
Electron correlation, post-HF methods

Hartree-Fock (HF) is a variational method, with the exact Hamiltonian (albeit non-relativistic) and
approximate wave-function in the form of a Slater determinant (SD).

The Slater determinant accounts for exchange perfectly (the wave-function is anti-symmetric for
particle interchange, following Pauli).

HF is exact for one-electron systems (the hydrogen atom, . . . ).

HF is approximate for two- and more-electron systems. The probability of the electron to be
somewhere is specifically correlated with the “location” of the other electrons: The pair-correlation
function g(r′, r) drops below the HF value. The real g(r′, r) < g(r′, r)HF < 1 (exchange already forbids
electrons with the same spin sitting at the same spot) and the real E < EHF for two and more electrons.

The correlation energy is the HF energy minus and the exact ground state energy (if we take the
correlation energy to be positive). HF (almost) always yields too high energy. It cannot yield too low
energy.

Post-HF methods: (a) configuration interaction, (b) coupled cluster methods, (c) Møllet-Plesset
perturbation theory, (d) multi-reference methods. And . . .
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Configuration interaction
Start from HF, with a basis (M) larger than the number of occupied MOs (N/2): M > N/2. You get
empty MOs.

Fix the orbitals φk(r), and build Ansatz with Slater determinants with zero, one, two, three, etc.,
electrons “kicked into” the empty orbitals.

singlesHF doubles triples

etc.

etc.

empty

occupied

ΦCI = C0ΦHF +
∑
singles

C S
i ΦS

i +
∑

doubles

CD
i ΦD

i +
∑
triples

CT
i ΦT

i + · · ·+
∑

N excit.

CN
i ΦN

i
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Configuration interaction

ΦCI = C0ΦHF +
∑
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This is a variational method: one has to determine the expansion coefficients such that energy is
minimal with the constraint that the WF is normalized:

E = min 〈ΦCI|Ĥ|ΦCI〉 with 〈ΦCI|ΦCI〉 = 1

This can be expressed as an eigenvalue problem in the basis of determinants (so H is a matrix, c is a
vector):

Hc = Ec

The lowest eigenvalue is the ground state energy.

There is much structure in H, e.g., matrix elements between determinants with more than three
different orbitals are zero, as Ĥ has only one- and two-electron operators.

In full CI we have all possible determinants in the sum. Then (if the basis is complete) we get the
exact ground state energy!
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Configuration interaction

ΦCI = C0ΦHF +
∑
singles
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In practice we cannot keep the full expansion. Too expensive! Truncate:

I CIS (S = singles)

ΦCIS = C0ΦHF +
∑
singles

C S
i ΦS

i

This yields no improvement over HF.

I CID (D = doubles)

ΦCID = C0ΦHF +
∑

doubles

CD
i ΦD

i

This gives the big gain!

I CISD singles & doubles

ΦCISD = C0ΦHF +
∑
singles

C S
i ΦS

i +
∑

doubles

CD
i ΦD

i

In conjunction with doubles the singles help (and are relatively few). Nevertheless the
computational cost scales as M6.
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Configuration interaction

In practice often one can also leave out excitations from core states, which speeds things up
considerably also.

Apart from the unfavorable scaling, CI also has the drawback of not being size-consistent.

Consider a single molecule calculated with CISD. It has double excitations. Consider a second single
molecule calculated with CISD. It also has double excitations. So the both together feature quadrupole
excitations... But treating the complex (at “infinite” intermolecular distance) at the CISD level only
gives up to (and including) double excitations.

So, a single CISD calculation on both molecules together yields a higher energy than two CISD
calculations on the single molecules. This is not very desirable.

Of course, in full CI this problem does not exist.

Maybe it is better to use the criterion of size-extensivity...
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Coupled-cluster methods
We start again with the HF SD: Φ0.

The CC wave function:

ΦCC = eT̂Φ0 where T̂ = T̂ 1 + T̂ 2 + T̂ 3 + · · ·+ T̂N

Here T̂ is the cluster operator. T̂ 1 are the single excitations, T̂ 2 the double, etc.

T̂ 1Φ0 =
∑
ij

t ji τ̂
j
i Φ0

Singles: Removing a single electron from orbital i (i ≤ N/2) and adding it to an empty orbital j
(N/2 + 1 ≤ j ≤ M) . The t ji are the expansion coefficients to be determined.

Doubles:
T̂ 2Φ0 =

∑
kl

∑
ij

t ljki τ̂
l
k τ̂

j
i Φ0

The exponent is defined by its series expansion:

eT̂ = 1 + T̂ +
1

2!
T̂ 2 +

1

3!
T̂ 3 + . . .
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Coupled-cluster methods

Now, e.g., cut at triples, T̂ = T̂ 1 + T̂ 2 + T̂ 3 (i.e. CCSDT), do a Taylor expansion, and re-order the
summation (in order of increasing number of excitations):

eT̂ = 1 + T̂ 1 + T̂ 2 + T̂ 3 +
1

2!
(T̂ 1 + T̂ 2 + T̂ 3)2 +

1

3!
(T̂ 1 + T̂ 2 + T̂ 3)3 + . . .

= 1 + T̂ 1 +

(
T̂ 2 +

1

2
T̂ 2

1

)
+

(
T̂ 3 + T̂ 2T̂ 1 +

1

6
T̂ 3

1

)
+ . . .

We can now insert the expansion (truncated in T̂ beyond T̂ 3) into the Schrödinger equation:

ĤΦCCSDT = ECCSDTΦCCSDT

Solving this will yield the coefficients t ji , t
lj
ki , t

nlj
mki and ECCSDT.

Note: We still have terms of all orders excitation in the Taylor expansion (until we have exhausted our
basis set). Hence there is no problem with size-extensivity.

Again, we have a hierarchy of methods: CCSD, CCSDT, CCSDTQ.

One can also do the highest order of the excitations in perturbation theory: CCSD(T), CCSDT(Q).
CCSD(T) is the most popular and very accurate.
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Møller-Plesset perturbation theory
We want to solve (i = 1, 2, 3, . . . labels the state, WF and (increasing) energy):

ĤΦi = EiΦi (1)

We know everything about the unperturbed Hamiltonian, its eigenstates and energies:

Ĥ0Φ
(0)
i = E

(0)
i Φ

(0)
i

We now write:
Ĥ = Ĥ0 + λ∆Ĥ (2)

And expand:
Φi = Φ

(0)
i + λΦ

(1)
i + λ2Φ

(2)
i + λ3Φ

(3)
i + . . . (3)

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + λ3E

(3)
i + . . . (4)

Inserting 2, 3 and 4 into the eigenvalue equation 1 and isolating the same powers of λ. This yields
(recursive) relations for terms in 3 and 4.

E.g., (choosing λ1):

E
(1)
i = 〈Φ(0)

i |∆Ĥ|Φ(0)
i 〉 , E

(2)
i =

∑
j 6=i

|〈Φ(0)
j |∆Ĥ|Φ(0)

i 〉|
2

E
(0)
i − E

(0)
j

, etc.

In practice we have to truncate at some power of λ.
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Perturbation theory basics
Help slide: (

Ĥ0 + λ∆Ĥ
)(
|Φ0

i 〉+ λ|Φ1
i 〉+ λ2|Φ2

i 〉+ . . .
)

=
(
E 0
i + λE 1

i + λ2E 2
i + . . .

)(
|Φ0

i 〉+ λ|Φ1
i 〉+ λ2|Φ2

i 〉+ . . .
)

λ0: Ĥ0|Φ0
i 〉 = E 0

i |Φ0
i 〉

λ1:
〈Φ0

i |Ĥ0|Φ1
i 〉+ 〈Φ0

i |∆Ĥ|Φ0
i 〉 = 〈Φ0

i |E 0
i |Φ1

i 〉+ 〈Φ0
i |E 1

i |Φ0
i 〉

so that 〈Φ0
i |∆Ĥ|Φ0

i 〉 = 〈Φ0
i |E 1

i |Φ0
i 〉 = E 1

i

Insert back (right) and insert complete set (left)

Ĥ0|Φ1
i 〉+

∑
j

|Φ0
j 〉〈Φ0

j |∆Ĥ|Φ0
i 〉 = E 0

i |Φ1
i 〉+ |Φ0

i 〉〈Φ0
i |∆Ĥ|Φ0

i 〉

⇒ 〈Φ0
k |(E 0

i − Ĥ0)|Φ1
i 〉 = 〈Φ0

k |
∑
j 6=i

|Φ0
j 〉〈Φ0

j |∆Ĥ|Φ0
i 〉

⇒ (E 0
i − E 0

k )〈Φ0
k |Φ1

i 〉 = 〈Φ0
k |∆Ĥ|Φ0

i 〉 next use: |Φ1
i 〉 =

∑
k

|Φ0
k〉〈Φ0

k ||Φ1
i 〉 etc.

Note: this is too simple, consider k = i and degenerate case.
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Møller-Plesset perturbation theory
We again start from Hartree-Fock, but now from the HF equation:

f̂ (1)ψk(1) = εkψk(1)

(here, for convenience, with spin orbitals)

We sum the f̂ operator for all occupied states and obtain the Fock operator:

F̂ =
N∑
i

f̂ (i)

The HF SD is an eigenfunction of F̂ by construction.

We now split of the Fock operator from the Hamiltonian:

Ĥ = F̂ + (Ĥ − F̂ ) ≡ Ĥ0 + ∆Ĥ

This is the “Møller-Plesset” choice (well, they formulated differently).

One achieves that the zeroth order WF is just the HF WF, which is a pretty good first approximation
already.
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Møller-Plesset perturbation theory
The zeroth order energy is (we suppress the label i = 0):

F̂Φ(0) = 2

N/2∑
i

εiΦ
(0) = E (0)Φ0

The first order energy (MP1) is:

E (0) + E (1) = 〈Φ(0)|Ĥ0 + ∆H|Φ(0)〉 = 〈Φ(0)|Ĥ|Φ(0)〉 = EHF

(so E (1) are our “double counting corrections” for HF).

So one cannot yet cut at the first order. The main gain comes for MP2:

E ≈ E (0) + E (1) + E (2)

Of course, the expressions are somewhat more complicated . . . however, in the expression for E (2) we
have matrix elements

〈Φ(0)
j |∆Ĥ|Φ(0)

i 〉

For the ground state: Φ
(0)
i → Φ

(0)
gs is our ground state HF Slater determinant. As ∆Ĥ is a sum of

two-particle operators, the only Φ
(0)
j that matter are SDs with double excitations.
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Møller-Plesset perturbation theory

A few “final” remarks on MPn:

MP4 is often done.

Convergence with n of MPn can be tricky, i.e. not smooth. In particular one has to be careful with
systems with a small “gap”.

MPn is not variational. MPn is size-extensive.
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Multi-reference methods

Help slide:

sA/B is “1s” on hydrogen atom A/B

HF wave function (N is normalisation):

Ψ1 =
1

N
(sA (r1) + sB(r1)) (sA (r2) + sB(r2))

1√
2

(α(1)β(2)− α(2)β(1))

∼ sA (r1) sA (r2) + sA (r1) sB (r2) + sB (r1) sA (r2) + sB (r1) sB (r2)

Both electrons excited into the the first empty state (anti-bonding σ∗)

Ψ2 =
1

Ñ
(sA (r1)− sB(r1)) (sA (r2)− sB(r2))

1√
2

(α(1)β(2)− α(2)β(1))

CID:
ΨCID = c1Ψ1 + c2Ψ2

13 / 19



Multi-reference methods

If H2 is dissociated, the
probability density for
electron 1 at A and
electron 2 at B (and vice
versa) should become
progressively larger than the
density for both electrons
at A or both electrons at B.
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Multi-reference methods

Sketch of H2 dissociation
curve. For H2, UHF,
CASSCF and MR-CISD
all yield the correct
dissociation limit,
contrary to standard HF.
For a general diatomic
molecule one expects in
the dissociation limit:
E(UHF) > E(CASSCF)
> E(MR-CISD).
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Multi-reference methods

MCSCF = Multi-configuration self-consistent field (methods)

To be used when a single Slater determinant is not a good starting point for, e.g., a perturbation
expansion. So, if, in a CI expansion, the coefficient of any determinant other than the HF ground state
is considerable. One then also needs to optimize the orbitals from which the determinants are build.

A classic example, H2:

I In HF the likelihood to find (a) both electrons near one proton is the same as (b) finding one
near one proton and the other near the other proton.

I In CI this is cured by considering (one additional) determinant build from an anti-bonding orbital.
This makes (b) more likely.

I Now you dissociate the H2. The CI clearly helps: the electrons are not localized simultaneously at
the same proton. However, this “configuration” is very different from the “reference” HF for
which the orbitals are optimized. So the shape of the orbitals in not good... and needs to be
optimized again for the additional determinant (in full CI you get the right numbers, but the
price is to have very many determinants).

Note that in practice we “break symmetry” and do HF for the H atom.
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Multi-reference methods

CASSCF = Complete active space self-consistent field

This method has an “active” space in which all electron distributions (i.e. “complete”) are considered.
Below the active space has 3 orbitals containing 4 electrons.

active space

all empty

all double occupied

Not only the coefficients of these nine determinants are optimized, but also the expansion coefficients
of the orbitals in the MOs.
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Multi-reference methods

The MCSCF calculation can be a first step . . . so on top of, e.g., a CASSCF you do a CISD, allowing
excitation from and into orbitals outside the active space, but now keeping the orbitals fixed: an
MR-CISD (multi-reference CISD).

The MR-step serves to account for “static correlation”, the kind where a single Slater determinant is
just not sufficient (N2 dissociation is another text-book example). The CISD step accounts then (much
more efficient) for the “dynamic correlation” (e.g. van der Waals interaction).

A “final” remark: the better you account for correlation, the better needs to be the quality of your
basis set. You cannot get away with 6-31G or so. There is a huge variety of basis sets... something like
cc-pvXZ, with X = D,T,Q, 5, . . .
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