QTC, NWI-MOL112, exercises week 6

Gerrit C. Groenenboom, Mar 13, 2020

Question 1: Two-fold symmetry in 1-D

The derivative operator has odd parity. If we define

$$y = -x \tag{1}$$

then

$$\frac{\partial}{\partial y} = \frac{\partial x}{\partial y}\frac{\partial}{\partial x} = -\frac{\partial}{\partial x}.$$
(2)

More formal we could write

$$\hat{i}\frac{\partial}{\partial x}\hat{i}^{\dagger} = -\frac{\partial}{\partial x},\tag{3}$$

where \hat{i} is the inversion operator defined by

$$\hat{i}x\hat{i}^{\dagger} = -x. \tag{4}$$

1a. Show that Eq. (3) is correct by applying it to an arbitrary function f(x).

1b. What is the parity of the linear momentum operator \hat{p}_x ?

The kinetic energy operator in 1-D is given by

$$\hat{T} = -\frac{\hat{p}^2}{2\mu}$$

1c. What is the parity of this kinetic energy operator?

The 1-D harmonic oscillator is given by

$$\hat{H} = \hat{T} + V(x) = -\frac{\hat{p}^2}{2\mu} + \frac{1}{2}kx^2.$$

- 1d. Show that this Hamiltonian commutes with \hat{i} .
- 1e. What is the parity of Hermite polynomial $H_0(x)$ (see exercise first week)
- **1f.** What is the parity of Hermite polynomial $H_1(x)$?
- **1g**. Use the recursion relation for Hermite polynomials to find the parity of $H_n(x)$ for n = 0, 1, 2, ...
- **1h**. What is the parity of harmonic oscillator eigenfunction $\phi_n(x)$, for n = 0, 1, ...?
- 1i. What is the parity of Legendre polynomial $P_L(z)$, for L = 0, 1, 2, ...? (Use the recursion relations in Chapter 8).

Question 2: Parity of spherical harmonics

In 3D, the inversion operator is defined by

$$\hat{i}\boldsymbol{r}\hat{i}^{\dagger} = -\boldsymbol{r}.\tag{5}$$

- **2a**. What is the parity of the linear momentum operator in 3D, \hat{p} ?
- **2b**. What is the parity of angular momentum operator \hat{l} ?
- **2c**. Derive the transformation of spherical polar angles (θ, ϕ) under inversion,

$$\hat{\theta}\hat{i}^{\dagger} = \pi - \theta \tag{6}$$

$$\hat{i}\phi\hat{i}^{\dagger} = \phi + \pi. \tag{7}$$

- 2d. What is the parity of the Racah normalized spherical harmonic $C_{L,0}(\theta, \phi)$? (Use the result for the Legendre polynomials).
- **2e**. What is the parity of angular momentum ladder operators l_{\pm} ?

- **2f.** Show that the parity of Racah normalized spherical harmonic $C_{L,M}(\theta, \phi)$ is the same as the parity of $C_{L,0}(\theta, \phi)$?
- **2g**. What is the parity of spherical harmonic $Y_{j,m_i}(\theta,\phi)$?

The space-fixed z-component of the dipole operator for a diatomic molecule is

$$\hat{\mu}_z = \mu_0(r)\cos\theta,$$

where θ is the angle between the Jacobi vector of \mathbf{r} of the diatomic molecule and the z-axis, and $\mu_0(r)$ is the dipole moment in the molecule fixed frame as a function of the distance r between the two atoms.

2h. Compute the expectation value of the dipole operator for a diatomic molecule with rotational wave function $Y_{jm_i}(\theta, \phi)$,

$$\mu_z = \langle jm_j | \hat{\mu}_z | jm_j \rangle$$

(Hint: use the parity of the operator and of the rotational wave function.)

The *transition dipole moment* between two rotational states is defined by

$$\mu_{f,i} = \langle j_f m_f | \hat{\mu}_z | j_i m_i \rangle, \tag{8}$$

where j_i and m_i are the rotational quantum numbers of the initial state, and j_f and m_f are the rotational quantum numbers of the final state.

- 2i. Give the selection rule for this matrix element derived from considering inversion symmetry
- **2j**. Use Eq. (8.50) of the lecture notes, to show that the transition dipole moment between two rotational wave functions is zero when $|j_i j_f| > 1$.
- 2k. The most abundant molecule in the universe is H_2 . Why is it so hard for astromers to observe rotational transitions in H_2 ?

The coupled angular momentum wave function for an atom-homonuclear diatom system H₂-He is denoted by $|(jl)JM\rangle$, where j is the rotational quantum number for the diatom, l is associated with the rotation on the atom around the center-of-mass, and J and M are the total angular momentum quantum numbers (see Chapter 8).

21. Find the expression for the parity of the wave function, i.e., evaluate

$$\hat{i}|(jl)JM\rangle =?$$

2m. The operator $\hat{P}_{1,2}$ permutes the two hydrogen atoms. What is the eigenvalue of $|(jl)JM\rangle$ with respect to this operators? In other words, evaluate

$$\tilde{P}_{1,2}|(jl)JM\rangle$$

2n. What is the speedup in a variational calculation when both inversion and permutation symmetry are used?

Question 3: Matrix representations of symmetry operators in \mathbb{R}^3

3a. Find the 3×3 matrix representation **E** of the inversion operator \hat{i} defined by

$$\hat{i}\boldsymbol{r} = -\boldsymbol{r}$$

where r is a column vector with three elements. In other words, find the matrix E such that

$$Er = -r$$
.

3b. Find the matrix representation S_{xz} of $\hat{\sigma}_{xz}$, reflection in the *xz*-plane.

The reflection operator can be written as the product of inversion and rotation. For the matrix representation we can write:

$$S_{xz} = IE.$$

3c. Find the rotation matrix \boldsymbol{R} .

The matrix **R** represents some rotation around a vector $\hat{\boldsymbol{n}}$ over an angle ϕ : $R(\hat{\boldsymbol{n}}, \phi)$.

3d. Determine the vector $\hat{\boldsymbol{n}}$ and the angle ϕ .