Towards Hartree-Fock: Lagrange multipliers

This is a mathematical intermezzo on the "undetermined multiplier method of Lagrange".
The aim: minimizing a function (e.g. the expectation value of H) while applying a constraint (e.g. the orbitals in the wave function should be orthogonal).
First a graphical explanation for a simple case.
Wanted: extremum of $f(x, y)$ subject to the constraint: $g(x, y)=c$
$g(x, y)=c$ defines a curve, i.e. a single contour of $g(x, y)$ with $g(x, y)=c$.
We look at contours of $f(x, y)$, i.e. curves for which $f(x, y)=d$, with d a constant. Near the extremum there are 2 or no intersections of $g(x, y)=c$ and $f(x, y)=d$, depending on the value of d.

Towards Hartree-Fock: Lagrange multipliers

We change d, from d_{1} to d_{2} (see plot), and, when we hit the extremal point (x_{e}, y_{e}), the two intersections merge into a single point. In this point, the "surfaces" defined by $g(x, y)=c$ and $f(x, y)=d_{e}$ are parallel, hence their normal vectors, i.e. the gradients, are parallel:

$$
\nabla f=\lambda \nabla g \text { i.e. } \quad\binom{\partial f / \partial x}{\partial f / \partial y}=\lambda\binom{\partial g / \partial x}{\partial g / \partial y}
$$

Towards Hartree-Fock: Lagrange multipliers

> Intermezzo in Intermezzo: The Gradient.

Let's choose a parametrized trajectory $\mathbf{s}(t)$ on the constraint:

$$
g\left(s_{x}(t), s_{y}(t)\right)=c
$$

Now differentiate:

$$
\frac{d}{d t} g\left(s_{x}(t), s_{y}(t)\right)=\frac{\partial g}{\partial x} \frac{d s_{x}}{d t}+\frac{\partial g}{\partial y} \frac{d s_{y}}{d t}=\binom{\frac{\partial g}{\partial x}}{\frac{\partial g}{\partial y}} \cdot\binom{\frac{d s_{x}}{d t}}{\frac{d s_{y}}{d t}}=0
$$

The first vector is the gradient.
The second vector is tangent to the surface $g(x, y)=c$ (Dutch: de vector raakt aan het oppervlak).
Hence the gradient of g is perpendicular to the isosurface of g. This is a general statement.
End of Intermezzo in Intermezzo.

Towards Hartree-Fock: Lagrange multipliers

Solving the system:

$$
\left\{\begin{array}{l}
\nabla f=\lambda \nabla g \\
g(x, y)=c
\end{array}\right.
$$

yields x_{e}, y_{e} and λ. These equations can be obtained by demanding that the gradient of the function $\mathcal{L}(x, y, \lambda)$,

$$
\mathcal{L}=f(x, y)-\lambda(g(x, y)-c),
$$

vanishes in the three dimensional x, y, λ space:

$$
\begin{aligned}
\nabla \mathcal{L} & =\nabla f-\lambda \nabla g=0 \\
\partial \mathcal{L} / \partial \lambda & =g(x, y)-c=0
\end{aligned}
$$

Note that we are only guaranteed to get a stationary/critical point, but not necessarily a (local) minimum or maximum.

Let's look at an example...

Towards Hartree-Fock: Lagrange multipliers

$$
\left.\begin{array}{l}
f=(x-2)^{2}+(y-2)^{2} \\
g=x=1
\end{array}\right\} \text { so } \mathcal{L}=(x-2)^{2}+(y-2)^{2}-\lambda(x-1)
$$

We immediately see that $(x, y)=(1,2)$ yields the minimum $f=1$ on g.

Lagrange:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x}=2(x-2)-\lambda=0 \\
& \frac{\partial \mathcal{L}}{\partial y}=2(y-2)=0 \Rightarrow y=2 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=-(x-1)=0 \Rightarrow x=1
\end{aligned}
$$

$(x, y, \lambda)=(1,2,-2)$ is a stationary point in 3D space. Let's look at the "magic" in more detail ...

Towards Hartree-Fock: Lagrange multipliers

Let's try to systematically "complete the square":

$$
\begin{gathered}
\mathcal{L}=(x-2)^{2}+(y-2)^{2}-\lambda(x-1)=x^{2}-4 x+4-\lambda x+\lambda+(y-2)^{2}= \\
\left(x-2-\frac{\lambda}{2}\right)^{2}-\frac{\lambda^{2}}{4}-2 \lambda+\lambda+(y-2)^{2}= \\
\left(x-1-\frac{1}{2}(\lambda+2)\right)^{2}-\frac{1}{4}(\lambda+2)^{2}+1+(y-2)^{2}
\end{gathered}
$$

For $(x, y, \lambda)=(1,2,-2)$ all terms in brackets vanish and this is 1 , as it should be. All small excursions of x (or of y, or of λ) away from $(1,2,-2)$ yield quadratic changes: we have an stationary point. As we know, because the 3D gradient vanishes.

This stationary point is a global minimum on the $x y$-plane (with $\lambda=-2$ fixed). It is a saddle point in the 3D xy λ-space. Note: the method provides no guarantees about the nature of the stationary points.

Towards Hartree-Fock: Lagrange multipliers

Now in more, i.e., n dimensions (see Groenenboom notes). We have a function

$$
f(\mathbf{x})=f\left(x_{1}, x_{2}, \ldots x_{n}\right)
$$

We have m constraints:

$$
g_{i}(\mathbf{x})=g_{i}\left(x_{1}, x_{2}, \ldots x_{n}\right)=0, \quad i=1,2, \ldots, m
$$

This is a $(n-m)$-dimensional surface M.
We are looking for \mathbf{x}_{e} such that f is stationary in \mathbf{x}_{e} and on all $g_{i}\left(\mathbf{x}_{e}\right)=0$.
Any allowed (by the constraints) excursion \mathbf{s} away from \mathbf{x}_{e} is perpendicular to all gradients ∇g_{i} (calculated in \mathbf{x}_{e}):

$$
\begin{equation*}
\mathbf{s} \perp \nabla g_{1} \text { and } \mathbf{s} \perp \nabla g_{2} \text { and } \mathbf{s} \perp \nabla g_{3}, \ldots, \mathbf{s} \perp \nabla g_{m} \tag{1}
\end{equation*}
$$

If excursions \mathbf{s} are perpendicular to ∇f then there is no first-order change of f.
We can achieve this by demanding that the gradient ∇f be a linear combination of the gradients ∇g_{i}, i.e.

$$
\nabla f=\sum_{i} \lambda_{i} \nabla g_{i}
$$

Then, by construction, any vector s (simultaneously on all constraints) is perpendicular to ∇f and gives a vanishing first-order change in $f: \mathbf{x}_{e}$ is a stationary point.

Towards Hartree-Fock: Lagrange multipliers

We define (called $\tilde{f}(\vec{r}, \vec{\lambda})$ in Groenenboom):

$$
\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) \equiv f(\mathbf{x})-\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})
$$

and we demand that the gradient in $(n+m)$-dimensional space vanishes:

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial x_{j}} & =\frac{\partial f}{\partial x_{j}}-\sum_{i=1}^{m} \lambda_{i} \frac{\partial g_{i}}{\partial x_{j}}=0, \quad j=1,2, \ldots, n \\
\frac{\partial \mathcal{L}}{\partial \lambda_{i}} & =g_{i}=0, \quad i=1,2, \ldots, m
\end{aligned}
$$

Note:

- We are allowed to replace λ_{i} with $-\lambda_{i}$.
- We did not worry about complex \mathbf{x}, \ldots
- Demanding $g_{i}(\mathbf{x})=0$ is general. Suppose $g_{i}(\mathbf{x})=c \neq 0$, then $\tilde{g}_{i}(\mathbf{x})=g_{i}(\mathbf{x})-c=0$.

Towards Hartree-Fock: minimization I

Why do we need Lagrange multipliers?
Because we have to minimize our energy expression:

$$
\epsilon=2 \sum_{k}^{N / 2}\left\langle\phi_{k}\right| \hat{h}\left|\phi_{k}\right\rangle+\sum_{k}^{N / 2} \sum_{l}^{N / 2} 2 J_{k l}-K_{k l}=2 \sum_{k}^{N / 2} h_{k k}+\sum_{k}^{N / 2} \sum_{l}^{N / 2} 2 J_{k l}-K_{k l}
$$

with the constraints that the orbitals are orthonormal, i.e.

$$
\left\langle\phi_{k} \mid \phi_{l}\right\rangle=\delta_{l k}
$$

These conditions make that the wave function, i.e., the Slater determinant, is normalized and satisfies Pauli.

In order to fulfill our constraints, we introduce Lagrange multipliers $\Lambda_{i j}$, one for each constraint, and add terms for our constraints to ϵ to make a new function ϵ^{\prime} that we will minimize:

$$
\epsilon^{\prime}=2 \sum_{k}^{N / 2} h_{k k}+\sum_{k}^{N / 2} \sum_{l}^{N / 2}\left(2 J_{k l}-K_{k l}\right)-\sum_{k}^{N / 2} \sum_{l}^{N / 2} \Lambda_{l k}\left(\left\langle\phi_{k} \mid \phi_{l}\right\rangle-\delta_{\mid k}\right)
$$

Towards Hartree-Fock: the basis

Help slide:
So we have to minimize ϵ^{\prime} by changing the orbitals $\left|\phi_{k}\right\rangle$ while keeping the constraint $\left\langle\phi_{k} \mid \phi_{l}\right\rangle=\delta_{l k}$. This is quite abstract, and not suitable for a computer.

In the next slide we will expand the obitals in basis functions. The basis functions are fixed. The expansion coefficients $C_{\lambda k}$ are the variables. We need to find those values of $C_{\lambda k}$ that give the minimum of ϵ^{\prime}.

In principle the number of basis functions M can be infinite. The number of orbitals is uniquely defined. In our closed shell system it is $N / 2$, i.e. the number of electrons/2.

Towards Hartree-Fock: the basis

Expand the spatial orbitals in a basis:

$$
\phi_{k}(\mathbf{r})=\sum_{\lambda}^{M} C_{\lambda k} \chi_{\lambda}(\mathbf{r})=\sum_{\lambda}^{M} \chi_{\lambda}(\mathbf{r}) C_{\lambda k} \text { i.e. }\left|\phi_{k}\right\rangle=\sum_{\lambda}^{M}\left|\chi_{\lambda}\right\rangle C_{\lambda k}
$$

Typically the ϕ_{k} are the orbitals of the whole system, i.e. the molecular orbitals (MOs). In chemistry the χ_{λ} are often chosen to be centered on the individual atoms: atomic orbitals (AOs). The acronym for this approximation: MO-LCAO (MO-Linear Combination of AOs).
In practice the basis is never complete, but should "approximate completeness sufficiently".
The atomic orbitals are, in general, not orthonormal, because

$$
S_{\lambda \mu}=\left\langle\chi_{\lambda} \mid \chi_{\mu}\right\rangle \neq 0
$$

if χ_{λ} and χ_{μ} are on different atoms. \mathbf{S} is the overlap matrix.
In rare instances linear dependencies arise (a basis function $\left|\chi_{\lambda}\right\rangle$ is a linear combination of several others). The program will crash. That should be avoided.

Towards Hartree-Fock: the basis

We should minimize:

$$
\epsilon^{\prime}=2 \sum_{k}^{N / 2} h_{k k}+\sum_{k}^{N / 2} \sum_{l}^{N / 2}\left(2 J_{k l}-K_{k l}\right)-\sum_{k}^{N / 2} \sum_{l}^{N / 2} \Lambda_{l k}\left(\left\langle\phi_{k} \mid \phi_{l}\right\rangle-\delta_{l k}\right)
$$

We insert the expansion in the basis (using $\left|\phi_{k}\right\rangle=\sum_{\lambda}^{M}\left|\chi_{\lambda}\right\rangle C_{\lambda k}$):

$$
\epsilon^{\prime}=2 \sum_{k}^{N / 2} \sum_{\lambda}^{M} \sum_{\mu}^{M} C_{\lambda k}^{*} C_{\mu k}\left\langle\chi_{\lambda}\right| \hat{h}\left|\chi_{\mu}\right\rangle
$$

$$
+\sum_{k}^{N / 2} \sum_{l}^{N / 2} \sum_{\lambda}^{M} \sum_{\mu}^{M} \sum_{\nu}^{M} \sum_{\tau}^{M} C_{\lambda k}^{*} C_{\mu l}^{*} C_{\nu k} C_{\tau \prime}\left\langle\chi_{\lambda} \chi_{\mu}\right|\left(2-\hat{P}_{12}\right) \hat{g}(1,2)\left|\chi_{\nu} \chi_{\tau}\right\rangle
$$

$$
-\sum_{k}^{N / 2} \sum_{l}^{N / 2} \Lambda_{l k}\left(\sum_{\lambda}^{M} \sum_{\mu}^{M} C_{\lambda k}^{*} C_{\mu l}\left\langle\chi_{\lambda} \mid \chi_{\mu}\right\rangle-\delta_{l k}\right)
$$

$$
\begin{aligned}
& \text { Help: } \sum_{k}^{N / 2} \sum_{l}^{N / 2} 2\left\langle\phi_{k}(1) \phi_{l}(2)\right| \hat{g}(1,2)\left|\phi_{k}(1) \phi_{l}(2)\right\rangle-\left\langle\phi_{k}(1) \phi_{l}(2)\right| \hat{g}(1,2)\left|\phi_{l}(1) \phi_{k}(2)\right\rangle \\
& =\sum_{k}^{N / 2} \sum_{l}^{N / 2} 2\left\langle\phi_{k}(1) \phi_{l}(2)\right| \hat{g}(1,2)\left|\phi_{k}(1) \phi_{l}(2)\right\rangle-\left\langle\phi_{k}(1) \phi_{l}(2)\right| \hat{P}_{12} \hat{g}(1,2)\left|\phi_{k}(1) \phi_{l}(2)\right\rangle
\end{aligned}
$$

Towards Hartree-Fock: "simplification"

Let's try to safe ink:

$$
\begin{gathered}
\epsilon^{\prime}=2 \sum_{k}^{N / 2} \sum_{\lambda}^{M} \sum_{\mu}^{M} C_{\lambda k}^{*} C_{\mu k}\left\langle\chi_{\lambda}\right| \hat{h}\left|\chi_{\mu}\right\rangle \\
+\sum_{k}^{N / 2} \sum_{l}^{N / 2} \sum_{\lambda}^{M} \sum_{\mu}^{M} \sum_{\nu}^{M} \sum_{\tau}^{M} C_{\lambda k}^{*} C_{\mu l}^{*} C_{\nu k} C_{\tau /}\left\langle\chi_{\lambda} \chi_{\mu}\right|\left(2-\hat{P}_{12}\right) \hat{g}(1,2)\left|\chi_{\nu} \chi_{\tau}\right\rangle \\
-\sum_{k}^{N / 2} \sum_{l}^{N / 2} \Lambda_{l k}\left(\sum_{\lambda}^{M} \sum_{\mu}^{M} C_{\lambda k}^{*} C_{\mu l}\left\langle\chi_{\lambda} \mid \chi_{\mu}\right\rangle-\delta_{i j}\right) \\
=\sum_{\lambda \mu} 2 P_{\mu \lambda} h_{\lambda \mu}+\sum_{\lambda \mu \nu \tau} P_{\nu \lambda} P_{\tau \mu}\langle\lambda \mu|\left(2-\hat{P}_{12}\right) \hat{g}|\nu \tau\rangle-\sum_{k \mid} \Lambda_{l k}\left(\sum_{\lambda \mu} C_{\lambda k}^{*} C_{\mu l} S_{\lambda \mu}-\delta_{\mid k}\right)
\end{gathered}
$$

The density matrix \mathbf{P} and (remember) overlap matrix \mathbf{S} are:

$$
P_{\mu \lambda} \equiv \sum_{k}^{N / 2} C_{\mu k} C_{\lambda k}^{*} \quad, \quad S_{\lambda \mu} \equiv\left\langle\chi_{\lambda} \mid \chi_{\mu}\right\rangle
$$

Note the indices for \mathbf{P}, the second has the c.c. These are not operators!

Towards Hartree-Fock: minimization II

At the minimum all variations of ϵ^{\prime} with respect to the real and complex parts of $C_{\rho m}$ must vanish:

$$
\frac{\partial \epsilon^{\prime}}{\partial \operatorname{Re}\left[C_{\rho m}\right]}=0 \text { and } \frac{\partial \epsilon^{\prime}}{\partial \operatorname{lm}\left[C_{\rho m}\right]}=0 \text { where } C_{\rho m}=\operatorname{Re}\left[C_{\rho m}\right]+i \operatorname{lm}\left[C_{\rho m}\right]
$$

This yields the same as requireing:

$$
\frac{\partial \epsilon^{\prime}}{\partial C_{\rho m}}=0 \text { and } \frac{\partial \epsilon^{\prime}}{\partial C_{\rho m}^{*}}=0 \text { where } C_{\rho m} \text { and } C_{\rho m}^{*} \text { are considered independent }
$$

Note: we single out a specific element $C_{\rho m}$ or $C_{\rho m}^{*}$ in the sum:

$$
\begin{aligned}
& \frac{\partial P_{\mu \lambda}}{\partial C_{\rho m}}=\frac{\partial}{\partial C_{\rho m}}\left(\sum_{k}^{N / 2} C_{\mu k} C_{\lambda k}^{*}\right)=\sum_{k}^{N / 2} \delta_{\mu \rho} \delta_{m k} C_{\lambda k}^{*}=\delta_{\mu \rho} C_{\lambda m}^{*} \\
& \frac{\partial P_{\mu \lambda}}{\partial C_{\rho m}^{*}}=\frac{\partial}{\partial C_{\rho m}^{*}}\left(\sum_{k}^{N / 2} C_{\mu k} C_{\lambda k}^{*}\right)=\sum_{k}^{N / 2} \delta_{\lambda \rho} \delta_{m k} C_{\mu k}=\delta_{\lambda \rho} C_{\mu m}
\end{aligned}
$$

Towards Hartree-Fock: minimization II

$$
\begin{gathered}
\frac{\partial P_{\mu \lambda}}{\partial C_{\rho m}}=\delta_{\mu \rho} C_{\lambda m}^{*} \text { and } \frac{\partial P_{\mu \lambda}}{\partial C_{\rho m}^{*}}=\delta_{\lambda \rho} C_{\mu m} \\
\frac{\partial}{\partial C_{\rho m}^{*}}\left(\sum_{\lambda \mu} 2 P_{\mu \lambda} h_{\lambda \mu}\right)=\sum_{\lambda \mu} 2 \delta_{\lambda \rho} C_{\mu m} h_{\lambda \mu}=\sum_{\mu} 2 C_{\mu m} h_{\rho \mu}=\sum_{\nu} 2 h_{\rho \nu} C_{\nu m} \\
\frac{\partial}{\partial C_{\rho m}^{*}}\left(\sum_{\lambda \mu \nu \tau} P_{\nu \lambda} P_{\tau \mu}\langle\lambda \mu|\left(2-\hat{P}_{12}\right) \hat{g}|\nu \tau\rangle\right) \\
=\sum_{\lambda \mu \nu \tau} \delta_{\lambda \rho} C_{\nu m} P_{\tau \mu}\langle\lambda \mu|\left(2-\hat{P}_{12}\right) \hat{g}|\nu \tau\rangle+\sum_{\lambda \mu \nu \tau} P_{\nu \lambda} \delta_{\mu \rho} C_{\tau m}\langle\lambda \mu|\left(2-\hat{P}_{12}\right) \hat{g}|\nu \tau\rangle \\
=\sum_{\mu \nu \tau} P_{\tau \mu}\langle\rho \mu|\left(2-\hat{P}_{12}\right) \hat{g}|\nu \tau\rangle C_{\nu m}+\sum_{\lambda \nu \tau} P_{\nu \lambda}\langle\lambda \rho|\left(2-\hat{P}_{12}\right) \hat{g}|\nu \tau\rangle C_{\tau m} \\
=\sum_{\mu \nu \tau} P_{\tau \mu}\langle\rho \mu|\left(2-\hat{P}_{12}\right) \hat{g}|\nu \tau\rangle C_{\nu m}+\sum_{\mu \tau \nu} P_{\tau \mu}\langle\mu \rho|\left(2-\hat{P}_{12}\right) \hat{g}|\tau \nu\rangle C_{\nu m} \\
=2 \sum_{\nu} \sum_{\mu \tau} P_{\tau \mu}\langle\rho \mu|\left(2-\hat{P}_{12}\right) \hat{g}|\nu \tau\rangle C_{\nu m}
\end{gathered}
$$

Towards Hartree-Fock: minimization II

$$
\begin{aligned}
& \frac{\partial}{\partial C_{\rho m}^{*}}\left(-\sum_{k l} \Lambda_{l k}\left(\sum_{\lambda \mu} C_{\lambda k}^{*} C_{\mu l} S_{\lambda \mu}-\delta_{l k}\right)\right) \\
= & -\sum_{l} \sum_{\mu} \Lambda_{l m} C_{\mu l} S_{\rho \mu}=-\sum_{l} \sum_{\mu} S_{\rho \mu} C_{\mu l} \Lambda_{l m}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\partial \epsilon^{\prime}}{\partial C_{\rho m}^{*}}=\sum_{\nu} 2 h_{\rho \nu} C_{\nu m}+2 \sum_{\nu} \sum_{\mu \tau} P_{\tau \mu}\langle\rho \mu|\left(2-\hat{P}_{12}\right) \hat{g}|\nu \tau\rangle C_{\nu m}-\sum_{l} \sum_{\mu} S_{\rho \mu} C_{\mu /} \Lambda_{l m} \\
\equiv 2 \sum_{\nu}^{M} F_{\rho \nu} C_{\nu m}-\sum_{\mu}^{M} S_{\rho \mu} \sum_{l}^{N / 2} C_{\mu /} \Lambda_{/ m}=2[\mathbf{F C}]_{\rho m}-[\mathbf{S C} \boldsymbol{\Lambda}]_{\rho m}=0 \Rightarrow 2 \mathrm{FC}=\mathbf{S C} \Lambda \\
\frac{\partial \epsilon^{\prime}}{\partial C_{\rho m}}=0 \text { yields: } 2 \mathbf{C}^{\dagger} \mathbf{F}=\boldsymbol{\Lambda C ^ { \dagger }} \mathbf{S}
\end{gathered}
$$

Here we have defined the Fock matrix \mathbf{F}. Further we have the overlap matrix \mathbf{S}, the coefficient matrix \mathbf{C} and the Lagrange multiplier matrix $\boldsymbol{\Lambda} . \mathbf{F}, \mathbf{S}$ and $\boldsymbol{\Lambda}$ are Hermitian:

$$
\mathbf{F}^{\dagger}=\mathbf{F} \text { i.e. } F_{\mu \rho}^{*}=F_{\rho \mu}, \quad \mathbf{S}^{\dagger}=\mathbf{S} \text { and } \boldsymbol{\Lambda}^{\dagger}=\boldsymbol{\Lambda}
$$

Towards Hartree-Fock: minimization II

Help slide:
The elements of the Fock matrix:

$$
F_{\rho \nu}=h_{\rho \nu}+\sum_{\mu \tau} P_{\tau \mu}\langle\rho \mu|\left(2-\hat{P}_{12}\right) \hat{g}|\nu \tau\rangle
$$

So its size is $M \times M$.
Note it depends on the coefficient matrix \mathbf{C} via the elements of the density matrix $P_{\tau \mu}$.

