
Density Functional Theory: preliminaries

The basic “variable” in density function theory is the electron density:

n(r) = ρ(r) = N

∫
Ψ∗(r, r2, ... , rN)Ψ(r, r2, ... , rN) dr2 ... drN

Note we have two symbols.

Let’s review this expression. It is the expectation value of the density operator:

n(r) =

∫
Ψ∗(r1, r2, ... , rN)

N∑
i

δ(r − ri ) Ψ(r1, r2, ... , rN) dr1 ... drN

=

∫
Ψ∗(r, r2, ... , rN)Ψ(r, r2, ... , rN) dr2 ... drN

+

∫
Ψ∗(r1, r, r3, ... , rN)Ψ(r1, r, r3, ... , rN) dr1 dr3 ... drN + . . .

= N

∫
Ψ∗(r, r2, ... , rN)Ψ(r, r2, ... , rN) dr2 ... drN
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Density Functional Theory: preliminaries
Let’s also review this for a Slater determinant with spin-orbitals:

n(r) =

∫
1√
N!
|ψ1 . . . ψN |∗

N∑
i

δ(r − ri )
1√
N!
|ψ1 . . . ψN | dr1 . . . drN

First we only do one term of the sum. Let’s take i = 1. r1 can be argument of all N spin functions
(orbitals). For each case, there are (N − 1)! ways to permute the N − 1 other electron coordinates over
the N − 1 remaining orbitals (note we integrated over the spin coordinates):∫

1√
N!
|ψ1 . . . ψN |∗ δ(r − r1)

1√
N!
|ψ1 . . . ψN | dr1 . . . drN

=
1

N!
{ψ∗1 (r)ψ1(r)(N − 1)! + ψ∗2 (r)ψ2(r)(N − 1)! + ψ∗3 (r)ψ3(r)(N − 1)! + . . .}

=
(N − 1)!

N!

N∑
j

|ψj(r)|2

The summation over i yields: n(r) =
N∑
j

|ψj(r)|2 =
N∑
i

|ψi (r)|2

For closed shell HF: n(r) = 2

N/2∑
i

|φi (r)|2
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Foundations of Density Functional Theory

The basic “variable” in density function theory is the electron density:

n(r) = ρ(r) = N

∫
Ψ∗(r, r2, ... , rN)Ψ(r, r2, ... , rN) dr2 ... drN

This is function of the three spatial coordinates (e.g. of x , y and z).

A functional is a recipe that has functions as input and yields numbers as output. You put in a
function, and get a number out.

Example: Let’s have some functions of x , denoted as f (x).
The following F are functionals:

F [f (x)] = f (2) , F [f (x)] =
df (x)

dx

∣∣∣∣
x=2

, F [f (x)] =

∫ 10

0

|f (x)| dx

and these are not:

F [f (x)] = 10f (x) + π , F [f (x)] =
df (x)

dx
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Foundations of Density Functional Theory

The two Hohenberg-Kohn theorems are the basis of density functional theory (DFT):

1. The external potential (and hence the ground state energy), is a unique functional of the electron
density.

(what is “the external potential?”)

2. The functional that delivers the ground state energy of the system, gives the lowest energy if and
only if the input density is the true ground state density.

These are (almost) the formulations on wikipedia:
https://en.wikipedia.org/wiki/Density_functional_theory, section: Hohenberg-Kohn
theorems.
The notes have explicit descriptive explanations.

Let’s prove/construct these theorems . . .
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Foundations of Density Functional Theory

theorem 1

Suppose we have two different external potentials, V and V ′, for the same ground state (g.s.) density
n(r). For the normalised g.s. wave functions:

E = 〈Ψ|H|Ψ〉 and E ′ = 〈Ψ′|H ′|Ψ′〉

Apply the variational principle twice (at “RR”, i.e. Rayleigh-Ritz), and convert Hamiltonians. We
use: H(′) = T + W + V (′).

E
RR
< 〈Ψ′|H|Ψ′〉=〈Ψ′|H +

0︷ ︸︸ ︷
V ′ − V ′ |Ψ′〉=〈Ψ′|H ′ + V − V ′|Ψ′〉=E ′ + 〈Ψ′|V − V ′|Ψ′〉

E ′
RR
< 〈Ψ|H ′|Ψ〉 = 〈Ψ|H ′ + V − V︸ ︷︷ ︸

0

|Ψ〉 = 〈Ψ|H + V ′ − V |Ψ〉 = E − 〈Ψ|V − V ′|Ψ〉

Now add:
E + E ′ < E + E ′ + 〈Ψ′|V − V ′|Ψ′〉 − 〈Ψ|V − V ′|Ψ〉

The densities n(r) and n′(r) are identical, and the matrix elements depend on (V , V ′ and) the density
only...
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Foundations of Density Functional Theory

The densities n(r) and n′(r) are identical, and the matrix elements depend on (V , V ′ and) the density
only...

〈Ψ|V |Ψ〉 =

∫
n(r)V (r) dr , 〈Ψ′|V |Ψ′〉 =

∫
n(r)V (r) dr

So, the matrix elements of V (and of V ′) cancel. Hence

E + E ′ < E + E ′

which disqualifies our assumption that V and V ′ are different.

Now we know [n(r) is the ground state density]:

theorem 1︷ ︸︸ ︷
n(r)→ Vext → Ψ→ n(r)

Note: this can be generalized to degenerate ground states.
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Foundations of Density Functional Theory

theorem 2
Define a functional:

E [ñ(r)] = 〈Ψ[ñ]|T + W |Ψ[ñ]〉+

∫
ñ(r)Vext(r) dr

The (fixed) external potential Vext is the external potential of the Hamiltonian H = T + W + Vext and
that yields the g.s. density n(r) (T and W are the kinetic energy and electron-electron interaction
operators).

The function ñ(r) can be any charge density. Because of theorem 1 we know it is the g.s. density for
the g.s. wave function |Ψ[(ñ)]〉 of H̃ = T + W + Ṽext.

For ñ(r) = n(r) we have that Ṽext = Vext and |Ψ[(ñ)]〉 = |Ψ[(n)]〉 is the g.s. wave function of H. The

variational principle says:
〈Ψ[ñ]|H|Ψ[ñ]〉 ≥ 〈Ψ[n]|H|Ψ[n]〉 ,

where the equality pertains to the g.s. wave function.

Re-write with the functional:

E [ñ(r)] = 〈Ψ[ñ]|H|Ψ[ñ]〉 ≥ 〈Ψ[n]|H|Ψ[n]〉 = E [n(r)]

which is the variational principle for the density functional, i.e. the g.s. density minimizes our functional
yielding the g.s. energy for Vext.
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Foundations of Density Functional Theory

The first part is often denoted as a functional F .

E [ñ(r)] = 〈Ψ[ñ]|T + W |Ψ[ñ]〉+

∫
ñ(r)Vext(r) dr

= F [ñ(r)] +

∫
ñ(r)Vext(r) dr

Beautiful: Given the external potential, we know there exists a functional of the density that is minimal
for (only) the ground state density. In principle we just need to solve for the density in order to obtain
the ground state energy. This is an enormous simplification over wave function methods. We only need
the density!

Problematic: but we need to know F ... we only know how to get F via the ground state wave
function. So no simplification after all? We need another, preferably simple, way to calculate F ,
directly from the density.
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The Kohn-Sham equations

Both T and W are problematic, but T is most serious... Kohn & Sham “solve” the problem by
representing it as non-interacting orbitals (here closed-shell):

n(r) = 2
occ∑
i

|φi (r)|2 so that T non−int[n(r)] = 2
occ∑
i

〈φi |
p2

2me
|φi 〉

T non−int is an approximation because the real electronic system is not non-interacting, so a correction
is needed. The Kohn-Sham orbitals {φi (r)} do not make up the real electronic wave function (in principle).

F [n(r)] = T non−int[n(r)] +
e2

2

∫ ∫
n(r)n(r′)

|r − r′| dr dr′ + EXC[n(r)]

F is the sum of non-interacting kinetic energy, Hartree (Coulomb) energy and exchange-correlation
energy. EXC[n(r)] has to:

I repair for the difference between T [n(r)] and T non−int[n(r)] (ẼXC).

I account for exchange (including self-exchange)

I account for correlation
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The Kohn-Sham equations
Next step: Minimize E [n(r)] under the constraint of orthonormal orbitals. This yields the Kohn-Sham
equations: [

−~2

2me
∇2 + Vext(r) + e2

∫
n(r′)

|r − r′|dr
′ + vXC[n(r)]

]
φi (r) = εiφi (r)

where vXC[n(r)] =
δEXC[n(r)]

δn(r)

(Kohanoff has a more formal detour)

Note:

I the Lagrange multipliers εi (we took them diagonal),

I the functional derivative in the potential,

I the “double counting” in the Hartree potential,

I the KS equations have to be solved self-consistently, like HF,

I in principle this is easier than HF, if only we knew vxc[n(r)],

I this is similar to the HF eigenvalue equation, it only differs at vxc.
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The local density approximation

Remember from last week, the exchange energy per particle of the uniform electron gas:

EX

N
= −3

4
e2

3

√
3

π
n1/3

Assume that for a non-uniform system the exchange energy dEX in a volume dr with local density n(r)
is the same as that of the uniform electron gas:

dEX = (EX per electron in uniform gas)× (# electrons in dr) =

εLDAX [n]× n(r) dr

This is the essence of the local density approximation (LDA), here for the exchange only. We know
εLDAX [n] for the uniform electron gas. Inserting and integrating over whole space yields:

EX
LDA[n(r)] =

∫
εLDAX [n] n(r) dr = −3

4
e2

3

√
3

π

∫
n(r)4/3 dr

11 / 19



The local density approximation

EX
LDA[n(r)] = −3

4
e2

3

√
3

π

∫
n(r)4/3 dr

For the potential we need the functional derivative:

vLDA
X = −e2 3

√
3

π
n(r)1/3

(note that: ∂
∂n

[
− 3

4
e2 3

√
3
π
n4/3

]
= −e2 3

√
3
π
n1/3)

Correlations? How to get EC[n(r)] in the LDA?

I Start from “numerically exact” results on the uniform electron gas (e.g. quantum Monte Carlo by
Ceperly & Alder),

I obtain the corrections w.r.t. “exchange only” LDA, as function of n,

I parametrize the functional [e.g. Perdew & Zunger (1981)].
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The local density approximation

Some remarks:

I The Hartree term has self-interaction. It is imperfectly cancelled by the approximate
XC-functional (except for the uniform gas).

I The Fock exchange density is inherently non-local, i.e. nX
i (r, r′) (= ρXi (r, r′)) depends on two sets

of coordinates, so the real DF should connect densties at r and r′ (at least), i.e. should also be
non-local. Of course a DF describing the post-HF van der Waals interaction should also be
non-local.

I The LDA implicitly assumes a slowly varying charge density. In real systems this often is not true.
That it works pretty well nevertheless is not immediately obvious... see later.

I The whole DFT story is based on the variational principle. However, as the LDA (and any other
DF you might use) is an approximation to the real DF, it can yield energies below real ground
state energies.

I DFT is not a wave function method. It is “ab initio” only in so far as the functional is derived
from “first-principles”.
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Another view on XC: the XC hole

Ee-e = 〈Ψ[n]|W |Ψ[n]〉 =
e2

2

∫ ∫
n(r)n(r′)

|r − r′| g̃(r, r′) dr dr′

=
e2

2

∫ ∫
n(r)n(r′)

|r − r′| dr dr′ +
e2

2

∫ ∫
n(r)n(r′)

|r − r′|
[
g̃(r, r′)− 1

]
dr dr′

=
e2

2

∫ ∫
n(r)n(r′)

|r − r′| dr dr′ +
e2

2

∫ ∫
n(r)ñXC(r, r′)

|r − r′| dr dr′

g̃(r, r′): el-el pair correlation function (draw!).

g̃(r, r′) = g̃(r′, r) and

∫
g̃(r, r′)n(r) dr = N − 1 (normalization)

ñXC(r, r′): exchange-correlation hole.∫
n(r)

[
g̃(r, r′)− 1

]
dr =

∫
n(r)

[
g̃(r′, r)− 1

]
dr =

∫
n(r′)

[
g̃(r, r′)− 1

]
dr′ =∫

ñXC(r, r′) dr′ = −1 ,

∫
ñX(r, r′) dr′ = −1 ,

∫
ñC(r, r′) dr′ = 0

The −1 in N − 1 comes from the absence of “self-interaction”.

The tildes (g̃ , ñXC) have to do with the correction for the kinetic energy. We ignore that aspect here.
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LDA and the XC hole
Help slide:

When the electrons are far apart (|r − r′| → ∞), Ee-e is just the energy of the (one-particle) densities
iteracting:

e2
n(r)n(r′)

|r − r′| dr dr′

So g̃(r, r′) = 1.

When electrons get closer, they feel each other, Kohanoff: “the probability . . . is reduced with respect
to finding them at infinite distance”, because of Coulomb repulsion (for the same values of the
one-electron densities!). So

e2
n(r)n(r′)

|r − r′| g(r, r′) dr dr′ with g(r, r′) < 1

The energy is reduced compared to the simple Hartree energy.

In fact, the mere presence of exchange only already pushes electrons with like spins apart and makes it
impossible for those to be at the same spot simultaneously. So in pure HF: gX(r, r) = 1/2.
The total pair correlation function also accounts for the electron-electron correlation (Kohanoff
Fig. 2.3):

g(r, r′) < gX(r, r′) < 1
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LDA and the XC hole

The XC energy is:

EXC =
e2

2

∫
n(r)

{∫
ñXC(r, r′)

|r − r′| dr′
}
dr with ñXC(r, r′) = n(r′)

[
g̃(r, r′)− 1

]
In the LDA:

EXC
LDA[n(r)] =

∫
n(r) εLDAXC [n(r)] dr

where εLDAXC [n(r)] is calculated assuming the system is “locally homogeneous”, i.e. only determined by
n(r). This boils down to the LDA approximation of the XC-hole being:

ñLDA
XC (r, r′) = n(r)[g̃hom(|r′ − r|, n(r))− 1]

Here n(r′) is replaced by n(r) and the paircorrelation function is that of the homogeneous electron gas
at exactly that density. So only the distance |r′ − r| matters.
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LDA and the XC hole

Why does the LDA work? I.e., why isn’t it awful, but pretty good (better than HF, but still not good
enough for quantum chemists)?

1. We fix r, g̃ is then the g of the uniform electron gas at density n(r). This is solved exactly by the
LDA, so the xc-hole integrates to −1.∫

ñXC(r′, r) dr′ =

∫
n(r)[g̃hom(r′, r)− 1] dr′ =

∫
n(r)[g̃hom(|r′ − r|, n(r))− 1] dr′ = −1

note we have n(r), not n(r′).

2. The exact details of the hole do not matter for the energy, only the spherical average does and that
behaves decent.

Ee−e =
e2

2

∫ ∫
n(r)n(r′)

|r − r′| dr dr′ +
e2

2

∫
dr n(r)

∫
nXC(r, r′)

|r − r′| dr′

Just do the r′ integration in spheres centred at r, then |r − r′| is constant on the sphere so only the
spherical average of the hole matters. Jones & Gunnarsson, Rev. Mod. Phys. 61, 689 (1989). See
Fig. 7, page 703, https://doi.org/10.1103/RevModPhys.61.689
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LDA and the XC hole

Help slide:

e2

2

∫
dr n(r)

∫
nXC(r, r′)

|r − r′| dr′ =
e2

2

∫
dr n(r)

∫
nXC(r, r + r̃)

|̃r| d r̃

=
e2

2

∫
dr n(r)

∫ ∞
0

4πr̃ 2

r̃

[
1

4πr̃ 2

∫ 2π

0

∫ π

0

nXC(r, r + r̃) sin θ dθdφ

]
dr̃

Center the second integral at r: r̃ = r′ − r, r̃ = |̃r| = |r′ − r|.
The volume element in spherical coordinates: d r̃ = sin θ dθdφdr̃

The red part is the spherical average, centered at r. This works because 1/r̃ can be moved outside the
angular integral.
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