Preliminaries

Material:

- Book: J. Kohanoff, Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods, Cambridge.
- G.A. de Wijs, Notes on "Density Functional Theory" (on theochem site).
- These lecture notes (on theochem site: https://www.theochem.ru.nl).

Additional material:

- P.E.S. Wormer \& A. van der Avoird, Dictaat Moleculaire Quantummechanica, Nijmegen (on theochem site).
- G.C. Groenenboom, Notes on "Undetermined Multiplier Method of Lagrange" and "Lecture Notes on Group Theory" (on theochem site).
Planning:
- 7 hoorcolleges: Hartree-Fock (3), Density Functional Theory \& extensions (3), intro to post-HF (1).
- 7 werkcolleges: with exercises.
- 4 practica: to learn to use quantum chemical software to solve simple problems. Returns in exam. Compulsory assignments. Practica are in weeks 4, 5, 6, 7.

Examination:

- written exam: Counts for 3/4. Calculators without formula memory allowed. Resit.
- written report: On (final) assignments of computer training. Counts for $1 / 4$. Practical sessions with tutor(s) only planned in Q2.

Towards Hartree-Fock: The Hamiltonian

The Hamiltonian for N electrons and m nuclei with Coulomb interactions in atomic (Hartree) units (fixed nuclei):

$$
\hat{H}=\sum_{i=1}^{N} \overbrace{\left\{-\frac{1}{2} \nabla_{i}^{2}+\sum_{\nu=1}^{m} \frac{-Z_{\nu}}{\left|\mathbf{r}_{i}-\mathbf{R}_{\nu}\right|}\right\}}^{\hat{h}(i)}+\frac{1}{2} \sum_{i=1}^{N} \sum_{j \neq i}^{N} \overbrace{\frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}}^{\hat{g}(i, j)}+\frac{1}{2} \sum_{\nu=1}^{m} \sum_{\mu \neq \nu}^{m} \frac{Z_{\nu} Z_{\mu}}{\left|\mathbf{R}_{\mu}-\mathbf{R}_{\nu}\right|}
$$

Notation: vector are boldface, e.g., \mathbf{r}_{i} and \mathbf{R}_{ν}.

- $\hat{h}(i)$: One-electron operator, $\sum_{i} \hat{h}(i)$: core Hamiltonian,
- kinetic energy: $-\frac{1}{2}\left(\begin{array}{c}\partial / \partial x_{i} \\ \partial / \partial y_{i} \\ \partial / \partial z_{i}\end{array}\right) \cdot\left(\begin{array}{c}\partial / \partial x_{i} \\ \partial / \partial y_{i} \\ \partial / \partial z_{i}\end{array}\right)=-\frac{1}{2}\left(\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{\partial^{2}}{\partial y_{i}^{2}}+\frac{\partial^{2}}{\partial z_{i}^{2}}\right)$
- attraction between electron i and m nuclei with charges Z_{ν}.
- $\hat{g}(i, j)$: Electron-electron repulsion operator. Note the prefactor $1 / 2$ (each pair is counted twice!).
- Nuclear repulsion.

In Born-Oppenheimer approximation ("fast \& light" electrons decouple from "heavy \& slow" nuclei) consider this as constant. Nuclei then move on potential energy surface given by ground state of \hat{H}.

Towards Hartree-Fock: Wave function \& Pauli

Each electron is described by spatial and spin coordinates:

- the spatial part: a function of $\mathbf{r}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$, e.g. " $\phi(\mathbf{r})$ " or " $\phi\left(\mathbf{r}_{i}\right)$ ".
- the spin part: the two eigenfunctions of \hat{s}_{z} are a complete set, we call them $|\alpha\rangle$ and $|\beta\rangle$.
- the most general mixture, for a one-electron spin-orbital:

$$
\psi(\mathbf{r}, s)=\phi_{\alpha}(\mathbf{r}) \alpha(s)+\phi_{\beta}(\mathbf{r}) \beta(s)
$$

[we will use only pure spin orbitals in Hartree-Fock (HF)]
Pauli (loosely formulated):
The wave function for Bosons (Fermions) is symmetric (anti-symmetric) for particle interchange. Hence the probability distributions are indistinghuisable upon particle exchange.

Electrons are Fermions, so: $\Psi(1, \ldots, i, \ldots, j, \ldots, N)=-\Psi(1, \ldots, j, \ldots, i, \ldots, N)$.

Towards Hartree-Fock: Hartree

Assume each electron feels average(mean) field of the others:

$$
\begin{equation*}
\hat{h}_{(i)}^{\mathrm{eff}}(\mathbf{r})=\hat{h}_{(i)}(\mathbf{r})+V_{(i)}^{\mathrm{eff}}(\mathbf{r})=-\frac{1}{2} \nabla_{i}^{2}+\sum_{\nu=1}^{m} \frac{-Z_{\nu}}{\left|\mathbf{r}_{i}-\mathbf{R}_{\nu}\right|}+V_{(i)}^{\mathrm{eff}}(\mathbf{r}) \tag{1}
\end{equation*}
$$

You can solve:

$$
\hat{h}_{(i)}^{\mathrm{eff}}(\mathbf{r}) \psi_{(i)}^{n}(\mathbf{r})=\epsilon_{(i)}^{n} \psi_{(i)}^{n}(\mathbf{r})
$$

Now you put an up and a down spin in each of the N lowest levels... well, not really... we get different, non-orthogonal orbitals for each new integer value of i.

Next the problem has to bite in its tail: each electron i yields a charge density $\left|\psi_{i}(\mathbf{r})\right|^{2}$. In total:

$$
\rho_{(\text {except } i)}(\mathbf{r})=\sum_{j \neq(i)}^{N} \rho_{j}(\mathbf{r})=\sum_{j \neq(i)}^{N}\left|\psi_{j}(\mathbf{r})\right|^{2} \text { so that } V_{(i)}^{\text {eff }}(\mathbf{r})=\sum_{j \neq(i)}^{N} \int \frac{\left|\psi_{j}(\tilde{\mathbf{r}})\right|^{2}}{|\mathbf{r}-\tilde{\mathbf{r}}|} d \tilde{\mathbf{r}}
$$

Now we return to (1) and keep repeating until the orbitals do not change anymore: we have attained the "self-consistent field" $V_{(i)}(\mathbf{r})$.
Better: self-consistent field theory satisfying Pauli by construction, Hartree-Fock.

Towards Hartree-Fock: The Plan

Minimize (Rayleigh-Ritz):

$$
E=\min \frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

In words:
Change the wave function $|\Psi\rangle$ until the expectation value of the energy is minimal.
Alternatively:

$$
E=\min \langle\Psi| H|\Psi\rangle \quad \text { while }\langle\Psi \mid \Psi\rangle=1
$$

In HF we write a specific Ansatz for $|\Psi\rangle$: a Slater determinant of molecular orbitals (here denoted ψ_{i} or ϕ_{i}).
This is an approximation.
To get a useful method (on computer) we expand the molecular orbitals in a basis of (in chemistry usually "atomic") orbitals. Carrying out the constrained minimization yields the Roothaan equations: these constitute a self-consistent theory that has to be solved self-consistently.
HF yields an exact description of exchange (Pauli is "happy") but lacks any electron correlation.

Towards Hartree-Fock: Permutations

We need to consider permutations, as they are needed to describe the anti-symmetry of the wave function. Consider the example of Wormer \& van der Avoird $(N=5)$. It is:

$$
1 \rightarrow 3 \rightarrow 2 \rightarrow 5 \rightarrow 1 \text { and } 4 \rightarrow 4
$$

It is one loop, that can be denoted \hat{P}_{1325}. You can see that it can be considered a series of pair permutations (reading from right to left) and moving 5 along the "chain":

$$
\hat{P}_{1325}=\hat{P}_{13} \hat{P}_{23} \hat{P}_{25}
$$

Any permutation can be written as a product of pair permutations. The number of pair permutations is not unique. The parity, i.e. an odd or an even number of permutations, is unique.

Important properties:

$$
\hat{P}^{-1}=\hat{P}^{\dagger} \text { and } \hat{P}_{i j}^{-1}=\hat{P}_{i j}^{\dagger}=\hat{P}_{i j}=\hat{P}_{j i}
$$

Towards Hartree-Fock: Permutations

Help page:
Route 1:

$$
1 \rightarrow 3 \rightarrow 2 \rightarrow 5 \rightarrow 1 \text { and } 4 \rightarrow 4
$$

Route 2:

$$
\begin{array}{cccccc}
\hat{P}_{1325}=\hat{P}_{13} \hat{P}_{32} \hat{P}_{25}=\hat{P}_{13} \hat{P}_{23} \hat{P}_{25} \\
& 1 & 2 & 3 & 4 & 5 \\
\hline & \mathrm{~A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} & \mathrm{E} \\
\hat{P}_{1325} & \mathrm{E} & \mathrm{C} & \mathrm{~A} & \mathrm{D} & \mathrm{~B} \\
\hline & \mathrm{~A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} & \mathrm{E} \\
\hat{P}_{25} & \mathrm{~A} & \mathrm{E} & \mathrm{C} & \mathrm{D} & \mathrm{~B} \\
\hat{P}_{23} & \mathrm{~A} & \mathrm{C} & \mathrm{E} & \mathrm{D} & \mathrm{~B} \\
\hat{P}_{13} & \mathrm{E} & \mathrm{C} & \mathrm{~A} & \mathrm{D} & \mathrm{~B}
\end{array}
$$

Adjoint operator:

$$
\langle O \phi \mid \psi\rangle=\left\langle\phi \mid O^{\dagger} \psi\right\rangle, \quad\left\langle O^{\dagger} \phi \mid \psi\right\rangle=\langle\phi \mid O \psi\rangle
$$

$$
\hat{A}=\frac{1}{N!} \sum_{P \in S_{N}}(-1)^{\rho} \hat{P}
$$

The sum is over all \hat{P} that are part of the permutation group S_{N}. The group has N ! elements. p is the parity of \hat{P}.

Properties:

$$
\begin{aligned}
& \text { (i) : } \hat{A}^{\dagger}=\hat{A}, \\
& \text { (iii) }: \hat{A}^{2}=\hat{A}, \hat{P}, \text { (iv) }:[\hat{A}, \hat{H}]=0
\end{aligned}
$$

Proof of (ii):

$$
\hat{P} \hat{A}=\frac{1}{N!} \sum_{Q}(-1)^{q} \hat{P} \hat{Q}=\frac{1}{N!} \sum_{Q}(-1)^{r-p} \hat{R}=(-1)^{p} \frac{1}{N!} \sum_{Q}(-1)^{r} \hat{R}=(-1)^{p} \hat{A}
$$

\hat{A} makes an arbitrary function (ϕ) an antisymmetric function $(\psi=\hat{A} \phi)$:

$$
\begin{gathered}
P_{i j} \psi(1, \ldots, N)=P_{i j} \hat{A} \phi(1, \ldots, N)=(-1)^{1} \hat{A} \phi(1, \ldots, N)=-\psi(1, \ldots, N) \\
\text { so: } \psi(1, \ldots, j, \ldots, i, \ldots, N)=-\psi(1, \ldots, i, \ldots, j, \ldots, N) \text { Pauli! }
\end{gathered}
$$

Towards Hartree-Fock: Slater determinant

In Hartree-Fock one approximates the wave function as a single Slater determinant of single-electron (molecular) spin-orbitals:

$$
\Phi(1, \ldots, N)=\frac{1}{\sqrt{N!}}\left|\begin{array}{cccc}
\psi_{1}(1) & \psi_{2}(1) & \ldots & \psi_{N}(1) \\
\psi_{1}(2) & \psi_{2}(2) & \ldots & \psi_{N}(2) \\
\vdots & \vdots & & \vdots \\
\psi_{1}(N) & \psi_{2}(N) & \ldots & \psi_{N}(N)
\end{array}\right|=\sqrt{N!} \hat{A} \psi_{1}(1) \psi_{2}(2) \ldots \psi_{N}(N)=\sqrt{N!} \hat{A} \prod_{i}^{N} \psi_{i}(i)
$$

where our molecular orbitals are orthonormal (space \& spin degrees of freedom):

$$
\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j}
$$

Check normalisation of the wave function:

$$
\begin{aligned}
\langle\Phi \mid \Phi\rangle & =N!\left\langle\hat{A} \psi_{1}(1) \ldots \psi_{N}(N)\right| \hat{A}\left|\psi_{1}(1) \ldots \psi_{N}(N)\right\rangle \\
& =N!\left\langle\psi_{1}(1) \ldots \psi_{N}(N)\right| \hat{A}^{\dagger} \hat{A}\left|\psi_{1}(1) \ldots \psi_{N}(N)\right\rangle \\
& =\sum_{P \in S_{N}}(-1)^{p}\left\langle\psi_{1}(1) \ldots \psi_{N}(N) \mid P \psi_{1}(1) \ldots \psi_{N}(N)\right\rangle=1
\end{aligned}
$$

Towards Hartree-Fock: Slater determinant

Are both expressions identical?

$$
\begin{gathered}
\Phi(1, \ldots, N)=\frac{1}{\sqrt{N!}}\left|\begin{array}{cccc}
\psi_{1}(1) & \psi_{2}(1) & \ldots & \psi_{N}(1) \\
\psi_{1}(2) & \psi_{2}(2) & \ldots & \psi_{N}(2) \\
\vdots & \vdots & & \vdots \\
\psi_{1}(N) & \psi_{2}(N) & \ldots & \psi_{N}(N)
\end{array}\right| \\
\stackrel{? ?}{=} \frac{\sqrt{N!}}{N!} \sum_{P \in S_{N}}(-1)^{p} \hat{P} \psi_{1}(1) \psi_{2}(2) \ldots \psi_{N}(N)
\end{gathered}
$$

- The prefactors are okay...
- Expand the determinant row-by-row. The first row puts particle 1 in all N possible orbitals. The second row puts particle 2 in the remaining $N-1$ orbitals, etc., yielding all N ! permutations.
- Swapping two particles is swapping two rows in the determinant which yields a minus, hence Pauli is happy. All terms in the sum are connected by a series of pair permutations (swaps) and Pauli has swaps change sign. Hence the signs in the sum are unique, and idential in both expressions.

Towards Hartree-Fock: the one-electron operator

Start similar as with normalisation, but we also use $\left[\hat{A}, \sum_{i} \hat{h}(i)\right]=0$.

$$
\begin{aligned}
& \langle\Phi| \sum_{i}^{N} \hat{h}(i)|\Phi\rangle=\sum_{P \in S_{N}}(-1)^{p}\left\langle\psi_{1}(1) \ldots \psi_{N}(N)\right| \sum_{i}^{N} \hat{h}(i)\left|P \psi_{1}(1) \ldots \psi_{N}(N)\right\rangle \\
& =\sum_{i}^{N} \sum_{P \in S_{N}}(-1)^{p}\left\langle\psi_{1}(1) \mid \psi_{1^{\prime}}(1)\right\rangle \ldots\left\langle\psi_{i}(i)\right| \hat{h}(i)\left|\psi_{i^{\prime}}(i)\right\rangle \ldots\left\langle\psi_{N}(N) \mid \psi_{N^{\prime}}(N)\right\rangle
\end{aligned}
$$

Here i^{\prime} labels the orbital in which particle i sits after permutation P.
For a non-vanishing contribution, $1^{\prime}=1,2^{\prime}=2, \ldots,(i-1)^{\prime}=i-1,(i+1)^{\prime}=i+1, \ldots N^{\prime}=N$, hence, $i^{\prime}=i$ and $p=0$.

$$
\langle\Phi| \sum_{i}^{N} \hat{h}(i)|\Phi\rangle=\sum_{i}^{N}\left\langle\psi_{i}(i)\right| \hat{h}(i)\left|\psi_{i}(i)\right\rangle=\sum_{i}^{N}\left\langle\psi_{i}(1)\right| \hat{h}(1)\left|\psi_{i}(1)\right\rangle
$$

The integration variable is a dummy and can be relabeled.

Help page:

$$
\begin{aligned}
&\langle\Phi| \sum_{i}^{N} \hat{h}(i)|\Phi\rangle=N!\left\langle\hat{A} \psi_{1}(1) \ldots \psi_{N}(N)\right| \sum_{i}^{N} \hat{h}(i)\left|\hat{A} \psi_{1}(1) \ldots \psi_{N}(N)\right\rangle \\
& \quad=N!\left\langle\psi_{1}(1) \ldots \psi_{N}(N)\right| \hat{A}^{\dagger} \sum \hat{h}(i)\left|\hat{A} \psi_{1}(1) \ldots \psi_{N}(N)\right\rangle \\
&=N!\left\langle\psi_{1}(1) \ldots \psi_{N}(N)\right| \hat{A} \sum \hat{h}(i)\left|\hat{A} \psi_{1}(1) \ldots \psi_{N}(N)\right\rangle \\
&=N!\left\langle\psi_{1}(1) \ldots \psi_{N}(N)\right| \sum^{n} \hat{h}(i)\left|\hat{A} \hat{A} \psi_{1}(1) \ldots \psi_{N}(N)\right\rangle \\
& \quad=N!\left\langle\psi_{1}(1) \ldots \psi_{N}(N)\right| \sum_{i}^{N} \hat{h}(i)\left|\hat{A} \psi_{1}(1) \ldots \psi_{N}(N)\right\rangle
\end{aligned}
$$

Properties:

$$
\begin{array}{ll}
\text { (i) }: \hat{A}^{\dagger}=\hat{A}, & \text { (ii) }: \hat{P} \hat{A}=\hat{A} \hat{P}=(-1)^{p} \hat{A} \\
\text { (iii) }: \hat{A}^{2}=\hat{A}, & \text { (iv) }:[\hat{A}, \hat{H}]=0
\end{array}
$$

Towards Hartree-Fock: the two-electron operator

$$
\begin{gathered}
\langle\Phi| \frac{1}{2} \sum_{i}^{N} \sum_{j \neq i}^{N} \hat{g}(i, j)|\Phi\rangle=\frac{1}{2} \sum_{P \in S_{N}}(-1)^{p}\left\langle\psi_{1}(1) \ldots \psi_{N}(N)\right| \sum_{i}^{N} \sum_{j \neq i}^{N} \hat{g}(i, j)\left|P \psi_{1}(1) \ldots \psi_{N}(N)\right\rangle \\
=\frac{1}{2} \sum_{i}^{N} \sum_{j \neq i}^{N} \sum_{P \in S_{N}}(-1)^{p}\left\langle\psi_{1}(1) \mid \psi_{1^{\prime}}(1)\right\rangle \ldots\left\langle\psi_{i}(i) \psi_{j}(j)\right| \hat{g}(i, j)\left|\psi_{i^{\prime}}(i) \psi_{j^{\prime}}(j)\right\rangle \ldots\left\langle\psi_{N}(N) \mid \psi_{N^{\prime}}(N)\right\rangle \\
=\frac{1}{2} \sum_{i}^{N} \sum_{j \neq i}^{N}\left\langle\psi_{i}(i) \psi_{j}(j)\right| \hat{g}(i, j)\left|\psi_{i}(i) \psi_{j}(j)\right\rangle-\left\langle\psi_{i}(i) \psi_{j}(j)\right| \hat{g}(i, j)\left|\psi_{j}(i) \psi_{i}(j)\right\rangle \\
=\frac{1}{2} \sum_{i}^{N} \sum_{j}^{N}\left\langle\psi_{i}(1) \psi_{j}(2)\right| \hat{g}(1,2)\left|\psi_{i}(1) \psi_{j}(2)\right\rangle-\left\langle\psi_{i}(1) \psi_{j}(2)\right| \hat{g}(1,2)\left|\psi_{j}(1) \psi_{i}(2)\right\rangle \\
=\frac{1}{2} \sum_{i}^{N} \sum_{j}^{N} J_{i j}-K_{i j} \quad J_{i j}: \text { Coulomb integrals, } K_{i j}: \text { exchange integrals }
\end{gathered}
$$

Note: The added self-terms for $i=j$ cancel. Exchange integral has minus.

Towards Hartree-Fock: the two-electron operator

Make integrals explicit ($d \tau=d \mathbf{r} d s$):

$$
J_{i j}=\left\langle\psi_{i}(1) \psi_{j}(2)\right| \hat{g}(1,2)\left|\psi_{i}(1) \psi_{j}(2)\right\rangle=\iint \frac{\overbrace{\psi_{i}^{*}(1) \psi_{i}(1)}^{\left|\psi_{i}(1)\right|^{2}} \overbrace{\psi_{j}^{*}(2) \psi_{j}(2)}^{\left|\psi_{j}(2)\right|^{2}}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} d \tau_{1} d \tau_{2}
$$

This is the energy of a charge density $\rho_{i}(1)=\left|\psi_{i}(1)\right|^{2}$ (if spin were integrated out, here for a single spin channel) in the potential due to charge density $\rho_{j}(2)$.

$$
K_{i j}=\left\langle\psi_{i}(1) \psi_{j}(2)\right| \hat{g}(1,2)\left|\psi_{j}(1) \psi_{i}(2)\right\rangle=\iint \frac{\psi_{i}^{*}(1) \psi_{j}(1) \psi_{j}^{*}(2) \psi_{i}(2)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} d \tau_{1} d \tau_{2}
$$

This has no classical interpretation. It's a pure quantum effect, arising from Pauli exchange. Again note that the artificial self-terms in the summations cancel: $J_{i i}=K_{i i}$.

Towards Hartree-Fock: integrate spin

Closed shell: each spatial orbital combines with both spin orbitals.

$$
\left|\psi_{(2 k-1)}(1)\right\rangle=\left|\phi_{k}(1)\right\rangle|\alpha(1)\rangle \text { and }\left|\psi_{(2 k)}(1)\right\rangle=\left|\phi_{k}(1)\right\rangle|\beta(1)\rangle, k=1, \ldots, \frac{N}{2}
$$

In one-electron terms: summation over k taking two orbitals together:

$$
\begin{gathered}
\langle\Phi| \sum_{i}^{N} \hat{h}(i)|\Phi\rangle=\sum_{i}^{N}\left\langle\psi_{i}(1)\right| \hat{h}(1)\left|\psi_{i}(1)\right\rangle \\
=\sum_{k}^{N / 2}\left\langle\phi_{k}(1)\right| \hat{h}(1)\left|\phi_{k}(1)\right\rangle(\langle\alpha \mid \alpha\rangle+\langle\beta \mid \beta\rangle)=2 \sum_{k}^{N / 2}\left\langle\phi_{k}(1)\right| \hat{h}(1)\left|\phi_{k}(1)\right\rangle
\end{gathered}
$$

In two-electron terms: summation over $k, /$ taking 2×2 orbitals together:

$$
\left|\phi_{k}(1)\right\rangle|\alpha(1)\rangle,\left|\phi_{k}(1)\right\rangle|\beta(1)\rangle,\left|\phi_{l}(1)\right\rangle|\alpha(1)\rangle,\left|\phi_{l}(1)\right\rangle|\beta(1)\rangle
$$

All 4 Coulomb integrals survive and yield the same spatial integral.
Only those exchange integrals survive that have identical spin functions. These have the same spatial integral.

$$
\left|\phi_{k}(1)\right\rangle|\alpha(1)\rangle,\left|\phi_{k}(1)\right\rangle|\beta(1)\rangle,\left|\phi_{l}(1)\right\rangle|\alpha(1)\rangle,\left|\phi_{l}(1)\right\rangle|\beta(1)\rangle
$$

All 4 Coulomb integrals survive and yield the same spatial integral.
Only those exchange integrals survive that have identical spin functions. These have the same spatial integral. Note the minus.

$$
\begin{aligned}
\langle\Phi| \frac{1}{2} \sum_{i}^{N} \sum_{j \neq i}^{N} \hat{g}(i, j)|\Phi\rangle & =\frac{1}{2} \sum_{i}^{N} \sum_{j}^{N}\left\langle\psi_{i}(1) \psi_{j}(2)\right| \hat{g}(1,2)\left|\psi_{i}(1) \psi_{j}(2)\right\rangle-\left\langle\psi_{i}(1) \psi_{j}(2)\right| \hat{g}(1,2)\left|\psi_{j}(1) \psi_{i}(2)\right\rangle \\
& =\sum_{k}^{N / 2} \sum_{l}^{N / 2} 2\left\langle\phi_{k}(1) \phi_{l}(2)\right| \hat{g}(1,2)\left|\phi_{k}(1) \phi_{l}(2)\right\rangle-\left\langle\phi_{k}(1) \phi_{l}(2)\right| \hat{g}(1,2)\left|\phi_{l}(1) \phi_{k}(2)\right\rangle \\
& =\sum_{k}^{N / 2} \sum_{l}^{N / 2} 2 J_{k l}-K_{k l}
\end{aligned}
$$

$J_{k l}$ and $K_{k l}$ redefined, with only integrals on spatial orbitals.

Towards Hartree-Fock: integrate spin

Let's be a bit more specific:
The Coulomb terms for kl :

$$
\begin{gathered}
\left\langle\phi_{k}(1) \phi_{l}(2)\right| \hat{g}(1,2)\left|\phi_{k}(1) \phi_{l}(2)\right\rangle \\
+\langle\alpha(1) \mid \alpha(1)\rangle\langle\alpha(2) \mid \alpha(2)\rangle+\langle\alpha(1) \mid \alpha(1)\rangle\langle\beta(2) \mid \beta(2)\rangle \\
+\langle\beta(1) \mid \beta(1)\rangle\langle\alpha(2) \mid \alpha(2)\rangle+\langle\beta(1) \mid \beta(1)\rangle\langle\beta(2) \mid \beta(2)\rangle) \\
=(1+1+1+1)\left\langle\phi_{k}(1) \phi_{l}(2)\right| \hat{g}(1,2)\left|\phi_{k}(1) \phi_{l}(2)\right\rangle
\end{gathered}
$$

The exchange terms for kl :

$$
\begin{gathered}
\left\langle\phi_{k}(1) \phi_{l}(2)\right| \hat{g}(1,2)\left|\phi_{l}(1) \phi_{k}(2)\right\rangle \\
(\langle\alpha(1) \mid \alpha(1)\rangle\langle\alpha(2) \mid \alpha(2)\rangle+\langle\alpha(1) \mid \beta(1)\rangle\langle\beta(2) \mid \alpha(2)\rangle \\
+\langle\beta(1) \mid \alpha(1)\rangle\langle\alpha(2) \mid \beta(2)\rangle+\langle\beta(1) \mid \beta(1)\rangle\langle\beta(2) \mid \beta(2)\rangle) \\
=(1+0+0+1)\left\langle\phi_{k}(1) \phi_{l}(2)\right| \hat{g}(1,2)\left|\phi_{l}(1) \phi_{k}(2)\right\rangle
\end{gathered}
$$

Towards Hartree-Fock: some remarks

There is a "shorthand" notation for Slater determinants. It just denotes the orbitals whereover the particles are distributed where β spin gets a bar, e.g.:

$$
\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\phi_{1}(1) \alpha(1) & \phi_{2}(1) \beta(1) \\
\phi_{1}(2) \alpha(2) & \phi_{2}(2) \beta(2)
\end{array}\right|=\left|\phi_{1} \bar{\phi}_{2}\right|
$$

There are several flavours of Hartree-Fock:

- restricted closed-shell What we do here, one spatial molecular orbital for two spin orbitals (with α and β spin). $N / 2$ is integer.
- restricted open-shell Also a single Slater determinant, with idential molecular orbitals for both spins, except for the unpaired electrons (only single spin function(s)).
- unrestricted Also for open shell, but with different spatial orbitals for α and β spin in the Slater determinant. As it is open shell, the number of α orbitals is different from the number of β obitals.

