Quantum Chemistry, week 2 (2023)

Question 1: Undetermined multiplier method of Lagrange (I)
The real functions of two variables, f(x,y) and g(z,y) are given by

flzy) = 2*+4° (1)
g(x,y) = z+y—2 (2)

la. Draw a contour map of f(z,y) with contours f(z,y) = c for ¢ =1, 2, and 4.

1b. In the same figure draw the line g(z,y) = 0.
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Answer:

1c. Use the undetermined multiplier method of Lagrange to find the minimum of
f(z,y) with the constraint that g(z,y) = 0, i.e., solve

Vf(z,y) = AVg(z,y),

where A is the undetermined multiplier and
_ (0/ox
V- ( ) ay> |
After solving the equation, find the value of A by using the constraint g(z,y) = 0.

Vf(z,y) = @z) = AVy(z,y) = A G)

Solution: © = \/2, y = X\/2. The constraint givest +y—2=X—2=0, so A\ =2
and (z,y) = (1,1).

Answer:

Question 2: Undetermined multiplier method of Lagrange (II)

The column vector & € R™ has components z;. The real functions f(x) and g(x) are
given by

f(z) = «"Ha (3)
glx) = zTx -1 (4)
where H is a real, symmetric, n X n matrix, i.e. H;; = Hj; fori,j =1,...,n.

Page 1 of 7



Quantum Chemistry, week 2 (2023)

2a. Show that minimization of f(x) with the constraint that g(x) = 0 leads to an
eigenvalue problem.

Answer: We need to solve

Vi(x) = AVg(x).

In components:

0 5]
axk ;ZB 7.]1:] 6$k (; Z; )
Use the chain rule and
Oxi _ o
o0xp, - Tk
The left hand side:

Z‘7j

Z(éi,kHi,jxj + (L‘Z‘H@jéj’k) = Z HkJa:j + inH@k =2 Z Hk’l-a;i.
7 @ 9

In the last step we used H; = Hy ;. The right hand side gives:

8 2 awq/ (9 2
Combining the left and the right hand side:

Z Hk,ixi = )\xk
A

In matrix notation
Hx = \x

This is matrixz eigenvalue problem.
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Question 3: Hartree-Fock equations for a two electron system

A two electron Slater-determinant is given by
2(1,2) = = |09 )
V2

The molecular orbital ¢(r), with electron coordinate » € R?, is expanded in the m-
dimensional AO basis {x1(7), x2(7), ..., xm(r)},

o(r) =Y xa(r)ea. (6)
A=1

The electronic Hamiltonian, expressed in one- and two-electron operators h and g is
H =h(1) + h(2) + §(1,2). (7)

The expectation value of Hamiltonian H for wave function @ is given by

E =2h+J = 2(¢|h|g) + (6(1)¢(2)|3(1, 2)|(1)$(2)). (8)

The overlap and one-electron integrals in the AO basis are given by
Sae = Ol (9)
ha = Oalhlxp) (10)

and the two-electron integrals are given by

Aullvr) = Oa(W)xu(2)]9(1, 2)[xw (1)x-(2))- (11)
3a. Where did the exchange integral in Eq. (8) go?

Answer: There are just 2 electrons, with opposite spins, so the exchange integral
K = 0. You might object that there could be an artifical self-exchange, see the next
question.

3b. Compare Eq. (8) with the online notes from the lecture.
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Answer: The notes say:

E— thwz ZZW&;IQ 2) |thitb;)

i iA]
with |Y1) = |@)|a) and |1p2) = |p)|B). The one-electron part is trivial:

2

2
> Wilhilys) =Y (glhig)((ala) + (B18)) = 2(g|h|g) = 2h

% )

In the two-electron part the double sum yields two identical terms (one with the
a-spin in orbital 1 and B-spin in orbital 2 and one with the B-spin in orbital 1 and
the a-spin in orbital 2). This yields a factor 2 that cancels the factor 1/2 before
the summation. So we get:

(0(1)o(2)19(1,2)|p(1)¢(2)) = J

So in total:
E=2h+J=2h+2J - K

Here we introduced the self-exchange K that cancels the self-Coulomb contribution.

3c. Derive the energy expression (assume that all functions and coefficients are real)

E=2 Z hpexcy + Z (A, pl v, T)eaepcver. (12)
At AV, T

Answer: Assume that all functions and coeffients are real. The one-electron term:

2<¢|h|¢> = 2(2 X/\(T)C)\|ﬁ| ZX,LL(T)C,M> =2 Z<XA|E|Xﬂ>CACﬂ =2 Z h)\,uc)\cu
A M

A1 Ao

The two-electron term:

(¢(1)¢(2)[9(1,2)|¢(1) = ZXA CAqu )euld(1,2) \ZXV cysz cr)

= Z (N, v, T>C/\CHC,/C7-.
>\7M7V77—

3d. Minimize the energy with the constraint that (¢|¢) = 1 using the undetermined
multiplier method of Lagrange.
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Answer: The energy E must be minimized under the constraint that the molecular
orbital ¢ is normalized. This gives

VE(e) = AVg(e).
with the constraint
g(c) = (8l¢) = 1= _xamerl D xulm)eu) —=1=)  Sruerc, —1=0.
A % A1

When computing the gradient use

ocy
—= =y,
dc, A
For the one-electron part of the energy we have
oh

60 ac Z h)\ JMCACy = Z h)\ M(S)\PCM TF Z h)\ #C)\(sup
P P AL

—thucu+zhkpck—22hpucu

In the last step we used that h is hermitian and real, hy, = hp .
The gradient of the constraint is derived analogously

ch = QZSpucu

The gradient of the Coulomb integral

0J 0
aicp = 870/) Z (ApllvT)excucuer
ApVT
= Z [ M0 Euen@r = @l auer®r T ©@ubmCr =F @ TpGt s )
Avuyyﬂ—
S e
HvT

Answer: To show that all four contributions are the same in the last step, use

Apllvr) = (]| Aw)

and
(Aullvr) = (pA||Tv).
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3e. Show that the resulting equations can be rewritten as
Fc=eSc,

where the matrix elements of the so-called Fock matrix F' are given by

Fyy=h,,+ Z Pru(pp|lvT)
w7

and the density matriz P is defined by
P = ccT7

or, in components
P, = crcy.

(13)

(14)

(15)

(16)

Answer: To introduce the Fock-matriz we first note that indices p and v refer to
electron 1 in the expression for the gradient of the Coulomb integral. Therefore, we

rewrite the gradient of the one electron term using the same indices:
Oh
87 =79 Z hp,llcl/
P v
and define the Fock-matriz elements by

el T hs Z(puHVﬂC#CT
w7

Thus,

0 0
— (2 — )\
5o 2+ ) =\ g9l

becomes:

AD Hon@y S DY S
v v

With € = X\/2, in matriz notation:

Fec=c¢eSe.
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Question 4: Symmetric group

The group of all n! permutations of n objects is called the symmetric group, denoted
by Sn’ .
S, ={PFli=1,2,...,nl}. (17)

The set T is defined by =
T ={QPFli=1,2,...,nl}, (18)

where Q € S,,.
In general, two sets A and B are equal if all elements of A are in B and all elements
of B are in A.

4a. Show that T = S,, using the property of a group that each element has an
inverse.

Answer:  Sets A and B are equal if a A a € B. With T, = QP, and

A

P; = Q' P we see that T; = QPj = QQ~ 15

The antisymmetrizer for n objects is

where p; the parity of P (p; is odd or even).

4b. Show that for Q € S, and A the antisymmetrizer

QA= (-1)74,
where ¢ is the parity of Q

Answer:

n!
QA= (F1PQP = (=1)")_(-1)""1QP: = (-1)"A.

i=1 i=1
In the last step we used that p; + q is the parity of QAPZ and that QPZ runs through
the entire set S, wheni=1,... n!
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