
Towards Hartree-Fock: Lagrange multipliers

This is a mathematical intermezzo on the “undetermined multiplier method of Lagrange”.

The aim: minimizing a function (e.g. the expectation value of H) while applying a constraint (e.g. the
orbitals in the wave function should be orthogonal).

First a graphical explanation for a simple case.

Wanted: extremum of f (x , y) subject to the constraint: g(x , y) = c

g(x , y) = c defines a curve, i.e. a single contour of g(x , y) with g(x , y) = c.

We look at contours of f (x , y), i.e. curves for which f (x , y) = d , with d a constant. Near the
extremum there are 2 or no intersections of g(x , y) = c and f (x , y) = d , depending on the value of d .
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Towards Hartree-Fock: Lagrange multipliers

g(x,y)=c

f(x,y)=d

f(x,y)=df(x,y)=d

f(x,y)=de

2

1

x

y

We change d , from d1 to d2 (see plot), and, when we hit the extremal point (xe , ye), the two
intersections merge into a single point. In this point, the “surfaces” defined by g(x , y) = c and
f (x , y) = de are parallel, hence their normal vectors, i.e. the gradients, are parallel:

∇f = λ∇g i.e.

(
∂f /∂x
∂f /∂y

)
= λ

(
∂g/∂x
∂g/∂y

)
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Towards Hartree-Fock: Lagrange multipliers

Intermezzo in Intermezzo: The Gradient.

Let’s choose a parametrized trajectory s(t) on the constraint:

g(sx(t), sy (t)) = c

Now differentiate:

d

dt
g(sx(t), sy (t)) =

∂g

∂x

dsx
dt

+
∂g

∂y

dsy
dt

=


∂g

∂x
∂g

∂y

 ·
dsx

dt
dsy
dt

 = 0

The first vector is the gradient.
The second vector is tangent to the surface g(x , y) = c (Dutch: de vector raakt aan het oppervlak).

Hence the gradient of g is perpendicular to the isosurface of g . This is a general statement.

End of Intermezzo in Intermezzo.
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Towards Hartree-Fock: Lagrange multipliers

Solving the system: {
∇f = λ∇g
g(x , y) = c

yields xe , ye and λ. These equations can be obtained by demanding that the gradient of the function
L(x , y , λ),

L = f (x , y)− λ (g(x , y)− c) ,

vanishes in the three dimensional x , y , λ space:

∇L = ∇f − λ∇g = 0

∂L/∂λ = g(x , y)− c = 0

Note that we are only guaranteed to get a stationary/critical point, but not necessarily a (local)
minimum or maximum.

Let’s look at an example . . .
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Towards Hartree-Fock: Lagrange multipliers

f = (x − 2)2 + (y − 2)2

g = x = 1

}
so L = (x − 2)2 + (y − 2)2 − λ(x − 1)

We immediately see that (x , y) = (1, 2) yields the minimum f = 1 on g .

xO

y

2 41 3 5

1

2

3

4

Lagrange:

∂L
∂x

= 2(x − 2)− λ = 0

∂L
∂y

= 2(y − 2) = 0⇒ y = 2

∂L
∂λ

= −(x − 1) = 0⇒ x = 1

(x , y , λ) = (1, 2,−2) is a stationary point in
3D space. Let’s look at the “magic” in
more detail . . .
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Towards Hartree-Fock: Lagrange multipliers

Let’s try to systematically “complete the square”:

L = (x − 2)2 + (y − 2)2 − λ(x − 1) = x2 − 4x + 4− λx + λ+ (y − 2)2 =(
x − 2− λ

2

)2

− λ2

4
− 2λ+ λ+ (y − 2)2 =(

x − 1− 1

2
(λ+ 2)

)2

− 1

4
(λ+ 2)2 + 1 + (y − 2)2

For (x , y , λ) = (1, 2,−2) all terms in brackets vanish and this is 1, as it should be. All small excursions
of x (or of y , or of λ) away from (1, 2,−2) yield quadratic changes: we have an stationary point. As
we know, because the 3D gradient vanishes.

This stationary point is a global minimum on the xy -plane (with λ = −2 fixed). It is a saddle point in
the 3D xyλ-space. Note: the method provides no guarantees about the nature of the stationary points.
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Towards Hartree-Fock: Lagrange multipliers

Now in more, i.e., n dimensions (see Groenenboom notes). We have a function

f (x) = f (x1, x2, . . . xn)

We have m constraints:
gi (x) = gi (x1, x2, . . . xn) = 0, i = 1, 2, . . . ,m

This is a (n −m)-dimensional surface M.

We are looking for xe such that f is stationary in xe and on all gi (xe) = 0.

Any allowed (by the constraints) excursion s away from xe is perpendicular to all gradients ∇gi
(calculated in xe):

s ⊥∇g1 and s ⊥∇g2 and s ⊥∇g3, . . . , s ⊥∇gm. (1)

If excursions s are perpendicular to ∇f then there is no first-order change of f .

We can achieve this by demanding that the gradient ∇f be a linear combination of the gradients ∇gi ,
i.e.

∇f =
∑
i

λi∇gi .

Then, by construction, any vector s (simultaneously on all constraints) is perpendicular to ∇f and
gives a vanishing first-order change in f : xe is a stationary point.
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Towards Hartree-Fock: Lagrange multipliers

We define (called f̃ (~r , ~λ) in Groenenboom):

L(x,λ) ≡ f (x)−
m∑
i=1

λigi (x)

and we demand that the gradient in (n + m)-dimensional space vanishes:

∂L
∂xj

=
∂f

∂xj
−

m∑
i=1

λi
∂gi
∂xj

= 0 , j = 1, 2, . . . , n

∂L
∂λi

= gi = 0 , i = 1, 2, . . . ,m

Note:

I We are allowed to replace λi with −λi .

I We did not worry about complex x, . . .

I Demanding gi (x) = 0 is general. Suppose gi (x) = c 6= 0, then g̃i (x) = gi (x)− c = 0.

8 / 18



Towards Hartree-Fock: minimization I

Why do we need Lagrange multipliers?

Because we have to minimize our energy expression:

ε = 2

N/2∑
k

〈φk |ĥ|φk〉+

N/2∑
k

N/2∑
l

2Jkl − Kkl = 2

N/2∑
k

hkk +

N/2∑
k

N/2∑
l

2Jkl − Kkl

with the constraints that the orbitals are orthonormal, i.e.

〈φk |φl〉 = δlk

These conditions make that the wave function, i.e., the Slater determinant, is normalized and satisfies
Pauli.

In order to fulfill our constraints, we introduce Lagrange multipliers Λij , one for each constraint, and
add terms for our constraints to ε to make a new function ε′ that we will minimize:

ε′ = 2

N/2∑
k

hkk +

N/2∑
k

N/2∑
l

(2Jkl − Kkl)−
N/2∑
k

N/2∑
l

Λlk (〈φk |φl〉 − δlk)
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Towards Hartree-Fock: the basis

Help slide:

So we have to minimize ε′ by changing the orbitals |φk〉 while keeping the constraint 〈φk |φl〉 = δlk .

This is quite abstract, and not suitable for a computer.

In the next slide we will expand the obitals in basis functions. The basis functions are fixed. The
expansion coefficients Cλk are the variables. We need to find those values of Cλk that give the
minimum of ε′.

In principle the number of basis functions M can be infinite. The number of orbitals is uniquely
defined. In our closed shell system it is N/2, i.e. the number of electrons/2.
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Towards Hartree-Fock: the basis

Expand the spatial orbitals in a basis:

φk(r) =
M∑
λ

Cλk χλ(r) =
M∑
λ

χλ(r)Cλk i.e. |φk〉 =
M∑
λ

|χλ〉Cλk

Typically the φk are the orbitals of the whole system, i.e. the molecular orbitals (MOs). In chemistry
the χλ are often chosen to be centered on the individual atoms: atomic orbitals (AOs). The acronym
for this approximation: MO-LCAO (MO-Linear Combination of AOs).

In practice the basis is never complete, but should “approximate completeness sufficiently”.

The atomic orbitals are, in general, not orthonormal, because

Sλµ = 〈χλ|χµ〉 6= 0

if χλ and χµ are on different atoms. S is the overlap matrix.

In rare instances linear dependencies arise (a basis function |χλ〉 is a linear combination of several
others). The program will crash. That should be avoided.
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Towards Hartree-Fock: the basis
We should minimize:

ε′ = 2

N/2∑
k

hkk +

N/2∑
k

N/2∑
l

(2Jkl − Kkl)−
N/2∑
k

N/2∑
l

Λlk (〈φk |φl〉 − δlk)

We insert the expansion in the basis (using |φk〉 =
M∑
λ

|χλ〉Cλk):

ε′ = 2

N/2∑
k

M∑
λ

M∑
µ

C∗λkCµk〈χλ|ĥ|χµ〉

+

N/2∑
k

N/2∑
l

M∑
λ

M∑
µ

M∑
ν

M∑
τ

C∗λkC
∗
µlCνkCτ l〈χλχµ|(2− P̂12)ĝ(1, 2)|χνχτ 〉

−
N/2∑
k

N/2∑
l

Λlk

(
M∑
λ

M∑
µ

C∗λkCµl〈χλ|χµ〉 − δlk

)

Help:

N/2∑
k

N/2∑
l

2〈φk(1)φl(2)|ĝ(1, 2)|φk(1)φl(2)〉−〈φk(1)φl(2)|ĝ(1, 2)|φl(1)φk(2)〉

=

N/2∑
k

N/2∑
l

2〈φk(1)φl(2)|ĝ(1, 2)|φk(1)φl(2)〉−〈φk(1)φl(2)|P̂12ĝ(1, 2)|φk(1)φl(2)〉
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Towards Hartree-Fock: “simplification”
Let’s try to safe ink:

ε′ = 2

N/2∑
k

M∑
λ

M∑
µ

C∗λkCµk〈χλ|ĥ|χµ〉

+

N/2∑
k

N/2∑
l

M∑
λ

M∑
µ

M∑
ν

M∑
τ

C∗λkC
∗
µlCνkCτ l〈χλχµ|(2− P̂12)ĝ(1, 2)|χνχτ 〉

−
N/2∑
k

N/2∑
l

Λlk

(
M∑
λ

M∑
µ

C∗λkCµl〈χλ|χµ〉 − δij

)
=
∑
λµ

2Pµλhλµ +
∑
λµντ

PνλPτµ〈λµ|(2− P̂12)ĝ |ντ〉 −
∑
kl

Λlk(
∑
λµ

C∗λkCµlSλµ − δlk)

The density matrix P and (remember) overlap matrix S are:

Pµλ ≡
N/2∑
k

CµkC
∗
λk , Sλµ ≡ 〈χλ|χµ〉

Note the indices for P, the second has the c.c. These are not operators!
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Towards Hartree-Fock: minimization II

At the minimum all variations of ε′ with respect to the real and complex parts of Cρm must vanish:

∂ε′

∂Re[Cρm]
= 0 and

∂ε′

∂Im[Cρm]
= 0 where Cρm = Re[Cρm] + i Im[Cρm]

This yields the same as requireing:

∂ε′

∂Cρm
= 0 and

∂ε′

∂C∗ρm
= 0 where Cρm and C∗ρm are considered independent

Note: we single out a specific element Cρm or C∗ρm in the sum:

∂Pµλ
∂Cρm

=
∂

∂Cρm

N/2∑
k

CµkC
∗
λk

 =

N/2∑
k

δµρδmkC
∗
λk = δµρC

∗
λm

∂Pµλ
∂C∗ρm

=
∂

∂C∗ρm

N/2∑
k

CµkC
∗
λk

 =

N/2∑
k

δλρδmkCµk = δλρCµm
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Towards Hartree-Fock: minimization II

∂Pµλ
∂Cρm

= δµρC
∗
λm and

∂Pµλ
∂C∗ρm

= δλρCµm

∂

∂C∗ρm

∑
λµ

2Pµλhλµ

 =
∑
λµ

2δλρCµmhλµ =
∑
µ

2Cµmhρµ =
∑
ν

2hρνCνm

∂

∂C∗ρm

∑
λµντ

PνλPτµ〈λµ|(2− P̂12)ĝ |ντ〉


=
∑
λµντ

δλρCνmPτµ〈λµ|(2− P̂12)ĝ |ντ〉+
∑
λµντ

PνλδµρCτm〈λµ|(2− P̂12)ĝ |ντ〉

=
∑
µντ

Pτµ〈ρµ|(2− P̂12)ĝ |ντ〉Cνm +
∑
λντ

Pνλ〈λρ|(2− P̂12)ĝ |ντ〉Cτm

=
∑
µντ

Pτµ〈ρµ|(2− P̂12)ĝ |ντ〉Cνm +
∑
µτν

Pτµ〈µρ|(2− P̂12)ĝ |τν〉Cνm

= 2
∑
ν

∑
µτ

Pτµ〈ρµ|(2− P̂12)ĝ |ντ〉Cνm
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Towards Hartree-Fock: minimization II

∂

∂C∗ρm

−∑
kl

Λlk(
∑
λµ

C∗λkCµlSλµ − δlk)


= −

∑
l

∑
µ

ΛlmCµlSρµ = −
∑
l

∑
µ

SρµCµlΛlm

∂ε′

∂C∗ρm
=
∑
ν

2hρνCνm+2
∑
ν

∑
µτ

Pτµ〈ρµ|(2− P̂12)ĝ |ντ〉Cνm −
∑
l

∑
µ

SρµCµlΛlm

≡ 2
M∑
ν

FρνCνm −
M∑
µ

Sρµ

N/2∑
l

CµlΛlm = 2[FC]ρm − [SCΛ]ρm = 0⇒ 2FC = SCΛ

∂ε′

∂Cρm
= 0 yields: 2C†F = ΛC†S

Here we have defined the Fock matrix F. Further we have the overlap matrix S, the coefficient matrix
C and the Lagrange multiplier matrix Λ. F, S and Λ are Hermitian:

F† = F i.e. F ∗µρ = Fρµ , S† = S and Λ† = Λ
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Towards Hartree-Fock: minimization II

Help slide:

The elements of the Fock matrix:

Fρν = hρν +
∑
µτ

Pτµ〈ρµ|(2− P̂12)ĝ |ντ〉

So its size is M ×M.

Note it depends on the coefficient matrix C via the elements of the density matrix Pτµ.
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