Next: C..14 CS1: Colle-Salvetti correlation Up: C. Density functional descriptions Previous: C..12 BRUEG: Becke-Roussel Exchange


C..13 BW: Becke-Wigner Exchange-Correlation Functional

Hybrid exchange-correlation functional comprimising Becke's 1998 exchange and Wigner's spin-polarised correlation functionals. See reference [14] for more details.

\begin{dmath}
K=
-4\,c\rho_{\alpha}\rho_{\beta}{\rho}^{-1} \left( 1+{\frac {d}{\...
... ^{2}}{1+6\,\beta\,\chi_{s}{\it
arcsinh} \left( \chi_{s} \right) }}
,\end{dmath} where \begin{dmath}
\alpha=-3/8\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{\pi }^{-1}}
,\end{dmath} \begin{dmath}
\beta= 0.0042
,\end{dmath} \begin{dmath}
c= 0.04918
\end{dmath} and \begin{dmath}
d= 0.349
.\end{dmath} To avoid singularities in the limit $\rho_{\bar{s}}\rightarrow 0$ \begin{dmath}
G=
\alpha\, \left( \rho_{s} \right) ^{4/3}-{\frac {\beta\, \left( ...
... ^{2}}{1+6\,\beta\,\chi_{s}{\it
arcsinh} \left( \chi_{s} \right) }}
.\end{dmath}


molpro@molpro.net
Oct 10, 2007