tag{7}
\end{equation*}
$$

The expectation value of Hamiltonian \hat{H} for wave function Φ is given by

$$
\begin{equation*}
E=2 h+J=2\langle\phi| \hat{h}|\phi\rangle+\langle\phi(1) \phi(2)| \hat{g}(1,2)|\phi(1) \phi(2)\rangle . \tag{8}
\end{equation*}
$$

The overlap and one-electron integrals in the AO basis are given by

$$
\begin{align*}
S_{\lambda, \mu} & \equiv\left\langle\chi_{\lambda} \mid \chi_{\mu}\right\rangle \tag{9}\\
h_{\lambda, \mu} & \equiv\left\langle\chi_{\lambda}\right| \hat{h}\left|\chi_{\mu}\right\rangle \tag{10}
\end{align*}
$$

and the two-electron integrals are given by

$$
\begin{equation*}
\langle\lambda \mu||\nu \tau\rangle \equiv\left\langle\chi_{\lambda}(1) \chi_{\mu}(2)\right| \hat{g}(1,2)\left|\chi_{\nu}(1) \chi_{\tau}(2)\right\rangle . \tag{11}
\end{equation*}
$$

3a. Where did the exchange integral in Eq. (8) go?
Answer: There are just 2 electrons, with opposite spins, so the exchange integral $K=0$. You might object that there could be an artifical self-exchange, see the next question.

3b. Compare Eq. (8) with the online notes from the lecture.

Answer: The notes say:

$$
E=\sum_{i}^{2}\left\langle\psi_{i}\right| h_{i}\left|\psi_{i}\right\rangle+\frac{1}{2} \sum_{i}^{2} \sum_{i \neq j}^{2}\left\langle\psi_{i} \psi_{j}\right| \hat{g}(1,2)\left|\psi_{i} \psi_{j}\right\rangle
$$

with $\left|\psi_{1}\right\rangle=|\phi\rangle|\alpha\rangle$ and $\left|\psi_{2}\right\rangle=|\phi\rangle|\beta\rangle$. The one-electron part is trivial:

$$
\sum_{i}^{2}\left\langle\psi_{i}\right| h_{i}\left|\psi_{i}\right\rangle=\sum_{i}^{2}\langle\phi| h|\phi\rangle(\langle\alpha \mid \alpha\rangle+\langle\beta \mid \beta\rangle)=2\langle\phi| h|\phi\rangle=2 h
$$

In the two-electron part the double sum yields two identical terms (one with the α-spin in orbital 1 and β-spin in orbital 2 and one with the β-spin in orbital 1 and the α-spin in orbital 2). This yields a factor 2 that cancels the factor 1/2 before the summation. So we get:

$$
\langle\phi(1) \phi(2)| \hat{g}(1,2)|\phi(1) \phi(2)\rangle=J
$$

So in total:

$$
E=2 h+J=2 h+2 J-K
$$

Here we introduced the self-exchange K that cancels the self-Coulomb contribution.
3c. Derive the energy expression (assume that all functions and coefficients are real)

$$
\begin{equation*}
E=2 \sum_{\lambda, \mu} h_{\lambda, \mu} c_{\lambda} c_{\mu}+\sum_{\lambda, \mu, \nu, \tau}\langle\lambda, \mu \| \nu, \tau\rangle c_{\lambda} c_{\mu} c_{\nu} c_{\tau} \tag{12}
\end{equation*}
$$

Answer: Assume that all functions and coeffients are real. The one-electron term:

$$
2\langle\phi| \hat{h}|\phi\rangle=2\left\langle\sum_{\lambda} \chi_{\lambda}(\boldsymbol{r}) c_{\lambda}\right| \hat{h}\left|\sum_{\mu} \chi_{\mu}(\boldsymbol{r}) c_{\mu}\right\rangle=2 \sum_{\lambda, \mu}\left\langle\chi_{\lambda}\right| \hat{h}\left|\chi_{\mu}\right\rangle c_{\lambda} c_{\mu}=2 \sum_{\lambda, \mu} h_{\lambda, \mu} c_{\lambda} c_{\mu}
$$

The two-electron term:

$$
\begin{aligned}
\langle\phi(1) \phi(2)| \hat{g}(1,2)|\phi(1) \phi(2)\rangle & =\left\langle\sum_{\lambda} \chi_{\lambda}(1) c_{\lambda} \sum_{\mu} \chi_{\mu}(2) c_{\mu}\right| \hat{g}(1,2)\left|\sum_{\nu} \chi_{\nu}(1) c_{\nu} \sum_{\tau} \chi_{\tau}(2) c_{\tau}\right\rangle \\
& =\sum_{\lambda, \mu, \nu, \tau}\langle\lambda, \mu \| \nu, \tau\rangle c_{\lambda} c_{\mu} c_{\nu} c_{\tau}
\end{aligned}
$$

3d. Minimize the energy with the constraint that $\langle\phi \mid \phi\rangle=1$ using the undetermined multiplier method of Lagrange.

Answer: The energy E must be minimized under the constraint that the molecular orbital ϕ is normalized. This gives

$$
\boldsymbol{\nabla} E(\boldsymbol{c})=\lambda \boldsymbol{\nabla} g(\boldsymbol{c}),
$$

with the constraint

$$
g(\boldsymbol{c})=\langle\phi \mid \phi\rangle-1=\left\langle\sum_{\lambda} \chi_{\lambda}(\boldsymbol{r}) c_{\lambda} \mid \sum_{\mu} \chi_{\mu}(\boldsymbol{r}) c_{\mu}\right\rangle-1=\sum_{\lambda, \mu} S_{\lambda, \mu} c_{\lambda} c_{\mu}-1=0 .
$$

When computing the gradient use

$$
\frac{\partial c_{\lambda}}{\partial c_{\rho}}=\delta_{\lambda \rho}
$$

For the one-electron part of the energy we have

$$
\begin{aligned}
\frac{\partial h}{\partial c_{\rho}} & =\frac{\partial}{\partial c_{\rho}} \sum_{\lambda, \mu} h_{\lambda, \mu} c_{\lambda} c_{\mu}=\sum_{\lambda, \mu} h_{\lambda, \mu} \delta_{\lambda \rho} c_{\mu}+\sum_{\lambda, \mu} h_{\lambda, \mu} c_{\lambda} \delta_{\mu \rho} \\
& =\sum_{\mu} h_{\rho, \mu} c_{\mu}+\sum_{\lambda} h_{\lambda, \rho} c_{\lambda}=2 \sum_{\mu} h_{\rho, \mu} c_{\mu} .
\end{aligned}
$$

In the last step we used that \hat{h} is hermitian and real, $h_{\lambda, \rho}=h_{\rho, \lambda}$.
The gradient of the constraint is derived analogously

$$
\frac{\partial g(\boldsymbol{c})}{\partial c_{\rho}}=2 \sum_{\mu} S_{\rho, \mu} c_{\mu} .
$$

The gradient of the Coulomb integral

$$
\begin{aligned}
\frac{\partial J}{\partial c_{\rho}} & =\frac{\partial}{\partial c_{\rho}} \sum_{\lambda \mu \nu \tau}\langle\lambda \mu \| \nu \tau\rangle c_{\lambda} c_{\mu} c_{\nu} c_{\tau} \\
& =\sum_{\lambda, \mu, \nu, \tau}\langle\lambda \mu \| \nu \tau\rangle\left(\delta_{\rho \lambda} c_{\mu} c_{\nu} c_{\tau}+c_{\lambda} \delta_{\rho \mu} c_{\nu} c_{\tau}+c_{\lambda} c_{\mu} \delta_{\rho \nu} c_{\tau}+c_{\lambda} c_{\mu} c_{\nu} \delta_{\rho \tau}\right) \\
& =4 \sum_{\mu \nu \tau}\langle\rho \mu \| \nu \tau\rangle c_{\mu} c_{\nu} c_{\tau}
\end{aligned}
$$

Answer: To show that all four contributions are the same in the last step, use

$$
\langle\lambda \mu \| \nu \tau\rangle=\langle\nu \tau \| \lambda \mu\rangle
$$

and

$$
\langle\lambda \mu \| \nu \tau\rangle=\langle\mu \lambda \| \tau \nu\rangle .
$$

3e. Show that the resulting equations can be rewritten as

$$
\begin{equation*}
\boldsymbol{F} \boldsymbol{c}=\epsilon \boldsymbol{S} \boldsymbol{c} \tag{13}
\end{equation*}
$$

where the matrix elements of the so-called Fock matrix \boldsymbol{F} are given by

$$
\begin{equation*}
F_{\rho, \nu}=h_{\rho, \nu}+\sum_{\mu, \tau} P_{\tau \mu}\langle\rho \mu \| \nu \nu\rangle \tag{14}
\end{equation*}
$$

and the density matrix \boldsymbol{P} is defined by

$$
\begin{equation*}
\boldsymbol{P}=\boldsymbol{c} \boldsymbol{c}^{T} \tag{15}
\end{equation*}
$$

or, in components

$$
\begin{equation*}
P_{\tau \mu}=c_{\tau} c_{\mu} \tag{16}
\end{equation*}
$$

Answer: To introduce the Fock-matrix we first note that indices ρ and ν refer to electron 1 in the expression for the gradient of the Coulomb integral. Therefore, we rewrite the gradient of the one electron term using the same indices:

$$
\frac{\partial h}{\partial c_{\rho}}=2 \sum_{\nu} h_{\rho, \nu} c_{\nu}
$$

and define the Fock-matrix elements by

$$
F_{\rho, \nu}=h_{\rho, \nu}+\sum_{\mu, \tau}\langle\rho \mu \| \nu \tau\rangle c_{\mu} c_{\tau}
$$

Thus,

$$
\frac{\partial}{\partial c_{\rho}}(2 h+J)=\lambda \frac{\partial}{\partial c_{\rho}} g(\boldsymbol{c})
$$

becomes:

$$
4 \sum_{\nu} F_{\rho, \nu} c_{\nu}=2 \lambda \sum_{\nu} S_{\rho, \nu} c_{\nu} .
$$

With $\epsilon=\lambda / 2$, in matrix notation:

$$
\boldsymbol{F c}=\epsilon \boldsymbol{S c} .
$$

Question 4: Symmetric group

The group of all n ! permutations of n objects is called the symmetric group, denoted by S_{n},

$$
\begin{equation*}
S_{n}=\left\{\hat{P}_{i} \mid i=1,2, \ldots, n!\right\} . \tag{17}
\end{equation*}
$$

The set T is defined by

$$
\begin{equation*}
T=\left\{\hat{Q} \hat{P}_{i} \mid i=1,2, \ldots, n!\right\}, \tag{18}
\end{equation*}
$$

where $\hat{Q} \in S_{n}$.
In general, two sets A and B are equal if all elements of A are in B and all elements of B are in A.

4a. Show that $T=S_{n}$ using the property of a group that each element has an inverse.
Answer: Sets A and B are equal if $a \in A \leftrightarrow a \in B$. With $\hat{T}_{i} \equiv \hat{Q} \hat{P}_{i}$ and $\hat{P}_{j} \equiv \hat{Q}^{-1} \hat{P}_{i}$ we see that $\hat{T}_{j} \equiv \hat{Q} \hat{P}_{j}=\hat{Q} \hat{Q}^{-1} \hat{P}_{i}=\hat{P}_{i}$.

The antisymmetrizer for n objects is

$$
\begin{equation*}
\hat{\mathcal{A}}=\sum_{i=1}^{n!}(-1)^{p_{i}} \hat{P}_{i}, \tag{19}
\end{equation*}
$$

where p_{i} the parity of \hat{P} (p_{i} is odd or even).
4b. Show that for $\hat{Q} \in S_{n}$ and \hat{A} the antisymmetrizer

$$
\hat{Q} \hat{A}=(-1)^{q} \hat{A},
$$

where q is the parity of \hat{Q}.
Answer:

$$
\hat{Q} \hat{\mathcal{A}}=\sum_{i=1}^{n!}(-1)^{p_{i}} \hat{Q} \hat{P}_{i}=(-1)^{q} \sum_{i=1}^{n!}(-1)^{p_{i}+q} \hat{Q} \hat{P}_{i}=(-1)^{q} \hat{\mathcal{A}} .
$$

In the last step we used that $p_{i}+q$ is the parity of $\hat{Q} \hat{P}_{i}$ and that $\hat{Q} \hat{P}_{i}$ runs through the entire set S_{n} when $i=1, \ldots, n$!

