Next: C..9 B97R: Density functional Up: C. Density functional descriptions Previous: C..7 B88: Becke88 Exchange


C..8 B95: Becke95 Correlation Functional

$\tau$ dependent Dynamical correlation functional. See reference [12] for more details.

\begin{dmath}
K=
{\frac {E}{1+l \left( \left( \chi_{\alpha} \right) ^{2}+ \left(...
...ht) }{H \left( 1+\nu\, \left(
\chi_{s} \right) ^{2} \right) ^{2}}}
,\end{dmath} where \begin{dmath}
E=\epsilon \left( \rho_{\alpha},\rho_{\beta} \right) -\epsilon \left(
\rho_{\alpha},0 \right) -\epsilon \left( \rho_{\beta},0 \right)
,\end{dmath} \begin{dmath}
l= 0.0031
,\end{dmath} \begin{dmath}
F=\tau_{s}-1/4\,{\frac {\sigma_{ss}}{\rho_{s}}}
,\end{dmath} \begin{dmath}
H=3/5\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} \left( \rho_{s}
\right) ^{5/3}
,\end{dmath} \begin{dmath}
\nu= 0.038
,\end{dmath} \begin{dmath}
\epsilon \left( \alpha,\beta \right) = \left( \alpha+\beta \right)...
...ht) \left( \zeta \left( \alpha,\beta \right) \right) ^{
4} \right)
,\end{dmath} \begin{dmath}
r \left( \alpha,\beta \right) =1/4\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{
\frac {1}{\pi \, \left( \alpha+\beta \right) }}}
,\end{dmath} \begin{dmath}
\zeta \left( \alpha,\beta \right) ={\frac {\alpha-\beta}{\alpha+\beta}}
,\end{dmath} \begin{dmath}
\omega \left( z \right) ={\frac { \left( 1+z \right) ^{4/3}+ \left( 1-z
\right) ^{4/3}-2}{2\,\sqrt [3]{2}-2}}
,\end{dmath} \begin{dmath}
e \left( r,t,u,v,w,x,y,p \right) =-2\,t \left( 1+ur \right) \ln
...
...}{t \left( v\sqrt {r}+wr+x{r}^{3/2}+y{r}^{p+1}
\right) }} \right)
,\end{dmath} \begin{dmath}
c= 1.709921
,\end{dmath} \begin{dmath}
T
=
[ 0.031091, 0.015545, 0.016887]
,\end{dmath} \begin{dmath}
U
=
[ 0.21370, 0.20548, 0.11125]
,\end{dmath} \begin{dmath}
V
=
[ 7.5957, 14.1189, 10.357]
,\end{dmath} \begin{dmath}
W
=
[ 3.5876, 6.1977, 3.6231]
,\end{dmath} \begin{dmath}
X
=
[ 1.6382, 3.3662, 0.88026]
,\end{dmath} \begin{dmath}
Y
=
[ 0.49294, 0.62517, 0.49671]
\end{dmath} and \begin{dmath}
P
=
[1,1,1]
.\end{dmath} To avoid singularities in the limit $\rho_{\bar{s}}\rightarrow 0$ \begin{dmath}
G=
{\frac {F\epsilon \left( \rho_{s},0 \right) }{H \left( 1+\nu\, \left(
\chi_{s} \right) ^{2} \right) ^{2}}}
.\end{dmath}


molpro@molpro.net
Oct 10, 2007