QTC, NWI-MOL112, exercises week 1

Gerrit C. Groenenboom, Feb 4, 2020

Question 1: Quantum harmonic oscillator

The harmonic oscillator Hamiltonian for a particle with mass m and a harmonic potential with force constant
k is

X Rr o2 1,
The corresponding Schrédinger equation,
-HOan(l') = 6n¢n($)7 (2)

can be solved with the ladder operator method. The aim of this exercise, however, is to look up the answer
in the (famous) “Handbook of Mathematical Functions” by Abramowitz and Stegun (A&S). A pdf version
of the book can be easily found online, or, from within the www.ru.nl domain:

www.theochem.ru.nl/cgi-bin/dbase/search.cgi?abramowitz: 64

and its content is also available on dlmf.nist.gov

The solution can be found in the chapter on orthogonal polynomials (chapter 22 in the book, or online
in chapter 18). This chapter presents, in a unified way, the solutions of many second order differential
equations, several of which are extremely useful in solving problems in quantum mechanics. In this exercise,
our goal is to use the solutions of the harmonic oscillator problem as a basis to set up a variational calculation
for a one dimension Schrédinger equation for which we do not have an analytic solution. We will use the
results of this exercise in the computer assignment.

The first question is:

la. Find a coordinate transformation, x = ay, to rewrite the Hamiltonian as
A 1 0? 1
Hy=A(—=== +-9° 3
o= 4(~5pz+57) @
and determine A as a function of m and k. Note that y must be dimensionless (why?).

1b. Table 22.6 in A&S (18.8.1 online) gives the solutions of

82
[aiyg +@2n+1 -y fuly) =0, (4)
where {f,,n =0,1,2,...} are Hermite polynomials times a weighting function:

1,2

fn(y) = Hn(y)eiiy : (5)
Express the harmonic oscillator function ¢, (x) in terms of the functions f,(y).

1c. The norm and orthogonality of the Hermite polynomial H, is given by Eq. 22.1.2 in A&S and table
22.2 as

/ Hon(9) B (y)e™" dy = 6,0, 270 V7. (6)
Compute the normalization constant for ¢, (x).

The Hermite polynomials are defined by recursion relations in table 22.7 of A&S (18.9 online):

Ho(z) = 1 (7)
Hi(z) = 2= (8)
Hpi1(z) = 2zH,(x) —2nH,_1(z) forn=0,1,2,... (9)

1d. Setup analogous recursion relations for ¢, (z), such that they are normalized.

Now that we have the analytic solutions for the harmonic oscillator, ¢, (x), and convenient recursion re-
lations, we will use them as a basis B = {¢¢(z), ¢1(x),...} in a variational calculation of the anharmonic
oscillator problem

(10)
We expand the solutions as

Vj(z) = Z ¢i(w)cij. (11)
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le. Setup the matrix eigenvalue problem needed to solve the expansion coeflicients c;; in a variational
calculation.

To compute the matrix elements, we will need matrix elements of the kinetic energy operator and of the
polynomial z# for the potential. We will derive them in a few steps:

1f. Use the recursion relations for ¢, (x) and the orthonormality of these functions to derive an expression
for the matrix elements of the & operator

Xm,n = <¢m|m¢n>~ (12)

1g. Use the recursion relation twice to get an expression for the matrix elements of 22.

1h. Now use a little trick: get the matrix elements of the kinetic energy operator by writing it as ﬁo—%k‘xQ.

For matrix elements of z* we would have to use the recursion relation four times. That is a bit much work,
so when we write the computer program, we can take the matrix representation of Z, and then take it to
the power 4, or use the matrix representation of x2, and then take the square of that matrix.

Question 2: Questions chapter 1

2a. Show that Hamilton’s classical equations of motion for one particle in one dimension is equivalent to
Newton’s equation.

The Heavyside step function is defined by

0, <0
O(z) = { 1, z>0. (13)
We define the following set of functions f,(z) forn=...,-2,-1,0,1,2,... as
fu(z) =0(z —n)[1 —O(z—n—1)]. (14)
2b. Make a sketch of f1(z), and compute the scalar products
oo
nlt) = [ £3(@)m(a) d (15)
— 00

2c. Is the set of functions f,, a complete basis set for the one-dimensional Hilbert space?

2d. Show that the scalar product defined by the integral, Eq. (1.20) in the lecture notes, indeed satisfies
the properties of a scalar product [Egs. (1.21)-(1.24)] in the lecture notes

The identity operator I is defined by
- / dz o) (). (16)
2e. Show that A
(x|I|2") = 6(x — ). (17)
Hints: use
(zly) = d0(z —y) (18)
and test Eq. (17) by multiplying both sides with an arbitrary function f(z'), and integrate over .

The commutator of position and momentum operators in n Cartesian dimensions is given by

[£:,p;] = ihd;;, withi,j=1,2,...,n. (19)
We define new position operators by a linear transformation
X = Az (20)
or, in components
Xi=> Aiiy (21)
k

where A is a nonsingular n x n matrix with elements A;;. We define new momenta by the linear transfor-

mation R
P=ATp, (22)

where the components of the vector operator p are p; and 13]- are the components of P.

2f. Show that o
(X, Pj] = ihdy;. (23)
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