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I. INTRODUCTION

These lecture notes of the course “Mechanics, electric-
ity, and Magnetism 2”7 as given in the first quarter of
2025. It does not replace the text book (Serway), but it
summarizes the equations and main ideas.

II. CLASSICAL MECHANICS IN ONE
DIMENSION

In classical mechanics a system of n particles is defined
by the masses of the particles, {m;,i =1,2,...,n} and
their positions as a function on time (t), {z;(t),i =
1,2,...,n}. We will take z;(t) to be the Cartesian co-
ordinate of particle ¢ with respect to an inertial frame,
as defined in Newton’s first law. The function z;(t) is
called the trajectory or also the orbit.

The time derivative of the position is the velocity

d
t) =a(t) = —x(t 1
o(t) = i(t) = Za() 1)
and the time derivative of the velocity is the acceleration
a=1v=7. (2)

III. NEWTON’S LAWS

Newton’s first law defines an inertial frame. The
main idea is that if there are no forces acting on a particle,
it should be at rest or move with a constant velocity with
respect to that frame.

Newton’s second law relates the acceleration to the
forces acting on the particle

F = ma. (3)

If several forces F; are acting on a particle than the ac-
celeration is is related to the sum of forces

ZF = ma. (4)

Newton’s third law concerns the interaction of two
particles. If particle 1 excerts of force F' on particle 2,
then particle 1 experiences a force —F' as a result of the
interaction.

IV. CALCULATING A TRAJECTORY

With Newton’s laws we can learn about forces by
observing trajectories. A particle with initial velocity

v(t;) = v; experiencing a constant force F. From New-
ton’s second law we get the time derivative of the velocity

1
0) = alt) = - F (1), 5)
and by integration we find
1 t
v(t) =vi+— [ F(t)dt. (6)

ti

Once we know the velocity at every time ¢, we can com-
pute the trajectory if we know the position x(t;) = r; by
integrating again

x(ty) = x; + /t ' v(t)dt. (7)

When the force is actually contant, F(t) = Fy, we find
that the velocity changes linearly in time

t—1;

v(t) =v; + Fy. (8)
An example would be the trajectory of particle dropping
under the force of gravity. Using z rather than z for
vertical motion we find that if initially z(¢;) = z; the
trajectory is

(t—t;)?

—t;)+ F,. (9)

From experiment we find that the trajectory is indepen-
dent of the mass and the force is pointing down, so we
conclude that

Fy= —mg, (10)

where g ~ 9.8 m/s?, so that the accelaration does not
depend on the mass, and matches observation

a=2%=—g. (11)

If the force is constant or if it depends on time we can
find the trajectory by integration. It is also possible that

the force depends on the position, Fy, = Fy(z). For a
mass attached to a spring we can have, e.g.,
Fr(z) = —k(z — z.), (12)

where k is the force constant, and z. is the equilib-
rium position where the force exerted by the spring is
zero. By Newton’s second law we know that the sum of
forces determines the trajectory, so if we already know
the force of gravity, we can determine the force constant



k by finding the value of z = z; for which the mass is
stationary

F(z)+F, =0 (13)
—k(zs —2e) —mg =0 (14)
S0
Ze — Zs
k= (15)

Note that by Newton’s second law, the trajectory de-
pends on the sum of all forces acting on the particle.
This is very powerfull: every time a trajectory does not
match what we expect based on the forces we already
know, we learn about a new force.

Now that we know the force as a function of position,
we can try to predict the trajectory if we pull the mass
to an initial position z; and give it an initial velocity v;.
Define the sum of forces

F(z) = Fu(2) + Fy (16)
we need to solve
F(z) =mz. (17)

Integration over time as we did before no longer works,
since we would need to z(t) to find F(t) = F(z(t)). In-
stead, we now have a second order differential equation
with two initial conditions. In our example of a spring
there is a simple analytic solution, but in general nu-
meric methods are needed. Sometimes it helps to turn
the second order differential equation into two coupled
first order differential equations

(t) = v(t) (18)

o(#) %F@). (19)

In this lecture our aim is not to solve differential equa-
tions, but rather to try to simplify the problem as much
as possible by using conservation laws. Usually, this
will not give us the exact trajectory, but we may answer
a simpler question, like what is the highest and lowest
point of the mass on the spring, or later, what is the
velocity of particles after a collision if we know their ve-
locities before the collision.

V. ENERGY CONSERVATION

We can derive conservation laws by integrating New-
ton’s second law. First, let us assume that we have a
force F(z) that depends on position only. Integrating
Newton’s second law then gives

zy 2y
/ F(Z)dZZ/ madz. (20)

To integrate the left-hand-side (lhs) we define —V'(z) as
the primitive of the force, i.e.,

d

F(z)=—— . 21
(:) = -2V () (21)
With these assumptions the integral is
Zf Zf d
/ F(z)dz = — QV(Z) dz =V (z;) = V(z5). (22)

Not every force be we written as the derivative of a func-
tion that only depends on the position, but if it does, we
call the force conservative. The function V'(z) is called
potential energy. In the example of gravity we find
potential energy

Vy4(2) = myz, (23)

which says that the potential energy is larger the higher
you go, and the bigger the mass, which may sound rea-
sonable. The point of using the word energy though is
that the total energy is conserved and that you may
convert one form of energy into another.

Next, we solve the right-hand-side (rsh) of Eq. (20)
Here comes a little trick: we can change an integral over
position into an integral time using

dz
e v(t) (24)
dz = vdt (25)

At the same time, we have to change the limits of the
integral from initial and final position to initial and final

time, so
Zf ty
/ madz = m/ vudt (26)
2 t;

i

Next, we use

d
ﬁqﬂ = 200, (27)
so the rhs of Eq. (26) becomes
1 (vrd 1Ly,
Zm /t, (dtv ) dt = im(vf — ). (28)

Substituting this result into the rhs of Eq. (20), express-
ing the lhs in terms of potential energy and rearranging
the equation such that everything that depends on the
initial state is on the left and everything that depends on
the final state is on the right gives

1 1
imv? +Vi(z) = imv; + V(zp). (29)

This equation motivates the definition of kinetic energy

1
T = §m1)2, (30)



so that for conservative forces we have a total energy
E=T+V(z), (31)

which is conserved.

The integral over the force in Eq. (20) is called the
work done on the particle. The definition of work is more
general though, since it also applies to non-conservative
forces, which we will discuss later.

VI. LINEAR MOMENTUM

Integrating Newton’s second law over position gave us
the energy conservation law for converting between po-
tential and kinetic energy. Now, let’s see what we get
from integrating Newton’s second law over time

/:ffwﬂdt_l[?7nadt (32)

i

First, let’s do the rhs. Using a = v gives

ty ty
/ madt:m/ odt = m(vy — v;). (33)
t; t;

i i

We do not yet have a conservation law, but this equation
motivates the definition of linear momentum

p=mv, (34)

so the rhs is the change in linear momentum between
the initial and final time. It may seem there is not much
we can do on the lhs of Eq. (32), so we can give it a name:
impulse,

ty
IE/ F(t)dt = py — p;. (35)
t;
The good thing about this quantity is that it is defined
for an arbitrary force F'(t), i.e., it is not restricted to con-
servative forces. As long as the particle has a trajectory,
z(t), it has some acceleration at every time ¢, and we find
the force from Newton’s second law. Thus, we may also,
write

ty
IE/ P, (36)

ti

where now the force may be know directly as F(t), or im-
plicitly as F[z(¢)]. This is the definition given in Serway.

We also see that if the force is zero the impulse is zero,
and linear momentum is conserved. However, we already
knew from Newton’s second law that if there is no force
the velocity is constant, and so the linear momentum is
constant. Still, we now find that if the force itself is not
zero, but the integral over time, i.e. the impulse is zero,
the linear momentum is conserved. Furthermore, we can
define an average force

" R()dt
ftitf —(tz . (37)

F:

Then by giving the average force I and the time interval
ty —t; we have specified the impulse
I=(t;—t;)F. (38)
Note that here by average, we mean average over time.
Many problems are easier when using momenta, rather
than velocities, so we already rewrite Newton’s second
equation in momenta.

Y F=p (39)

The concepts of impulse and momentum turn into a
real conservation law if we consider the collisions of two
particles

VII. CONSERVATION OF LINEAR
MOMENTUM

Let’s consider two particles, labeled 1 and 2, which
move along the same straight line with trajectories x1 (¢)
and x2(t) and which have masses m; and ms, respec-
tively. From Newton’s third law, we know that

Fig = — Iy, (40)

where Fps is the force exerted by particle 1 on particle
2, and Fb; is the force exerted by particle 2 on particle
1. This immediately tells us that the impulses on the
particles due to their interaction are opposite in sign, so
with we get for the change in linear momenta during the
collision

Pi1,f —P1i = —(pz,f - p2,i)- (41)

We can rewrite this as the law of conservation of linear
momentum

P=pi;+p2i=p15+D2f, (42)

so the total linear momentum before the collison, P, is
equal to the total linear momentum after the collision.
We can also express this relation using velocities

miv1,; + Mot = myv1,f + Mo 5. (43)

VIII. ELASTIC COLLISIONS IN 1D

Assuming the velocities of two particles before the
collision are known, we try to find the velocities of the
two particles after the collision. Having two unknowns,
we can solve the problem if we have two independent
equations. We can certainly use conservation of linear
momentum [Eq. (42)], since it was derived from the im-
pulse [Eq. (36)], where we did not make any assumption
about the origin of the force. Instead of coordinates z1 (t)
and z9(t) we will use z1(¢) and x2(t), because we are not



thinking about gravity here, but of course this choice is
arbitray.

To continue, we assume that the forces between the
particles are conservative. This means that we can
compute the forces from a potential. For two particles
a potential energy is function of both coordinates, so we
have Via(x1,x2), and the forces are given by

0

Fi(z1,29) = _8751‘/12(561’362) (44)
0

Fy(z1,22) = —87,2‘/12(5017552) (45)

If the force is the result of, e.g., a spring, the potential
will only depend of the distance between the particles,
Tr =T — T,

Viz(z1,22) = V(22 — 71) (46)
Then we find
0 dx d ,
Fi(z1,72) = *Txlv(x) = *Tm% (z) =V'(x) (47)
and
9 /
Fg(ml,xg) = —TV(.’L‘) =-V (33) = —Fl(aﬁl,l‘g). (48)
Z2

Note that we just recovered Newton’s third law for the
special case of conservative forces! We now assume that
the potential is zero when the particles are sufficiently
far apart. That means we can take time ¢; sufficiently
long before the collision, so the energy of the system is
just the sum of the kinetic energies of the particles. We
take time ¢y when the particles are moving apart and the
potential energy V (z2 — x1) has again dropped to zero,
so we have conservation of kinetic energy

%mlvii + %mgv%i = %mlvif + %mgv%f. (49)
Strictly, we only derived above that the sum of kinetic
and potential energy for a single particle is conserved.
We will come back to this later and solve the elastic
collision problem by solving the two equations with the
two unknowns.

Since conservation of linear momentum is the simplest
when written in terms of linear momenta, we rewrite the
conservation of kinetic energy (for elastic collisions) also
using momenta. In the final step of the calculation we will
convert the momenta back to velocities. For the kinetic
energy of a single particle we have

L 5 P’
T = 5" = 5 (50)
so for two particles we have

2 2 2 2

D1 P2 p p
E=T+T,= 1, + 24 _ LS + 2,f )
2m1 2m2 2m1 2m2

(51)

We can turn this equation with two unknowns, p; ; and
p2,f, into a single equation with one unknown by sub-
stituting p2 r = P — p1,y when we find the total linear
momenta from P = p; ; +p2,;. Thus, we need to solve an
equation quadratic in py ¢,

_ Py L Popy)”
2m1 2m2 ’

E

(52)

To work out the general expression is quite a bit of work,
although when you plug in the numbers this approach
may be ok. The book (Serway) solves the problem us-
ing velocities rather than momenta in the derivation, but
it shows a little trick make deriving the general expres-
sion easier, that we can use too. We rewrite the energy
conservation law as

piy—rii  phy—P3, (53)

2m1 N 2m2

so we have the change in kinetic energy of the particle
on the left, and minus the change in kinetic energy of
particle 2 on the right. Next, we factorize the difference
of squares

(prr +p10)(pry —p1i) (P25 +p2.:) (P2 — D24)

2m1 2m2

(54)
We can now use the conservation of linear momentum
[Eq. (41)] to divide the lhs by the change in linear mo-
mentum of particle 1 and the rhs by minus the change in
the linear momentum of particle two. This way we get
two linear equations with two unknowns, which are just
a bit easier to solve than a single linear equation with
one unknown

p1,r —p1i = —(P2,r — P2,i) (55)
D1,f +P1i D2 f+ D2

= 56

27’77,1 2m2 ( )

Multiplying the second equation with 2ms and adding
the equations gives a linear equation in p ¢

mo ma
m2 ™2 pys = 2pas 57
(m1 + Dp1y + (ml )p1,i = 2p2, (57)

Multiplying with m; and rearranging gives

- i +2 i
pLs= (my m2)]§\14, + 2mqpo, , (58)

where M = my + ms is the total mass. Dividing by m;
we can rewrite this in velocities

(m2 — mq)v1,; + 2mave
i .

By multiplying Eq. (56) with m; and adding the two
equations, we can derive in a similar way the expression
for po ¢. Alternatively, we can use conservation of linear
momentum

(59)

vLf =

P2,y =  DPii+D2i  —DPiyf (60)
——

total momentum



=)
pas = (m1 +ma)(p1; + p2.i) +]\4(m2 — m1)p1,; — 2mipa;
_ 2mapi + (]\722 — m1)pa,i (61)
Dividing by m; and rewriting in velocities gives
v — 2myv1,; + (Mo — ml)Ugﬂ'. (62)

M

For the special case of m; = mq this simplifies to
P1.f = D2, (63)
P2,f = D1,i (64)

so the momenta swap. Since the masses are equal we also
get V1,f = V24 and V2,f = V1,4-
If initially particle 2 is at rest, p2; = 0, we find

pLf= W?u (65)

D2,f = %pu- (66)
and also

v, = Wvu (67)

V2, f = 2]\77;2 U1,i- (68)

If, in addition, my > ma,

VL f = U1 (69)
’l)g,f = 2’[)1’2‘. (70)

IX. ENERGY CONSERVATION FOR
NON-CONSERVATIVE FORCES

We may repeat the derivation of section V, but for the
lhs of Eq. (20), the work

zf
szt/ Fdz (71)

we do not assume the force is related to a potential en-
ergy. The rhs of Eq. (20) still gives the same, so we find
that the work gives the difference in kinetic energy

W =Ty — 1T, (72)

An example of a non-conservative force is friction. A
particle (or object) sliding over a surface until it comes
to rest has lost all its kinetic energy. We could have made
a model of the surface consisting of particles (atoms or
molecules), interacting through a potential function that
depends on all the coordinates. Then, if would take into
account the kinetic energy of the atoms in the surface,
mechanical energy would be conserved. If we only want

to include the sliding particle in the model, we call all
the energy that has gone into the surface heat and total
energy defined as kinetic energy of the sliding particle
plus the heat is again conserved. Thus, the term heat
appears when we want to sweep a lot of detail under the
rug. This approach is elaborated in thermodynamics,
where the concepts of work and heat are central, but the
microscopic detail of trajectories of particles is left out.
In statistical mechanics a connection is made between
thermodynamics and a microscopic description of the
system. For now, we say that the work done by non-
conservative forces, e.g., friction, on the (sliding) particle,
is converted to heat.

X. INELASTIC COLLISIONS

In an inelastic collision, part of the kinetic energy is
lost. In a perfectly inelastic collision, the two parti-
cles stick together.

When an atom collides with a molecule it may hap-
pen that the molecules get rotationally or vibrationally
excited. By the laws of quantum mechanics this will hap-
pen in discrete energy quanta. This energy is no longer
available for the translational kinetic energy of the atom
and molecule after the collision, so we would call such a
collions inelastic. Since the energy in the molecule after
the collision may not be distributed among all possible vi-
brations and rotations according to thermodynamics we
would not call this energy heat. However, if the molecule
is large the energy may redistribute eventually, and we
may say that the collision has heated the molecule.

In a perfectly inelastic collision, where the molecules
stick together, we have only one unknown the velocity of
the particles after the collision. Since the law of conser-
vation of linear momentum applies to both conser-
vative and nonconservative forces we can use it to solve
this problem:

D1, + P2, = Dy (73)

where
ps = (m1+ma)vy (74)

The solution is

miv1,; + Mo ; (75)

v =
! mi + mo

XI. CENTER OF MASS

The center of mass (C.0.M.) is the mass weighted av-
erage of the position of the particles

myx1(t) + maza(t)

X(t) = ),

(76)



where again M = mj + mo. The velocity of the C.O.M.
is the time derivative

_ miv1(t) + mava(t) _pitp _
M M

P
M
(77)

So, for the total momentum we have
P=DMV. (78)

Also, the equation of motion of the C.O.M. is the same
as for a particle of mass M, and we find

P=pi+p=Y i+ FB,=Y F (19

where the sum over forces includes all forces acting on
either particle 1, or particle 2. The forces that arise from
the interactions between the particles cancel by Newton’s
third law, so in fact, we may sum over external forces only

P=>" Feu, (80)

and if there are no external forces, as in the collision
problems we are studying, we find the P is constant, as
before.

Note that the C.O.M. velocity V is equal to vy, 5 = va ¢
in a perfectly inelastic collision.

XII. CENTER OF MASS FRAME

The equation of motion of the C.O.M. is relatively sim-
ple, since it does not depend on internal forces. There-
fore, it is worthwhile to switch for coordinates z; and xo
to a new set of coordinates, the C.O.M. coordinates

mixy1 + Moo

X = % (81)
and a relative coordinate
T =Ty — 1. (82)
We can solve these equations for xz; and xo,
Mo
T =X — %\2{3 (83)
2o =X + Wl (84)

This result is easily verified by substituting it back into
Egs. (81) and (82).

We already have an equation of motion for the C.O.M.
X. For the distance between the particles we have

i= iy — (85)
mo miq '

Now consider conservative forces so we have

Fi=-F=V(x)=F (87)

where we define the internal force F'. Then

11
3’5:(+>F:WF. (88)
m1 mao mimaz

Thus, by defining the reduced mass

mimeo
= = 89
h = (89)
(does p have the dimension mass?), we find Newton’s
equation of motion for x(¢),

F = ui. (90)

Thus, equations of motion for X (¢) and z(t) are not cou-
pled, with X (¢) depending on external forces, and ()
depending on internal forces. The problem of solving x(t)
is identical to solving the motion of a particle with mass
w driven by potential energy V(z). Hence, we can define
a velocity v = £ and momentum p is

p = po. (91)

After solving the internal motion x(t), v(t), and p(t) we
can find the momenta of the two particles

1 :ml.’tl :le— m;\;rm% = %P—p
P2 = Moy = maX + mjz\;m% = %P‘f‘p (92)
and for the velocities
=2y L (93)
mi my
=2y P (94)
meo mo

The kinetic energy, expressed in C.O.M. momenta is

pi p3 _ P*  p?

T= =t
2mo  2M  2u

= 95
S, (95)
So the kinetic energy is the sum of a contribution from
the C.O.M. and a contribution from the relative motion.

XIII. ELASTIC COLLISION IN 1D, USING

C.0.M. FRAME

We assume that the initial velocities, vq; and vy ; are
known. For the C.0.M. velocity we find with Eq. (77)

D2 . (96)

m
V= 71”1,1"" Vi

M

The initial relative velocity is

V; =V — V14 (97)

s

The initial relative momemtum is

mims

P = QU; = ——— ;. 98
pi =i = (98)



Due to the collision, the relative velocity and mo-
mentum change sign:

Pf = —Dpi- (99)

With Egs. (93) and (94) we find the final velocities in the
lab frame

_ Py

ny=v-2 (100)
vap=V+ %. (101)

Ezercise: check that these results match Egs. (59) and
(62)

Note: in quantum mechanics the equations of motion
are very different. Still, the C.O.M. motion and the rel-
ative motion can be solved seperately.

XIV. MOTION IN 2D

Much of what we did so far can readily be extended
to 2D. We must keep in mind though, that a trajectory
now has two components

(102)

and the velocity v(t), the acceleration a(t), linear mo-
mentum p(t), the force F(t), and the impulse I, now all
become vectors with an z and a y component. Masses
and energies remain scalars. So Newton’s second law in
2D is

F =ma = p. (103)
For a conservative force the derivative of the potential
becomes a gradient

F=-VV(r)=— (g?gz) V(r).

Integrating Newton’s second law over time now re-
quires integrals over x and y, and the results are similar,
e.g., conservation of linear momentum turns into conser-
vation of linear momentum in the z- and y- direction.

To derive the relation between work and kinetic energy

we need
Ty
/ ma - dr
i

and to turn the integral over position into an integral
over we need use

(104)

(105)

dr =vdt (106)

and

(107)

For the integral over the force we use
F(r)-dr=F(r) -vdt (108)

This can be rewritten as a total derivative with respect

to t,
d de 0 dy 0
ZV(r) = (dt&r + d%y) V(r) (109)
=v-VV(r)=—-F(r) v (110)
/ffF.dr:— t,f %V(r)dt:V(ri)—V(rf). (111)

The same method can be used to prove the conservation
of mechanical energy for two particles moving on a
straight line interacting with a conservative force, as
in Eq. (49).

XV. C.0.M. FRAME IN 2D

The C.O.M. and relative coordinates are

X = %rl + %rg (112)
=Ty —T1. (113)
Transforming back to the lab frame
m
r=X— MQ’I‘ (114)
m
ro=X + er. (115)
For the relative momentum we have
p=pv = pur (116)

and the momentum associated with the C.O.M. motion

is the total linear momentum

After solving r(t), v(t), and p(t) we can tranform the
result back to the lab frame, as in Eqgs. (92)

pP1 = ml’i“l = %P —p (118)
P2 = MaTy = %P +p (119)
and for the velocities
n=Ll_y_P (120)
mq ma
vm=22_yy P (121)
mo mo
The total kinetic energy is, as before
P2 p2
T=—+— 122
oif T (122)

except that now, P2=P.P and p2 =p-D.



XVI. PERFECTLY INELASTIC, 2D, C.0.M.

FRAME

After the collision the stick to each other, so

mivi; + Moo

Vi,f = V2,f = V = (123)

mi + mo

XVII. ELASTIC, 2D. C.O0.M. FRAME

We have four unknowns, the z and y components of
vy, 5 and vy . However, we only have three conservation
laws: linear momentum in the z-direction, linear momen-
tum in the y-direction, and mechanical energy conserva-
tion.

The C.O.M. linear momentum P takes care of the lin-
ear momentum conservation. Conservation of kinetic en-
ergy [Eq. (122)] gives

2
w_ Py

- 124
TR (124)

since the C.O.M. contributions cancel, so this gives as
the length of the vector |ps| = py. If, in an experiment
we measure the directions after the collision, we can solve
for the momenta and velocities of both particles.

pf = préy, (125)

where é; is a unit vector. We may specify it with angle
¢y as

cos ¢
€r= <sin¢){) )

With the equations in section XV we can than find the
velocities v, 5 and v ¢.

(126)



