
Density Functional Theory

1 Introduction

The notes below provide some, hopefully concise, information on the basic aspects of density functional
theory, and make visible a link with Hartree-Fock. It is standard theory, largely based on the more
comprehensive treatment that can be found in, amongst others, the following excellent textbooks on
electronic structure theory:

• E. Kaxiras, Atomic and Electronic Structure of Solids, Cambridge University Press (2003).

• J. Kohanoff, Electronic Structure Calculations for Solids and Molecules, Theory and Computa-
tional Methods, Cambridge University Press (2006).

• R.M. Martin, Electronic Structure, Basic Theory and Practical Methods, Cambridge University
Press (2004).

The Kohanoff book is used with this course, and offers also information from the molecular perspective.
The other two books have a strong emphasis on condensed matter physics, and are recommended to
the interested reader for background information.

2 Recap Hartree-Fock

Life always starts with a Hamiltonian:

H = −
∑

i

h̄2

2me
∇2

i +
∑

i

Vext(ri) +
e2

2

∑

i,j(j 6=i)

1

|ri − rj |

Here Vext is the external potential. In general it is the Coulomb potential of the (bare) nuclei. The
repulsive Coulomb energy of the nuclei amongst each other has been left out. To convert to a.u.:
h̄ = 1, me = 1, e = 1.

In HF the Ansatz for the wave functions is a Slater determinant, i.e. it is an antisymmetric wave
function by construction:1

ΨHF =
1√
N !
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(1)

Using this Ansatz in the expectation value for the Hamiltonian yields an energy expression:

〈ΨHF |H|ΨHF 〉 =
∑

i

〈ψi| −
h̄2

2me
∇2

i + Vext|ψi〉+
e2

2

∑

i,j(i 6=j)

〈ψi(r)ψj(r
′)| 1

|r− r′| |ψi(r)ψj(r
′)〉

− e2

2

∑

i,j(i 6=j)

〈ψi(r)ψj(r
′)| 1

|r− r′| |ψj(r)ψi(r
′)〉

1It is easiest to consider here that the |ψi〉 are the spin orbitals, just as in our HF story before. In the next section
we will consider only spatial orbitals and include the spin degeneraty with appropriate factors 2. Hence, in the double
summations in the equation above we do not yet have the factor 2 in front of the Kij .
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Here we assume |ΨHF 〉 is normalized. Minimizing the above expression (well, assuming a stationary
point) with the constraint 〈δψi|ψi〉 = 0 gives the eigenvalue equations:2

[

− h̄2

2me
∇2

i + Vext + V H
i

]

ψi(r)− e2
∑

j(j 6=i)

〈ψj(r
′)| 1

|r− r′| |ψi(r
′)〉ψj(r) = ǫiψi(r)

The ǫi are the Lagrange multipliers. Note that the factor 1/2 in front of the double summations has
disappeared in the single summation here (double counting!).

The Hartree-part of the potential is:

V H
i = e2

∫
ρ(r′)− ρi(r

′)

|r− r′| dr′ , ρ(r′) =
∑

i

ρi(r
′) =

∑

i

ψ∗
i (r

′)ψi(r
′)

Note that we have absorbed into ρ also the charge density ρi of particle i itself. So ρ is now the
chargedensity due to all electrons, i.e. independent of i. However, particle i does not “feel” its own
charge, so we have to correct and subtract ρi.

For the exchange (Fock) part of the eigenvalue equation we can write:

−e2
∫

∑

j(j 6=i)

ψ∗
j (r

′)ψi(r
′)

|r− r′| ×

1
︷ ︸︸ ︷

ψ∗
i (r)ψi(r)

ψ∗
i (r)ψi(r)

ψj(r) dr
′ = −e2

∫
ρXi (r, r′)− ρi(r

′)

|r− r′| dr′ ψi(r)

Here we first multiplied with 1. Next we recognize an exchange of r and r′ in the ψi and ψj in the 4
red ψ’s in the numerator. If we “normalize” this with the density of the denominator, we have defined
a charge density ρX that accounts for the exchange (hence the “X”). We’re not there yet. Next we
include in ρX the self-exchange (i.e. lift the restriction on j 6= i in the summation). We make an error,
and correct by subtracting the self-exchange, which is just the density ρi.

Finally:

[

− h̄2

2me
∇2

i + Vext + e2
∫

ρ(r′)

|r− r′| dr
′ − e2

∫
ρXi (r, r′)

|r− r′| dr
′

]

ψi(r) = ǫiψi(r) (2)

Note that everything is cast into the form of one operator working on |ψi〉. The interactions with
charges ρi(r

′) cancel. The exchange part involves a complicated non-local chargedensity ρXi that
depends on i, i.e. it is an orbital dependent potential.

Now let’s have a glimpse at the density functional theory that comes later. There we’ll also have
some kind of orbitals, and Kohn-Sham equations of a similar form... the first 3 terms of the KS
equations are just as above. The 4th term, in practice, often is a much simpler expression, in general
not dependent on i.3

3 Uniform electron gas

In the uniform electron gas we have electrons and a uniform compensating background charge as our
external potential ρext = −ρ(r′) = constant. So the 2nd and 3rd terms in Eq. 2 just cancel, and we
have:4 [

− h̄2

2me
∇2 − e2

∫
ρXk (r, r′)

|r− r′| dr
′

]

φk(r) = ǫkφk(r)

To solve this, we first (temporarily) remove the exchange part from the Hamiltonian. Remains a
system with non-interacting particles, i.e. the Hamiltonian is nothing more than the kinetic energy.

2This is just the HF equation but now written down for the full spin-ortibals.
3Cf. the computer exercise on the H atom: in (2) the hydrogen feels the interaction with its own charge. In HF that

is exactly compensated by the “self-exchange”, in practical DFT the cancellation is only partial.
4Here we best make the step from spin orbitals |ψi〉 to spatial orbitals |φk〉. For each |φk〉 we have two spin orbitals:

|φk〉|α〉 and |φk〉|β〉. The “exchange charge density” ρik only decribes the exchange between orbitals with identical spin.
In our case it is independent of spin.
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See the werkcollege for details. The eigenfunctions are plane waves (we normalized in a volume Ω, we
assume Ω → ∞):

φk(r) =
1√
Ω
eik·r

k and r are 3D vectors. The eigenvalue spectrum is just the free-electron parabola:

ǫk =
h̄2k2

2me

Next we re-introduce the exchange (Fock) part. The eigenfunctions are still plane waves. To make
that credible, we have this operator work on |φk〉:

−e2
∫
ρXk (r, r′)

|r− r′| dr
′φk(r) = −e2

∫ occ∑

k′

φk(r
′)φ∗k(r)φk′(r)φ∗k′(r′)

φk(r)φ
∗
k(r)

1

|r− r′| dr
′ e

ik·r

√
Ω

a
=

−e2
∫

dr′
∫

Ω

(2π)3
dk′ Ω

Ω2

ei(k·r
′−k·r+k′·r−k′·r)

ei(k·r−k·r)

1

(2π)3

∫

dq
4π

q2
eiq·(r−r′) e

ik·r

√
Ω

b
=

− 4πe2

(2π)3

∫

dk′

∫

dq
1

q2

{
1

(2π)3

∫

dr′ e−i(k−k′)·(r−r′)+iq·(r−r′)

}
eik·r√
Ω

c
=

− 4πe2

(2π)3

∫

dk′

{∫

dq
1

q2
δ(q− (k− k′))

}
eik·r√
Ω

d
=

[

− 4πe2

(2π)3

∫

dk′ 1

|k− k′|2
]
eik·r√
Ω

So the plane wave remains an eigenfunction. At “a” we converted the k′ summation into an integral
(blue), and inserted a Fourier representation of 1/|r − r′| (red). The q integral runs over the whole
3D “Fourier” space. At “b” we reshuffled stuff, being careful not to put integrands to the wrong sides
of the integrals. At “c” we used a delta-function representation (see werkcollege) and integrate over
the q at “d”.

The final quantity in [...] is just a function of k. The integral can be done:

− 4πe2

(2π)3

∫

|k′|<kF

dk′ 1

|k− k′|2 = −e
2

π
kFF (k/kF) , F (x) = 1 +

1− x2

2x
ln

∣
∣
∣
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1 + x

1− x

∣
∣
∣
∣

The Fermi wave vector kF separates occupied (|k| = k < kF) from unoccupied states (|k| = k > kF).
For the eigenvalue one obtains a correction to the free electron value:

ǫk =
h̄2k2

2me
− e2

π
kFF (k/kF)

Note the “−”: the function F always yields positive numbers, so the exchange gives rise to an eigen-
value lowering. On the Fermi sphere (x = 1) F has pathological behaviour: it does not diverge
(physical), but its derivative does (unphysical). So no gap opens, but dǫ/dk, which is associated with
a velocity (no proof) is pathological. In fact, for metals in general HF is problematic, but that need
not bother us, as we’re usually dealing with molecules.

Our aim is the energy:

EHF =
Ω

(2π)3

∫

|k|<kF

dk

{

2
h̄2k2

2me
− 2

2
e2kFF (k/kF)

}

The red factor 2 accounts for spin, the blue factor 2 corrects for double counting (cf. the HF lectures).
You’ve done the first integral yourself, the second is more dreadful, but can also be done. The final
result is:

EHF

N
=

3

5
ǫF − 3

4

e2kF
π

Here we have divided by the total number of (occupied) states N . From the werkcollege you know that
k3F/(3π

2) = N/Ω = n, where we have defined n as the density. This allows to express the exchange
contribution to the energy per electron as a function of the density:

EX

N
= −3

4
e2

3

√

3

π
n1/3 (3)
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