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Material:

® Book: J. Kohanoff, Electronic Structure Calculations for Solids and Molecules: Theory and
Computational Methods, Cambridge.

® G.A. de Wijs, Notes on “Density Functional Theory” (on theochem site).
® These lecture notes (on theochem site: https://www.theochem.ru.nl).
Additional material:
® P.E.S. Wormer & A. van der Avoird, Dictaat Moleculaire Quantummechanica, Nijmegen (on theochem
site).
® G.C. Groenenboom, Notes on “Undetermined Multiplier Method of Lagrange” and “Lecture Notes on
Group Theory” (on theochem site).
Planning:
® 7 hoorcolleges: Hartree-Fock (3), Density Functional Theory & extensions (3), intro to post-HF (1).
® 7 werkcolleges: with exercises.

® 4 practica: to learn to use quantum chemical software to solve simple problems. Returns in exam.
Compulsory assignments. Practica are in weeks 4, 5, 6, 7.
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Preliminaries

Examination:

® written exam: Counts for 3/4. Calculators without formula memory allowed. Resit

® written report: On (final) assignments of computer training. Counts for 1/4. Practical sessions with
tutor(s) only planned in Q2.
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Towards Hartree-Fock: The Hamiltonian

The Hamiltonian for N electrons and m nuclei with Coulomb interactions in atomic (Hartree) units (fixed

nuclei): i
O g(' j)
N 7 N 1 m m 77
vép
A=y |- V+Z QZZ T2 R, R
Iri Iri rj\ IR, vl
i=1 i=1 j#i v=1 pn#v
Notation: vector are boldface, e.g., ri and R,.
® f(i): One-electron operator, 3, h(i): core Hamiltonian,
9/0x; 0/0x; 2 2 2
® kinetic energy: —% 9/dyi . 9/0yi = 1 (% + ;2 —i—a8 )
d/0z; d/0z; X %Y z;

® attraction between electron i and m nuclei with charges Z,.
® &(i,j): Electron-electron repulsion operator. Note the prefactor 1/2 (each pair is counted twice!).
® Nuclear repulsion.

In Born-Oppenheimer approximation (“fast & light” electrons decouple from “heavy & slow” nuclei) consider
this as constant. Nuclei then move on potential energy surface given by ground state of H.
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Towards Hartree-Fock: Wave function & Pauli

Each electron is described by spatial and spin coordinates:

X
® the spatial part: a function of r = | y |, e.g. “&(r)" or “¢(r;)".
V4

® the spin part: the two eigenfunctions of §, are a complete set, we call them |a) and |3).

® the most general mixture, for a one-electron spin-orbital:

P(r.s) = ga(r)a(s) + ¢s(r)5(s)
[we will use only pure spin orbitals in Hartree-Fock (HF)]
Pauli (loosely formulated):

The wave function for Bosons (Fermions) is symmetric (anti-symmetric) for particle interchange.
Hence the probability distributions are indistinghuisable upon particle exchange.

Electrons are Fermions, so: W(1,...,7i,...,j,...,N)==W(1,....j,...,i,...,N).
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Towards Hartree-Fock: Hartree

Assume each electron feels average(mean) field of the others:

hii(r) = by (r) + V() (1) = v + Z P (O (1)
You can solve:
efF n n
hiy (v (r) = €y (r)

Now you put an up and a down spin in each of the N lowest levels... well, not really... we get different,
non-orthogonal orbitals for each new integer value of /.

Next the problem has to bite in its tail: each electron i yields a charge density |¢;(r)|>. In total:

N N
eff ;¥ .
Presens zp, r)—leJ OF sothar i) = [ O o
#(i) J#(i) J#(i)

Now we return to (1) and keep repeating until the orbitals do not change anymore: we have attained the
“self-consistent field” V{;(r).

Better: self-consistent field theory satisfying Pauli by construction, Hartree-Fock.
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@v Towards Hartree-Fock: The Plan

Minimize (Rayleigh-Ritz): (V| H W)

In words:
Change the wave function |V) until the expectation value of the energy is minimal.

Alternatively: E =min(V|H|V) while (V|V)=1

In HF we write a specific Ansatz for |W): a Slater determinant of molecular orbitals (here denoted 1); or ¢;).
This is an approximation.

To get a useful method (on computer) we expand the molecular orbitals in a basis of (in chemistry usually
“atomic”) orbitals. Carrying out the constrained minimization yields the Roothaan equations: these constitute
a self-consistent theory that has to be solved self-consistently.

HF yields an exact description of exchange (Pauli is “happy") but lacks any electron correlation.
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Towards Hartree-Fock: Permutations

We need to consider permutations, as they are needed to describe the anti-symmetry of the wave function.
Consider the example of Wormer & van der Avoird (N = 5). It is:

1-3—>2—>5—1and 4 — 4.

It is one loop, that can be denoted P1325. You can see that it can be considered a series of pair permutations
(reading from right to left) and moving 5 along the “chain”:

'61325 = 1613/323"525

Any permutation can be written as a product of pair permutations. The number of pair permutations is not
unique. The parity, i.e. an odd or an even number of permutations, is unique.

Important properties:

o
o
'U‘>
Il
o
I
o
o

pi—
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%W Towards Hartree-Fock: Permutations

MiNe ¥

Help page:
Route 1:
1-3—>2—>5—>1and 4 — 4.

Route 2:
P132s = P13P32P2s = P13P23Pas

1 2 3 4 5

A B C D E
Pss E C A D B

A B C D E
P2s A C D B
Py A C D B
P13 E C A D B

Adjoint operator:
(06lY) = (#10"¥) , (O'glw) = (4|0Y)
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WU Towards Hartree-Fock: Anti-symmetrizer

~ 1 oA
A= > (-1)PP

PESy

The sum is over all P that are part of the permutation group Sy. The group has N! elements. p is the parity
of P.

Properties: (): AT =A | (i): PA=AP = (-1)PA

(iiy: A=A, (iv):[A Hl=0
Proof of (ii):
si 1 sa 1 o 1 A R
PA= 5> (F1)PQ= 3 > (1) PR = (1) 1; > _(-1)R=(-1)°A
Q Q Q
A makes an arbitrary function (¢) an antisymmetric function (1) = A¢):
Piyp(1,...,N) = PjAp(L,...,N) = (=1)'A¢p(1,...,N) = —(1,..., N)
s0: (L. rfyeeoriye Ny =—0(1,. .. iy )., N) Paulil
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Towards Hartree-Fock: Slater determinant
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In Hartree-Fock one approximates the wave function as a single Slater determinant of single-electron
(molecular) spin-orbitals:

P1(1) (1) ¥n(1)
o(1,..., N) = \/% wle) w:(z) wN_( = VN Agn(1)ih2(2) .. () = \/M[\f[z/;;(i)
Pi(N) a(N) ... ¥w(N)
where our molecular orbitals are orthonormal (space & spin degrees of freedom):
(ilths) = b

Check normalisation of the wave function:
(®[®) = NI (A (1) ... on(N)| Al (1) . .. P (N))
=N (@1(1) . on(N)| AT Ajun (1) ... o (N))
= > (1) @a(1) ... w(N)[Pya(1) ... on(N)) =

PESN
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Towards Hartree-Fock: Slater determinant

Are both expressions identical?

Y1(1) (1) ¥n(1)
v 1| O @) )
Lo M=Tm 0 0 ;
Yi(N)  a(N) ... Yw(N)
2 YN S (PP (1) (V)
PESy

® The prefactors are okay...

® Expand the determinant row-by-row. The first row puts particle 1 in all N possible orbitals. The second
row puts particle 2 in the remaining N — 1 orbitals, etc., yielding all N! permutations.

® Swapping two particles is swapping two rows in the determinant which yields a minus, hence Pauli is
happy. All terms in the sum are connected by a series of pair permutations (swaps) and Pauli has swaps
change sign. Hence the signs in the sum are unique, and idential in both expressions.
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Towards Hartree-Fock: the one-electron operator

MiNe ¥

Start similar as with normalisation, but we also use [A, > h(i)] = 0.

N

(®12_h)I®) = 3 (-1 wN(N\Zh IPY1(1) . ()

Pesy

= Z D P (@) (1)) - @i(DIA@ e (7)) - (O (N) o (N))

i PeSy

Here i’ labels the orbital in which particle i sits after permutation P.

For a non-vanishing contribution, 1’ =1,2" =2, ..., (i—1) =i—-1, (i+1) =i+1,...N' = N, hence,
i"=iand p=0.

N

(@ Z h(i)|®) = Z(w,-(i)ll?(i)\w,-(i» =D (Wi(D)IA1)4i(1))

i
The integration variable is a dummy and can be relabeled.
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Towards Hartree-Fock: the one-electron operator

Help page:
(@1 A(1)|®) = N1 (Ag:(1)... w(N) |Z I Aun(1).. on(N))
= N!(¢1(1)... o (N)|AT Zh(i)\Awl(l) )
= N1 (1) .. pn(N)AY A Api(1) ... dn(N))
= N ¢1(1) ... ¥ (N)| Zﬁ(")|'2\/a¢1(1)~~¢lv(/v)>
= NH1(1) . en(N)] DA Aun (1) ... on(N))
Properties: (i) : At :A L (i) : pA:Aﬁ,:(il)pA
(iii) = A2

, (V) [A A =0
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f%i Towards Hartree-Fock: the two-electron operator

O3S 10 = & 5 (1P 1) oW S 3 £GP (L) ()

i j#i PeSy i A

fZZ D (0P @)nr (1)) - - il DB (D () - - (N [tbar (N))

i j#i PESN

= 3 30 3 WDB OGN~ 0BG DI )
i

%ZZ 1)¢;(2)18(1, 2)[i(1)95(2)) — (i (1) (2)18(1, 2)[4(1)$i(2))
1 N N

=5 ZZJ;J—*K,-J- Jij: Coulomb integrals, Kj: exchange integrals
P

Note: The added self-terms for i = j cancel. Exchange integral has minus
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¢ Towards Hartree-Fock: the two-electron operator

MiNe ¥

Make integrals explicit (d7 = drds): W’( % W )P
i j

[ TR Rud ,

1 —raf

Ji = (i(1)%;(2)|8(1, 2)|1i(1);(2))

This is the energy of a charge density p;(1) = |i(1)|* (if spin were integrated out, here for a single spin
channel) in the potential due to charge density p;(2).

)i (1) (2)4i(2)

drndm
r1 — raf

Ky = (D)8 Dl 2) = [ Vit

This has no classical interpretation. It's a pure quantum effect, arising from Pauli exchange.

Again note that the artificial self-terms in the summations cancel: J; = Kij;.
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%Js Towards Hartree-Fock: integrate spin

Closed shell: each spatial orbital combines with both spin orbitals.
k(1) = [66(1)) a(1)) and [vix (1) = [6(1)) [B1)) , k=1,...

In one-electron terms: summation over k taking two orbitals together:

¢|Zh( )|®) = Z(d}:(l)lh( )I¢i(1))

N/2

=D (d(WIAD)Io(1)) ((ala) + (B18) = 2 (de(1)IAL)]dx(1))
k k

N/2

In two-electron terms: summation over k, [ taking 2 x 2 orbitals together:
[Pk(1)) [a(1)) 5 [6x(1)) [B(1)) , |9i(1)) [e(1)) , [4(1)) |B(1))
All 4 Coulomb integrals survive and yield the same spatial integral.

Only those exchange integrals survive that have identical spin functions. These have the same spatial integral
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Towards Hartree-Fock: integrate spin

0x(1) [(1)) 5 Dk (1)) [B()) 5 |¢1(1)) [e(1)) 5 [i(1)) |B(1))

All 4 Coulomb integrals survive and yield the same spatial integral.

Only those exchange integrals survive that have identical spin functions. These have the same spatial integral.
Note the minus.

d»ZZg(: NI®) = QZZ $i(1)4;(2)18(1, 2)[i(1)4;(2)) — (i (1)1 (2)[£ (L, 2)[4;(1)i(2))

i JA

=> .2 —(3e(1)1(2)|&(1, 2)|61(1)$x(2))

Ju and Ky redefined, with only integrals on spatial orbitals.
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%; Towards Hartree-Fock: integrate spin

MiNe ¥

Let's be a bit more specific:

The Coulomb terms for ki:
(6(1)61(2) £(1,2)[64(1)61(2))
(el {a()la(2) + (a(1)a(1) (52)52)
+ (BO)IBL) ((2)]a(2)) + (BB (BR)I52))
= (14 141+ 16D (2)|8(L, 2)|6x(1)1(2))

The exchange terms for k:
(8:(1)e1(2)I£(1,2)|01(1)bi(2))
((a(l)la(1)><a(2)la(2)> + (a(1)IB(1))(B(2)|x(2))
+ (B(1)a(1)){(2)18(2)) + <ﬁ(1)lﬂ(1)><ﬁ(2)|5(2)>)
= (1 +0+0+1){¢x(1)$:(2)[(1, 2)|d1(1)$x(2))
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% Towards Hartree-Fock: some remarks

There is a “shorthand” notation for Slater determinants. It just denotes the orbitals whereover the particles
are distributed where /3 spin gets a bar, e.g.:

1| ¢a(1)e(1)  $2(1)B(1) = |¢1|
V2| ¢1(2a(2)  $2(2)8(2)

There are several flavours of Hartree-Fock:
® restricted closed-shell What we do here, one spatial molecular orbital for two spin orbitals (with « and
spin). N/2 is integer.
® restricted open-shell Also a single Slater determinant, with idential molecular orbitals for both spins,
except for the unpaired electrons (only single spin function(s)).

® unrestricted Also for open shell, but with different spatial orbitals for & and (3 spin in the Slater
determinant. As it is open shell, the number of « orbitals is different from the number of 5 obitals.
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