
Quantum Chemistry, week 2 (2023)

Question 1: Undetermined multiplier method of Lagrange (I)

The real functions of two variables, f(x, y) and g(x, y) are given by

f(x, y) = x2 + y2 (1)

g(x, y) = x+ y − 2 (2)

1a. Draw a contour map of f(x, y) with contours f(x, y) = c for c = 1, 2, and 4.

1b. In the same figure draw the line g(x, y) = 0.
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1c. Use the undetermined multiplier method of Lagrange to find the minimum of
f(x, y) with the constraint that g(x, y) = 0, i.e., solve

∇f(x, y) = λ∇g(x, y),

where λ is the undetermined multiplier and

∇ =

(
∂/∂x
∂/∂y

)
.

After solving the equation, find the value of λ by using the constraint g(x, y) = 0.

Answer:

∇f(x, y) =

(
2x
2y

)
= λ∇g(x, y) = λ

(
1
1

)
Solution: x = λ/2, y = λ/2. The constraint gives x+ y − 2 = λ− 2 = 0, so λ = 2
and (x, y) = (1, 1).

Question 2: Undetermined multiplier method of Lagrange (II)

The column vector x ∈ Rn has components xi. The real functions f(x) and g(x) are
given by

f(x) = xTHx (3)

g(x) = xTx− 1 (4)

where H is a real, symmetric, n× n matrix, i.e. Hij = Hji for i, j = 1, . . . , n.
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2a. Show that minimization of f(x) with the constraint that g(x) = 0 leads to an
eigenvalue problem.

Answer: We need to solve
∇f(x) = λ∇g(x).

In components:
∂

∂xk

∑
i,j

xiHi,jxj = λ
∂

∂xk
(
∑
i

x2i − 1).

Use the chain rule and
∂xi
∂xk

= δi,k.

The left hand side:∑
i,j

(δi,kHi,jxj + xiHi,jδj,k) =
∑
j

Hk,jxj +
∑
i

xiHi,k = 2
∑
i

Hk,ixi.

In the last step we used Hi,k = Hk,i. The right hand side gives:

∂

∂xk

∑
i

x2i =
∑
i

∂xi
∂xk

∂

∂xi
x2i =

∑
i

δk,i2xi = 2xk.

Combining the left and the right hand side:∑
i

Hk,ixi = λxk

In matrix notation
Hx = λx

This is matrix eigenvalue problem.
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Question 3: Hartree-Fock equations for a two electron system

A two electron Slater-determinant is given by

Φ(1, 2) =
1√
2

∣∣φφ̄∣∣ . (5)

The molecular orbital φ(r), with electron coordinate r ∈ R3, is expanded in the m-
dimensional AO basis {χ1(r), χ2(r), . . . , χm(r)},

φ(r) =
m∑
λ=1

χλ(r)cλ. (6)

The electronic Hamiltonian, expressed in one- and two-electron operators ĥ and ĝ is

Ĥ = ĥ(1) + ĥ(2) + ĝ(1, 2). (7)

The expectation value of Hamiltonian Ĥ for wave function Φ is given by

E = 2h+ J = 2〈φ|ĥ|φ〉+ 〈φ(1)φ(2)|ĝ(1, 2)|φ(1)φ(2)〉. (8)

The overlap and one-electron integrals in the AO basis are given by

Sλ,µ ≡ 〈χλ|χµ〉 (9)

hλ,µ ≡ 〈χλ|ĥ|χµ〉 (10)

and the two-electron integrals are given by

〈λµ||ντ〉 ≡ 〈χλ(1)χµ(2)|ĝ(1, 2)|χν(1)χτ (2)〉. (11)

3a. Where did the exchange integral in Eq. (8) go?

Answer: There are just 2 electrons, with opposite spins, so the exchange integral
K = 0. You might object that there could be an artifical self-exchange, see the next
question.

3b. Compare Eq. (8) with the online notes from the lecture.
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Answer: The notes say:

E =
2∑
i

〈ψi|hi|ψi〉+
1

2

2∑
i

2∑
i 6=j
〈ψiψj |ĝ(1, 2)|ψiψj〉

with |ψ1〉 = |φ〉|α〉 and |ψ2〉 = |φ〉|β〉. The one-electron part is trivial:

2∑
i

〈ψi|hi|ψi〉 =

2∑
i

〈φ|h|φ〉(〈α|α〉+ 〈β|β〉) = 2〈φ|h|φ〉 = 2h

In the two-electron part the double sum yields two identical terms (one with the
α-spin in orbital 1 and β-spin in orbital 2 and one with the β-spin in orbital 1 and
the α-spin in orbital 2). This yields a factor 2 that cancels the factor 1/2 before
the summation. So we get:

〈φ(1)φ(2)|ĝ(1, 2)|φ(1)φ(2)〉 = J

So in total:
E = 2h+ J = 2h+ 2J −K

Here we introduced the self-exchange K that cancels the self-Coulomb contribution.

3c. Derive the energy expression (assume that all functions and coefficients are real)

E = 2
∑
λ,µ

hλ,µcλcµ +
∑
λ,µ,ν,τ

〈λ, µ||ν, τ〉cλcµcνcτ . (12)

Answer: Assume that all functions and coeffients are real. The one-electron term:

2〈φ|ĥ|φ〉 = 2〈
∑
λ

χλ(r)cλ|ĥ|
∑
µ

χµ(r)cµ〉 = 2
∑
λ,µ

〈χλ|ĥ|χµ〉cλcµ = 2
∑
λ,µ

hλ,µcλcµ

The two-electron term:

〈φ(1)φ(2)|ĝ(1, 2)|φ(1)φ(2)〉 = 〈
∑
λ

χλ(1)cλ
∑
µ

χµ(2)cµ|ĝ(1, 2)|
∑
ν

χν(1)cν
∑
τ

χτ (2)cτ 〉

=
∑
λ,µ,ν,τ

〈λ, µ||ν, τ〉cλcµcνcτ .

3d. Minimize the energy with the constraint that 〈φ|φ〉 = 1 using the undetermined
multiplier method of Lagrange.
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Answer: The energy E must be minimized under the constraint that the molecular
orbital φ is normalized. This gives

∇E(c) = λ∇g(c),

with the constraint

g(c) = 〈φ|φ〉 − 1 = 〈
∑
λ

χλ(r)cλ|
∑
µ

χµ(r)cµ〉 − 1 =
∑
λ,µ

Sλ,µcλcµ − 1 = 0.

When computing the gradient use

∂cλ
∂cρ

= δλρ.

For the one-electron part of the energy we have

∂h

∂cρ
=

∂

∂cρ

∑
λ,µ

hλ,µcλcµ =
∑
λ,µ

hλ,µδλρcµ +
∑
λ,µ

hλ,µcλδµρ

=
∑
µ

hρ,µcµ +
∑
λ

hλ,ρcλ = 2
∑
µ

hρ,µcµ.

In the last step we used that ĥ is hermitian and real, hλ,ρ = hρ,λ.
The gradient of the constraint is derived analogously

∂g(c)

∂cρ
= 2

∑
µ

Sρ,µcµ.

The gradient of the Coulomb integral

∂J

∂cρ
=

∂

∂cρ

∑
λµντ

〈λµ||ντ〉cλcµcνcτ

=
∑
λ,µ,ν,τ

〈λµ||ντ〉(δρλcµcνcτ + cλδρµcνcτ + cλcµδρνcτ + cλcµcνδρτ )

= 4
∑
µντ

〈ρµ||ντ〉cµcνcτ .

Answer: To show that all four contributions are the same in the last step, use

〈λµ||ντ〉 = 〈ντ ||λµ〉

and
〈λµ||ντ〉 = 〈µλ||τν〉.
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3e. Show that the resulting equations can be rewritten as

Fc = εSc, (13)

where the matrix elements of the so-called Fock matrix F are given by

Fρ,ν = hρ,ν +
∑
µ,τ

Pτµ〈ρµ||ντ〉 (14)

and the density matrix P is defined by

P = ccT , (15)

or, in components
Pτµ = cτ cµ. (16)

Answer: To introduce the Fock-matrix we first note that indices ρ and ν refer to
electron 1 in the expression for the gradient of the Coulomb integral. Therefore, we
rewrite the gradient of the one electron term using the same indices:

∂h

∂cρ
= 2

∑
ν

hρ,νcν

and define the Fock-matrix elements by

Fρ,ν = hρ,ν +
∑
µ,τ

〈ρµ||ντ〉cµcτ

Thus,
∂

∂cρ
(2h+ J) = λ

∂

∂cρ
g(c)

becomes:
4
∑
ν

Fρ,νcν = 2λ
∑
ν

Sρ,νcν .

With ε = λ/2, in matrix notation:

Fc = εSc.
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Question 4: Symmetric group

The group of all n! permutations of n objects is called the symmetric group, denoted
by Sn,

Sn = {P̂i|i = 1, 2, . . . , n!}. (17)

The set T is defined by
T = {Q̂P̂i|i = 1, 2, . . . , n!}, (18)

where Q̂ ∈ Sn.
In general, two sets A and B are equal if all elements of A are in B and all elements

of B are in A.

4a. Show that T = Sn using the property of a group that each element has an
inverse.

Answer: Sets A and B are equal if a ∈ A ↔ a ∈ B. With T̂i ≡ Q̂P̂i and
P̂j ≡ Q̂−1P̂i we see that T̂j ≡ Q̂P̂j = Q̂Q̂−1P̂i = P̂i.

The antisymmetrizer for n objects is

Â =
n!∑
i=1

(−1)piP̂i, (19)

where pi the parity of P̂ (pi is odd or even).

4b. Show that for Q̂ ∈ Sn and Â the antisymmetrizer

Q̂Â = (−1)qÂ,

where q is the parity of Q̂.

Answer:

Q̂Â =

n!∑
i=1

(−1)piQ̂P̂i = (−1)q
n!∑
i=1

(−1)pi+qQ̂P̂i = (−1)qÂ.

In the last step we used that pi + q is the parity of Q̂P̂i and that Q̂P̂i runs through
the entire set Sn when i = 1, . . . , n!
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