
Towards molecules with TDDFT: basis sets

• Grid code can be used for atoms

• For efficient calculation of molecules most codes use basis sets (Gaussians)

• Want to use ADF code: how to include a wall?

• Adapt the STO basis set



φSTO
nlm (r, θ,φ) = rn−1e−αrYlm(θ, φ)

Towards molecules....

• If all basis functions are 0 at the wall radius R and beyond, than any linear combination 

of them (i.e. AOs and MOs) must also be 0: we implicitly include a wall

φBSTO
nlm (r, θ,φ) = Nf(r;R)φSTO

nlm (r, θ,φ)

f(r;R) =

{(
1− r

R

)
r ≤ R

0 r > R

• A smaller wall distance R limits the number of functions necessary but it must be 

outside of the range of the density and/or the range of the occupied orbitals.



f(r;R) =

{(
1− r

R

)
r ≤ R

0 r > R
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2The first derivative is not zero 
in this case.  Taking a numerical 
derivative therefore leads to 
problems.

All derivatives are taken 
analytically.

φBSTO
nlm (r, θ,φ) = Nf(r;R)φSTO

nlm (r, θ,φ)



Another intermezzo: compressed atoms

• We will see that BSTOs can be used to describe scattering functions

• But we can also use them to describe compressed atoms

• Compressed systems are very interesting to study, we can study the effect of pressure 

exerted on an atom

• For example, atom in buckyball, impurity in solid, atom in zeolite cage etc...



Another intermezzo: compressed atoms

• We will see that BSTOs can be used to describe scattering functions

• But we can also use them to describe compressed atoms

• Compressed systems are very interesting to study, we can study the effect of pressure 

exerted on an atom

• For example, atom in buckyball, impurity in solid, atom in zeolite cage etc...

The implementation of BSTO functions in ADF

allows for the calculation of properties of compressed 

atoms and continuum functions (in a box)
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Introduction
• The energy of the occupied level rises and passes through 

zero at the ionization radius

• The polarizability has an S-shaped curve, going like R4 in the 
“particle in a box” region and converging from below to the 
free value
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Introduction

• HOAO orbital energy of He and Ne: 

• HF results available (PW91 for ionization radius)

• DFT SAOP energies

• Polarizability of He and Ne: 

• only finite field HF calculations available

• TDDFT SAOP/ALDA static polarizabilities

Properties of confined atoms
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Introduction
We see the same 
behavior as for 
the square well

HF PW91 SAOP

He 1.41 - 1.50

Ne 1.83 1.83 1.89

Ionization radii (bohr):

HF: Ludena, E.!V. , J. Chem. Phys. 69 (1978)1770
PW91: Garza, J., Vargas, R., Aquino, N., and Sen, K., J. Chem. Sci. 117 (2005) 379

HOAO vs R
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We obtain an S-shaped curve in both 
cases

Similar S-shaped curves were found 
from HF for a range of atoms

Slow convergence of Ne polarizability 
to the free atom value

P.!Chattaraj and U.!Sarkar, Chem. Phys. Lett. 372, 805 (2003).
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First correlated 
results for more 
than 2 electrons
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Introduction
• Our basis set needs to 

describe the oscillatory 
behavior of the continuum 
states

• B-spline basis sets are suitable

• Our BSTO basis set, if chosen 
properly, turns out to be 
suitable as well

Continuum functions from BSTOs
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• A smaller wall distance R limits the number of 
functions necessary but it must be outside of the 
range of the density and/or the range of the 
occupied orbitals.

• At a BSTO function maximum (n > 1) we have 
the relation

• The maxima are distributed evenly and n 
determines the “width” of the functions (n is 
chosen, alpha determined by n and R)

IntroductionParameters for the BSTO set

α =
r + n(r −R)

r(r −R)

FBSTO = N
(
1− r

R

)
rn−1e−αr



Introduction

• BSTO results (markers) 
are on top of the grid 
code results

• Three wall distances 
already determine most 
of the curve

e-H scattering
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Introductione-He+ scattering
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MOLECULES



Molecules: non-spherical systems

• The fact that molecules are non-spherical complicates matters

• The results are dependent on the scattering angle and the molecule might 

break up and fragments can fly away in any direction



Body-frame and lab-frame

Want to know more about the basics of break-up channels: download Han-lectures 1995 from 

Jaap Snijders from theochem.chem.rug.nl
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CM

Useful when electron is far from the 

molecule

Useful when electron is close to the 

molecule (N+1 electron system)



Elastic scattering

• Elastic scattering is often the only channel considered when studying large 

molecules

• The Born-Oppenheimer approximation is assumed to be valid (this is not 

always a good assumption for scattering calculations!)

• Exchange is almost always included as an effective potential, correlation only 

through an effective polarization potential

• Even elastic scattering is much more involved when dealing with non-spherical 

systems



• Most scattering methods expand the continuum functions, and often also the 

optical potential, in partial waves

Partial waves expansion

HΨE = EΨE

ΨE = A
∑

target
states

(
one− particle

scatteringfunction

) (
target

eigenfunctions

)

(
one− particle

scatteringfunction

)
=

∑

partial
states

(
radial

scatteringfunction

) (
angular
function

)



• Spherical systems: in the partial wave expansion, every l-value decouples, we 

have s-wave scattering, p-wave scattering, etc.

• This is not true for non-spherical systems. For example, for linear systems we 

have waves of Sigma, Pi, Delta, etc. symmetry (compare to MO theory)

• Each angular momentum combination l,m is viewed as a channel, the channels 

are then coupled using the close-coupling equation

• Since many l,m values need to be included for a correct description of the 

continuum states and potential, a large set of coupled equations needs to be 

solved

• Even when doing just elastic scattering!



DNA: state-of-the art
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Elastic scattering of low-energy !0–13 eV" electrons from more realistic models of a DNA base-pair decamer
is studied using multiple-scattering theory and T matrices obtained from ab initio R-matrix calculations. The
models include two types of irregularities usually found in cellular DNA: base-pair mismatch and structural
water molecules. Furthermore, we include in our calculation inelastic collisions. It is found that the basic
interference patterns observed in the ideal and nonideal !i.e., more realistic" decamers are similar but have
different amplitudes and are shifted in energy. Substantial inelastic losses, interestingly, cause pronounced local
resonances, which could have an important influence in DNA strand breaks.
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I. INTRODUCTION

In a recent paper #1$, henceforth referred to as paper I,
low-energy electron elastic scattering from an idealized se-
quence of ten DNA base pairs was studied. A thrifty
multiple-scattering !MS" model was proposed #2–5$ which
used accurate electron-scattering calculations for the DNA
bases obtained using the R-matrix method #6,7$. Complex
interference modulations were observed in the total wave
function, the scattering cross section, and axial currents
which emphasized the importance of multiple elastic scatter-
ing in electron capture. These results correlated well with
experimental data. In this paper, we consider a nonideal
decamer in order to evaluate the impact of pair mismatch,
structural water molecules, and inelastic losses on the elastic
scattering of low-energy electrons that are incident perpen-
dicular to the decamer. It is important to verify, for instance,
whether the energy-dependent elastic-scattering features are
primarily associated with the structural water molecules sur-
rounding the bases and/or the sugar-phosphate backbone as
has been suggested by the recent work of Orlando et al. #8$.

We first describe the structure of the model decamer and
review the theory. Next we explore the effect of pair mis-
match, structural H2O and energy-loss electrons on elastic
scattering. All equations are expressed in atomic units !a.u."
in which the Bohr radius is the unit of length and the hartree
!2 Ry" is the unit of energy.

II. MODEL

A. Decamer structure

The present study considers the nonideal B form of the
GCGAATTGGC decamer !without backbone" which has two

base-pair mismatches: the third base pair from either end is
G-G. This decamer is the inner part of the protein data bank
cataloged 1D80 dodecamer 5!-D!*CP*GP*CP*GP*
AP*AP*TP*TP*GP*GP*CP*G"-3! #9$ with back-
bone removed and retaining only the 23 innermost water
molecules that are in a cylindrical volume contained within 6
a.u. of the outermost tip of the bases and within 6 a.u. of the
top and bottom base pairs. A side view of the decamer, plot-
ted with JMOL #10$, is shown in Fig. 1.

The structural defects result in a substantial variation in
the basic DNA parameters. The regular B form of DNA has
10 base pairs per helical turn !thus our choice of a decamer"
and hence a 36.0° helical twist, a small tilt !2.8° inclination"
relative to the spiral axis but appreciable roll !−15.1° propel-
ler twist" of the base pairs, a rise of 6.39 a.u. between suc-
cessive base pairs. Our nonideal decamer has an average rise
of 6.23 a.u. with a standard deviation of 0.48 a.u. compared
to 0.19 for the ideal GCGAATTGGC decamer in paper I. As
a combined measure of twist and roll, we have taken the
polar angle of the normal direction to the bases relative to the
spiral direction. The average value here is 0.188 rad with a
standard deviation of 0.08 rad compared to 0.11 and 0.0008,
respectively, for the ideal decamer. There are thus significant
variations in rise, tilt, and roll within our decamer. But let us
first review the theoretical framework.

B. Multiple-scattering theory

In paper I, we presented the basic equations for multiple
electron scattering within macromolecules, including DNA.
For the latter, we proposed a simple model of molecular
subunits !i.e., bases, sugars, and phosphates" immersed in an
optical potential Uop, which is constant between their
R-matrix shells !or between the muffin tins", a working hy-
pothesis that has been used in the calculations for simple
molecules #11$, in the theory of low-energy electron diffrac-

*Permanent address: Département de Physique, Université de
Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1; laurent-
g.caron@usherbrooke.ca

PHYSICAL REVIEW A 80, 012705 !2009"

1050-2947/2009/80!1"/012705!6" ©2009 The American Physical Society012705-1



DNA bases

• DNA bases can be calculated using R-matrix 

methods

• Elastic scattering only

exchange

correlation

“bound” states of N+1 
system

partial wave expansion 
of continuum functions

polarization

scattering from effective potential

R
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Calculations are carried out to determine elastic-scattering cross sections and resonance energies for
low-energy electron impact on uracil and on each of the DNA bases !thymine, cytosine, adenine,
and guanine", for isolated molecules in their equilibrium geometry. Our calculations are compared
with the available theory and experiment. We also attempt to correlate this information with
experimental dissociation patterns through an analysis of the temporary anion structures that are
formed by electron capture in shape resonances. © 2006 American Institute of Physics.
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I. INTRODUCTION

Reactions induced by electrons drive nearly all the im-
portant chemical processes in radiation chemistry, plasma
etching in semiconductors, and stability of waste reposito-
ries, and are also fundamental in the dynamics of the atmo-
sphere and interstellar clouds, with processes such as disso-
ciative recombination and electron attachment.

In recent years, an increasing importance has been rec-
ognized to these processes in biological environments, espe-
cially in relation to radiation damage to nucleic acids !DNA
and RNA". These processes consist in the interaction of ion-
izing radiation !such as !, ", and # rays" with living tissue,
generating possibly mutagenic and carcinogenic by-products,
through a wide variety of ionization, excitation, and energy-
transfer processes, that can interest many molecular species
in the complex cell environment.

The important work of Sanche and co-workers1–3 has
shown that damage to nucleic acids from ionizing radiation4

!single and double strand breaks in particular" can be gener-
ated through a mechanism involving low-energy electron at-
tachment to the nucleic acid and subsequent bond breaking
due to energy transfer to a vibrational mode of the temporary
anion formed in the electron-capture step. These low-energy
secondary electrons are generated by electron-impact ioniza-
tion caused by high-energy electrons, originally produced di-
rectly by the ionizing radiation. In the electron-impact ion-
ization process, the scattered electron loses part of its kinetic
energy, while another electron is ejected, with energy much
lower than the first one.

In the past few years many studies have been devoted to
understanding the mechanism for the action of the low-
energy electrons and their capability to cause strand
breaks.5–9 A first general feature on which there is a wide
agreement is that the electron capture is mainly due to the
DNA and RNA bases. These molecules have extended aro-

matic systems; therefore there is a wide range of low-lying
unoccupied $* orbitals where an electron can be captured,
giving rise to a shape resonance, a temporary anion, in the
range of energies between 0 and 15 eV, where the experi-
ments have found signatures of electron-induced damage to
nucleic acids.

The simplest of these bases are thymine, cytosine, uracil
!pyrimidines and monocyclic", and adenine and guanine !pu-
rines, bicyclic, and generally larger than pyrimidines". Their
structures are shown in Fig. 1. In this paper we will present
theoretical predictions of cross sections for elastic electron
scattering from these large molecules. Determination of the
location, width, and electronic structure of resonances for a
single target molecule is an important step towards under-
standing and possibly modeling the complex dynamics of

a"Electronic mail: tonzani@colorado.edu

FIG. 1. !Color online" Ground-state equilibrium structures of the molecules
considered in this paper. The black atoms are oxygens, the dark gray circles
represent carbons, the light gray atoms are nitrogens, while the small circles
are hydrogens.
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DNA bases

• Exchange and polarization (correlation) effects 

are included using an effective potential

• LDA exchange potential is used

• Polarization-correlation potential is also based 

on DFT

• The correlation potential LYP is used to 

include polarization and “correlation”
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DNA bases

• Target states are obtained from HF

• Finite elements: basis functions consisting 

of simple polynomials defined only in very 

small sectors. Continuity between sectors

Low-energy electron scattering from DNA and RNA bases:
Shape resonances and radiation damage

Stefano Tonzania!

JILA and Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0440

Chris H. Greene
Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440

!Received 18 July 2005; accepted 11 November 2005; published online 2 February 2006"

Calculations are carried out to determine elastic-scattering cross sections and resonance energies for
low-energy electron impact on uracil and on each of the DNA bases !thymine, cytosine, adenine,
and guanine", for isolated molecules in their equilibrium geometry. Our calculations are compared
with the available theory and experiment. We also attempt to correlate this information with
experimental dissociation patterns through an analysis of the temporary anion structures that are
formed by electron capture in shape resonances. © 2006 American Institute of Physics.
#DOI: 10.1063/1.2148965$

I. INTRODUCTION

Reactions induced by electrons drive nearly all the im-
portant chemical processes in radiation chemistry, plasma
etching in semiconductors, and stability of waste reposito-
ries, and are also fundamental in the dynamics of the atmo-
sphere and interstellar clouds, with processes such as disso-
ciative recombination and electron attachment.

In recent years, an increasing importance has been rec-
ognized to these processes in biological environments, espe-
cially in relation to radiation damage to nucleic acids !DNA
and RNA". These processes consist in the interaction of ion-
izing radiation !such as !, ", and # rays" with living tissue,
generating possibly mutagenic and carcinogenic by-products,
through a wide variety of ionization, excitation, and energy-
transfer processes, that can interest many molecular species
in the complex cell environment.

The important work of Sanche and co-workers1–3 has
shown that damage to nucleic acids from ionizing radiation4

!single and double strand breaks in particular" can be gener-
ated through a mechanism involving low-energy electron at-
tachment to the nucleic acid and subsequent bond breaking
due to energy transfer to a vibrational mode of the temporary
anion formed in the electron-capture step. These low-energy
secondary electrons are generated by electron-impact ioniza-
tion caused by high-energy electrons, originally produced di-
rectly by the ionizing radiation. In the electron-impact ion-
ization process, the scattered electron loses part of its kinetic
energy, while another electron is ejected, with energy much
lower than the first one.

In the past few years many studies have been devoted to
understanding the mechanism for the action of the low-
energy electrons and their capability to cause strand
breaks.5–9 A first general feature on which there is a wide
agreement is that the electron capture is mainly due to the
DNA and RNA bases. These molecules have extended aro-

matic systems; therefore there is a wide range of low-lying
unoccupied $* orbitals where an electron can be captured,
giving rise to a shape resonance, a temporary anion, in the
range of energies between 0 and 15 eV, where the experi-
ments have found signatures of electron-induced damage to
nucleic acids.

The simplest of these bases are thymine, cytosine, uracil
!pyrimidines and monocyclic", and adenine and guanine !pu-
rines, bicyclic, and generally larger than pyrimidines". Their
structures are shown in Fig. 1. In this paper we will present
theoretical predictions of cross sections for elastic electron
scattering from these large molecules. Determination of the
location, width, and electronic structure of resonances for a
single target molecule is an important step towards under-
standing and possibly modeling the complex dynamics of

a"Electronic mail: tonzani@colorado.edu

FIG. 1. !Color online" Ground-state equilibrium structures of the molecules
considered in this paper. The black atoms are oxygens, the dark gray circles
represent carbons, the light gray atoms are nitrogens, while the small circles
are hydrogens.

THE JOURNAL OF CHEMICAL PHYSICS 124, 054312 !2006"

0021-9606/2006/124"5!/054312/11/$23.00 © 2006 American Institute of Physics124, 054312-1

Downloaded 07 Dec 2009 to 130.37.129.78. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



III. RESULTS

To our knowledge there are no available experimental
data or calculations of low-energy electron scattering from
the complete set of DNA bases. A study of electron attach-
ment has been presented in Ref. 6 and the resonance posi-
tions are clearly marked. Compared to these results, our cal-
culations show resonances shifted typically by about 2 eV
higher in energy, but the energy spacing of the resonances is
comparable to what is observed in the experiment. Moreover
the relative values of the widths of successive resonances
resemble the measured widths. There is also a theoretical
study at intermediate energies4 and calculations for scattering
from uracil;12,30 in the following we compare these results to
ours.

We have already mentioned that the heterocyclic DNA
bases have many low-lying unoccupied orbitals, so it is not
surprising that their elastic cross sections for electron scat-
tering exhibit many shape resonances. These may be viewed
as a capture of the scattered electron into one of these anti-
bonding orbitals to form a short-lived negative-ion state.31,32

Since all these molecules have, in their equilibrium con-
figuration, only one symmetry element—reflection through
the molecular plane—we will characterize the resonances as
being of ! type !no node in the plane" or " type !when they
have instead a node in the plane" rather than using the A! and
A" labels as is customary for the Cs group.

A. Positions and widths of resonances

A general comparison of partial elastic cross sections for
all five of these molecules is shown in Fig. 3, while in the
following we give a more detailed description and compare
with the information available in the literature. Also, a plot
of total time delays !see also Sec. III B for details" is pro-
vided in Fig. 4 to show the resonances in more detail.

Since we are dealing with polar molecules, applying the
fixed-nuclei approximation as it stands makes the partial-
wave expansion of the forward-scattering amplitude diver-
gent. Due to the long-range nature of the dipole interaction,
in fact, all partial waves would contribute to the scattering
process, causing an infinite scattering in the forward direc-
tion and therefore infinite integral cross sections. There is a
method, extensively discussed in the literature,33,34 to deal
with this problem by means of a Born closure formula,
which yields a finite integral cross section once molecular
rotations are included. We will not pursue this further since
existing experiments are not likely to deal with such detailed
rotational structures. Therefore our cross sections and time
delays include only up to lmax=10 and omit all higher partial
waves. The correction would be proportional to the dipole
moment squared and inversely proportional to the smallest

FIG. 3. Partial elastic cross section for the five DNA and RNA bases de-
scribed in the text. Calculations involve partial waves up to l=10 and the
dipole physics outside the R-matrix box is included exactly for those partial
waves.

FIG. 4. Total time delay for the molecules described in the text.

FIG. 2. !Color online" Resonant wave-function surface for uracil at 2.4 eV
!Fig. 13". This surface is a cut through the plane containing the nuclei,
shown in the region of the oxygen atom attached to C2. The dots are the
actual grid points of our calculation, while the coarsely spaced grid is a
linear interpolation of the resonant wave function #eigenstate of Eq. !10"$
and the finely spaced grid that shows a cusp is the K-shell orbital of oxygen,
here represented to show how our grid is designed around the nuclei. The
color bar on the right side refers only to the resonant wave function, while
the K-shell orbital is colored just to make it more visible. The K-shell orbital
is shifted upward by 0.04 to make it more clearly visible, therefore its base
is not a nodal surface.
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• Resonances are mainly shape resonances where an electron is captured in one 

of the low-lying unoccupied states of the molecules

• These resonant states might be precursors to dissociation of the molecule

• From their results C-C and C-N cleavage due to these resonances seems 

possible reasonable

S. Tonzani and C. H. Greene. Low-energy electron scattering from dna and rna bases: Shape resonances and 

radiation damage. J. Chem. Phys. 124:054312, 2006.



• The same techniques have been used to 

study models of backbone sugar and 

phosphate units

Backbone

by this analysis lead us to draw a possible link between our
calculations and experimental data on dissociative electron
attachment.

II. THEORY

Electron scattering from a polyatomic molecule is intrin-
sically a many-body problem that can, under the so-called
static-exchange approximation,16 be reduced to a one elec-
tron problem. The static-exchange approximation amounts to
including only the ground state of the target in the close
coupling expansion of the wave function, and it is essentially
the equivalent of the Hartree-Fock approximation for con-
tinuum states.17 A detailed description of our method can be
found in Refs. 9, 18, and 19, therefore here we will just
sketch the main points of the treatment.

To solve this one electron problem,18 we use the
R-matrix method which starts by partitioning space into two
zones: a short range zone, where all the channels are coupled
and the scattering problem can, in principle, be treated in all
its many-body complexity, and an outer zone !external to the
target electron density", in which the escaping electron only
sees the effect of the target molecule as a multipole expan-
sion of its electrostatic potential. In its eigenchannel form,
the R-matrix method can be formulated as a variational
principle20 for the normal logarithmic derivative !−b" of the
wave function on the reaction zone surface:

b # −
! log!r!"

!r
= 2

$V!*!E − Ĥ − L̂"!dV

$V!*"!r − r0"!dV
, !1"

where L̂ is the Bloch operator, needed to make the Hamil-
tonian Ĥ Hermitian, and r0 is the boundary between the in-

ternal and external regions. It is possible, after expanding the
internal region wave function in a suitable basis set, to recast
the solution of Eq. !1" as an eigenvalue problem:

#! C = 2!EO! − H! − L! "C = $! Cb , !2"

where O! is a matrix of volume overlap between the basis
functions, while $! is an overlap of the basis functions on the
surface of the internal zone,20 essentially the denominator of
Eq. !1", and H! and L! are the matrix representations of the
operators in Eq. !1". Through basis set partitioning we shift
the computational burden to the solution of a large linear
system. As a basis set we use finite elements21 in all three
spherical coordinates, in this way we have large but sparse
matrices that are amenable for solution with fast sparse
solvers.19,22

To simplify further the description of our system, we
have to deal with the nonlocality inherent in the potential. To
do this we use a local density approximation for the ex-
change potential, which reduces it to a functional only of the
local density:

Vex!r" = −
2
%

kFF!kF,E" , !3"

where kF is the local Fermi momentum:

kF!r" = %3%2&!r"&1/3 !4"

and F is a functional of the energy and the local density &!r"
!through the local Fermi momentum". The functional form
we use for F is called the Hara exchange.23 It has been ex-
tensively employed in continuum state calculations, and it is
energy dependent. The local exchange approximation,
widely used also in density functional theory !DFT"
calculations,24 has proven itself to give qualitatively correct
results,16,18 while being sufficiently simple to implement
computationally that it permits an exploration of complex
molecular species.

A polarization-correlation potential is added to this. The
long range part of this potential is a simple multipole expan-
sion, of which we retain only the induced dipole polarization
term:

Vpol = −
'0

2r4 , !5"

where '0 is the totally symmetric component of the polariz-
ability tensor, and it can be calculated ab initio using elec-
tronic structure codes. Exploratory tests suggest that the an-
isotropic polarizability and the electron-quadrupole
interaction are much less important. For example, the aniso-
tropic part of the polarizability, when introduced, generates a
maximum difference of 0.01 rad in the phase shifts, which in
turn translates in a variation of the cross section values of
roughly 1%.

In the volume where the electronic density of the target
is not negligible, this potential is nonlocal. The polarization-
correlation interaction can be approximated again as a local
potential, different forms of which have been suggested in
the literature. The one we use is based on DFT !specifically
on the LYP potential of Ref. 25", and it has yielded reliable

FIG. 1. !Color online" Three-dimensional structures of phosphoric acid and
tetrahydrofuran. The small circles are hydrogen atoms.

FIG. 2. Schematic structures of cyclopentane !I", THF !II", and the DNA
sugar deoxyribose !III" that show the similarities between these compounds.
The hydrogen atoms that fill the carbon valences are not shown. The ring
conformation we have used in the calculations is not planar but puckered, as
indicated in Fig. 1 for THF, therefore the C2 carbon is below the plane and
C3 above; here they are indicated both above for ease of drawing.
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by this analysis lead us to draw a possible link between our
calculations and experimental data on dissociative electron
attachment.

II. THEORY

Electron scattering from a polyatomic molecule is intrin-
sically a many-body problem that can, under the so-called
static-exchange approximation,16 be reduced to a one elec-
tron problem. The static-exchange approximation amounts to
including only the ground state of the target in the close
coupling expansion of the wave function, and it is essentially
the equivalent of the Hartree-Fock approximation for con-
tinuum states.17 A detailed description of our method can be
found in Refs. 9, 18, and 19, therefore here we will just
sketch the main points of the treatment.

To solve this one electron problem,18 we use the
R-matrix method which starts by partitioning space into two
zones: a short range zone, where all the channels are coupled
and the scattering problem can, in principle, be treated in all
its many-body complexity, and an outer zone !external to the
target electron density", in which the escaping electron only
sees the effect of the target molecule as a multipole expan-
sion of its electrostatic potential. In its eigenchannel form,
the R-matrix method can be formulated as a variational
principle20 for the normal logarithmic derivative !−b" of the
wave function on the reaction zone surface:

b # −
! log!r!"
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= 2
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where L̂ is the Bloch operator, needed to make the Hamil-
tonian Ĥ Hermitian, and r0 is the boundary between the in-

ternal and external regions. It is possible, after expanding the
internal region wave function in a suitable basis set, to recast
the solution of Eq. !1" as an eigenvalue problem:

#! C = 2!EO! − H! − L! "C = $! Cb , !2"

where O! is a matrix of volume overlap between the basis
functions, while $! is an overlap of the basis functions on the
surface of the internal zone,20 essentially the denominator of
Eq. !1", and H! and L! are the matrix representations of the
operators in Eq. !1". Through basis set partitioning we shift
the computational burden to the solution of a large linear
system. As a basis set we use finite elements21 in all three
spherical coordinates, in this way we have large but sparse
matrices that are amenable for solution with fast sparse
solvers.19,22

To simplify further the description of our system, we
have to deal with the nonlocality inherent in the potential. To
do this we use a local density approximation for the ex-
change potential, which reduces it to a functional only of the
local density:

Vex!r" = −
2
%

kFF!kF,E" , !3"

where kF is the local Fermi momentum:

kF!r" = %3%2&!r"&1/3 !4"

and F is a functional of the energy and the local density &!r"
!through the local Fermi momentum". The functional form
we use for F is called the Hara exchange.23 It has been ex-
tensively employed in continuum state calculations, and it is
energy dependent. The local exchange approximation,
widely used also in density functional theory !DFT"
calculations,24 has proven itself to give qualitatively correct
results,16,18 while being sufficiently simple to implement
computationally that it permits an exploration of complex
molecular species.

A polarization-correlation potential is added to this. The
long range part of this potential is a simple multipole expan-
sion, of which we retain only the induced dipole polarization
term:

Vpol = −
'0

2r4 , !5"

where '0 is the totally symmetric component of the polariz-
ability tensor, and it can be calculated ab initio using elec-
tronic structure codes. Exploratory tests suggest that the an-
isotropic polarizability and the electron-quadrupole
interaction are much less important. For example, the aniso-
tropic part of the polarizability, when introduced, generates a
maximum difference of 0.01 rad in the phase shifts, which in
turn translates in a variation of the cross section values of
roughly 1%.

In the volume where the electronic density of the target
is not negligible, this potential is nonlocal. The polarization-
correlation interaction can be approximated again as a local
potential, different forms of which have been suggested in
the literature. The one we use is based on DFT !specifically
on the LYP potential of Ref. 25", and it has yielded reliable

FIG. 1. !Color online" Three-dimensional structures of phosphoric acid and
tetrahydrofuran. The small circles are hydrogen atoms.

FIG. 2. Schematic structures of cyclopentane !I", THF !II", and the DNA
sugar deoxyribose !III" that show the similarities between these compounds.
The hydrogen atoms that fill the carbon valences are not shown. The ring
conformation we have used in the calculations is not planar but puckered, as
indicated in Fig. 1 for THF, therefore the C2 carbon is below the plane and
C3 above; here they are indicated both above for ease of drawing.
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results in the work of Lucchese et al.26 This form makes use
of the electron density, its gradient, and Laplacian, which
have to be calculated for each target molecule. The short and
long range potentials are matched unambiguously !continu-
ously but with discontinuous derivatives" at the innermost
crossing point, whose radius is dependent on the angles. The
matching is unambiguous in the sense that there are two
crossing points between the inner and outer potentials for
each angle, and we always choose the innermost, since the
other is far in the region where the electron density of the
molecule is very small. Choosing the outermost crossing has
proven to give unphysical results27 in many cases. In recent
years, better density functionals have been devised that give
the quantities of interest more directly, without the need for
an additional polarization contribution, and they have been
recently used in connection with time-dependent DFT to cal-
culate scattering observables.28

Since the molecules considered in this work possess di-
pole moments, we take dipole interaction effects into account
in the manner described in Ref. 9. Recently we discovered a
mistake in our dipole matching code that led to an overesti-
mation of the cross sections in Fig. 3 of Ref. 9 of #10% at
very low energy, decreasing and becoming negligible beyond
#10 eV, but its effects on the other results in that work are
negligible. The quadrupole fields can potentially be signifi-
cant as well, but they are roughly half of the dipole field at
the box boundary; accordingly, we did not include quadru-
pole interactions outside the box, since their effect was found
to be small when analyzed using an R-matrix propagation
technique.29,30 The nonspherical part of the polarizability
tensor is quite small as well, roughly one-fourth of the
spherical part, and from previous calculations we have seen
how such values have only a minimal influence on the final
results; this too has been neglected here.

For molecules with dipole moments the fixed-nuclei
scattering cross sections are formally infinite. This diver-
gence can be readily eliminated by considering rotations of
the molecule as a Born closure expansion.31 We have not
implemented this here, as in our previous work on the DNA
bases, because this level of detail is not our present interest.
Moreover, the dipole moments here are also less than half
what they were for the DNA and RNA bases, so the correc-
tion will be even less important here. Therefore the cross
sections we show should be understood to include only up to
a maximum electronic orbital angular momentum lmax=10,
with all the higher partial waves omitted. We stress as well
that since our model does not include excited states of the
target molecule when the electron energy is above any exci-
tation or the ionization threshold !the latter is at roughly
9.8 eV for both molecules in this study, but since our model
is approximate we can expect that this will be shifted upward
by a few eV", the electron molecule compound will have
many more channels to decay into, with the result that the
higher energy resonances will be modified by these new in-
teractions.

All the target quantities are calculated at the Hartree-
Fock level using a 6-31G** basis set, and the target equilib-
rium geometries have been optimized at the same level of
theory. The remaining details of the calculations are very

similar to those reported in Ref. 9, including the convergence
criteria. The dimension of the matrices is roughly 200 000
!200 000, and our convergence studies show that increasing
the number of sectors by 30% lowers the position of the
resonances by #0.1 eV in THF. These calculations are very
cumbersome, and for the level of accuracy we are aiming for
here, this convergence criterion seems adequate. For details
on the treatment of the integrals and of the nuclear Coulomb
singularities we refer the reader to our previous publications,
specifically Sec. II E of Ref. 18 and Sec. II D of Ref. 9.

III. RESULTS

A. THF

In Fig. 3 our results are compared to the low-resolution
experimental data of Zecca et al.13 and the theoretical results
of Bouchiha et al.,15 obtained like ours without performing a
Born closure to consider the effect of the dipole field on the
higher partial waves. We also plot the data in the form of a
time delay9 to make the resonance position and width more
evident. The total time delay is the sum of the eigenvalues of
the Hermitian matrix

Q = iS
dS†

dE
, !6"

where S is the scattering matrix. In Fig. 3 we also plot the
resonant channels, in particular, eigenvalues of the time-

FIG. 3. Partial elastic electron scattering cross sections from THF !solid
line"; the dot-dashed line represents the static-exchange results. Calculations
involve partial waves up to l=10 and the dipole physics outside the R-matrix
box is included exactly for those partial waves. Top: Cross section compari-
son with theoretical !dotted" !Ref. 15" and experimental !dashed" !Ref. 13"
results; the open squares are the actual experimental data points. Bottom:
Time-delay plot to highlight the presence of resonances. The full curve is the
total time delay, while the numbered curves correspond to the few highest
eigenvalues that exhibit resonant behavior. The total time delay was rescaled
to show all curves on the same graph more easily.
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tion damage caused by low energy electrons. Since our
model is approximate, resonance shifts of 1–2 eV higher than
experiment are usually observed. In THF we find a very
broad resonance, which agrees !within the limits of our
model" with recent experimental data, but not with one re-
cent theoretical calculation. Also for phosphoric acid we find
shape resonances. In both cases the resonances are quite
broad and high in energy and are not expected to play a
major role, compared to those of the nitrogenous bases, in
electron capture leading to damage in DNA. For THF we
have also attempted to correlate the resonant structures with
recent DEA experiments and to electron scattering experi-
ments from other related molecules.
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FIG. 6. H3PO4 partial elastic cross section !top" and time-delay analysis
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by this analysis lead us to draw a possible link between our
calculations and experimental data on dissociative electron
attachment.

II. THEORY

Electron scattering from a polyatomic molecule is intrin-
sically a many-body problem that can, under the so-called
static-exchange approximation,16 be reduced to a one elec-
tron problem. The static-exchange approximation amounts to
including only the ground state of the target in the close
coupling expansion of the wave function, and it is essentially
the equivalent of the Hartree-Fock approximation for con-
tinuum states.17 A detailed description of our method can be
found in Refs. 9, 18, and 19, therefore here we will just
sketch the main points of the treatment.

To solve this one electron problem,18 we use the
R-matrix method which starts by partitioning space into two
zones: a short range zone, where all the channels are coupled
and the scattering problem can, in principle, be treated in all
its many-body complexity, and an outer zone !external to the
target electron density", in which the escaping electron only
sees the effect of the target molecule as a multipole expan-
sion of its electrostatic potential. In its eigenchannel form,
the R-matrix method can be formulated as a variational
principle20 for the normal logarithmic derivative !−b" of the
wave function on the reaction zone surface:

b # −
! log!r!"

!r
= 2

$V!*!E − Ĥ − L̂"!dV

$V!*"!r − r0"!dV
, !1"

where L̂ is the Bloch operator, needed to make the Hamil-
tonian Ĥ Hermitian, and r0 is the boundary between the in-

ternal and external regions. It is possible, after expanding the
internal region wave function in a suitable basis set, to recast
the solution of Eq. !1" as an eigenvalue problem:

#! C = 2!EO! − H! − L! "C = $! Cb , !2"

where O! is a matrix of volume overlap between the basis
functions, while $! is an overlap of the basis functions on the
surface of the internal zone,20 essentially the denominator of
Eq. !1", and H! and L! are the matrix representations of the
operators in Eq. !1". Through basis set partitioning we shift
the computational burden to the solution of a large linear
system. As a basis set we use finite elements21 in all three
spherical coordinates, in this way we have large but sparse
matrices that are amenable for solution with fast sparse
solvers.19,22

To simplify further the description of our system, we
have to deal with the nonlocality inherent in the potential. To
do this we use a local density approximation for the ex-
change potential, which reduces it to a functional only of the
local density:

Vex!r" = −
2
%

kFF!kF,E" , !3"

where kF is the local Fermi momentum:

kF!r" = %3%2&!r"&1/3 !4"

and F is a functional of the energy and the local density &!r"
!through the local Fermi momentum". The functional form
we use for F is called the Hara exchange.23 It has been ex-
tensively employed in continuum state calculations, and it is
energy dependent. The local exchange approximation,
widely used also in density functional theory !DFT"
calculations,24 has proven itself to give qualitatively correct
results,16,18 while being sufficiently simple to implement
computationally that it permits an exploration of complex
molecular species.

A polarization-correlation potential is added to this. The
long range part of this potential is a simple multipole expan-
sion, of which we retain only the induced dipole polarization
term:

Vpol = −
'0

2r4 , !5"

where '0 is the totally symmetric component of the polariz-
ability tensor, and it can be calculated ab initio using elec-
tronic structure codes. Exploratory tests suggest that the an-
isotropic polarizability and the electron-quadrupole
interaction are much less important. For example, the aniso-
tropic part of the polarizability, when introduced, generates a
maximum difference of 0.01 rad in the phase shifts, which in
turn translates in a variation of the cross section values of
roughly 1%.

In the volume where the electronic density of the target
is not negligible, this potential is nonlocal. The polarization-
correlation interaction can be approximated again as a local
potential, different forms of which have been suggested in
the literature. The one we use is based on DFT !specifically
on the LYP potential of Ref. 25", and it has yielded reliable

FIG. 1. !Color online" Three-dimensional structures of phosphoric acid and
tetrahydrofuran. The small circles are hydrogen atoms.

FIG. 2. Schematic structures of cyclopentane !I", THF !II", and the DNA
sugar deoxyribose !III" that show the similarities between these compounds.
The hydrogen atoms that fill the carbon valences are not shown. The ring
conformation we have used in the calculations is not planar but puckered, as
indicated in Fig. 1 for THF, therefore the C2 carbon is below the plane and
C3 above; here they are indicated both above for ease of drawing.
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Backbone

• Again TG find shape resonances that can be precursors to ring breakage 

(THF) 

• In phosphoric acid the shape resonances are very broad and are unlikely 

to contribute



Base pair decamer with (some) water

• To study this large system, multiple scattering 

theory is applied

• The total (very complicated) potential is 

decomposed in many local potential that do not 

overlap

• A Muffin-Tin like potential is obtained from which 

the electron is scattered

• Information from the DNA base calculations is used 

to generate the potential

tion !LEED" in solids #12$ and nanoscale structures #13$. The
only function of the real part of the optical potential is to
account for the average energy seen by an electron. One can
quite generally describe the scattering problem of a molecu-
lar subunit by its scattering matrix SL!L #14,15$, where L
= !l ,m" are the angular momentum quantum numbers. Each
molecular subunit has an incident plane wave of momentum
k! impinging on it plus the scattered waves of all other sub-
units. More specifically, we described the asymptotic form of
the total wave function !k!

!n"!r!" for a molecule centered at R! n

outside the R-matrix shell by the following equation:

!k!
!n"!r!" = 4"eik!·R! n%

LL!

ilBk!L
!n"YL!!#r!n

"

$& jl!krn"%L!L +
1
2

!SL!L
!n" − %L!L"hl!

!1"!krn"' , !1"

where YL are spherical harmonics, jl and hl!
!1" are the spheri-

cal Bessel function and Hankel function of the first kind,
respectively, r!n=r!−R! n, and

Bk!L
!n" = YL

!!#k!" +
1
2 %

n!!n
%

L1,L2,L2!

il1+l2−l2!Bk!L2

!n!"!SL2!L2

!n!" − %L2!L2
"

$ !− 1"m2!e−ik!·R! nn!Fm1,m,−m2!
l1,l,l2! YL1

!#R! nn!
"hl1

!1"!kRnn!" ,

!2"

where

Fm1,m,−m2!
l1,l,l2! = #4"!2l1 + 1"!2l + 1"!2l2! + 1"$1/2(l1 l l2!

0 0 0
)

$( l1 l l2!

m1 m − m2!
)

and

( l1 l l2!

m1 m − m2!
)

is the Wigner 3-j symbol #16$, and R! nn!=R! n−R! n!. Equation
!2" implies a coupled set of linear equations for all Bk!L

!n",
which measure the resultant of the superposition of the inci-
dent plane wave and the contribution from all other scatter-
ers. As mentioned before #2,3$, the loss of coherence of the
electrons due to inelastic collisions can be invoked through
an imaginary part in the background optical potential Uop
#12$, i.e., an imaginary part to the electron wave number
Im!k"=&−1. Here & acts as a coherence length for the elec-
trons.

Some nontrivial approximations have had to be attached
to these equations to deal with polar molecules. The ground
rules for a satisfactory integration were laid in the recent
studies of the H2O molecule in solid ice #17$ and the water
dimer #18,19$. Fine tuning was achieved in paper I.

!1" A cutoff in the range of action of the dipole must be
introduced. We remove the dipole field for r'ac, where ac is
a cut-off radius equal to the R-matrix sphere size in our case.

!2" An upper cutoff must be applied to angular momenta.
Only values l( lo should be retained such that E!lo ,dm"
)Ee)E!lo+1,dm", where E!lo ,dm"= l!l+1" / !2dm

2 ". We have
chosen the value dm=11 a.u. for interbase scattering that is
of the order of the size of the bases, the distance between
base centers in the base pairs, and the size of the R-matrix
sphere so as to retain all of its important energy-dependent
characteristics. For the scattering between water molecules
and with the bases, we have chosen dm=6 a.u. which is
typical of the distance between neighboring water molecules
and with neighboring bases.

!3" An interpolation procedure between discrete values of
l is used for any scalar quantity. It worked well in I and for
the H2O dimer #18,19$. In the present situation, there are two
angular momentum cutoffs, one for bases and one for water
that have to be interpolated on.

C. Electron capture and scattering

In an effort to extract physically meaningful information
from the multiple-scattering formalism, we have targeted a
calculation of the capture amplitude Vk!

!n" of an electron in a

FIG. 1. !Color online" Side view of the decamer. The oxygen
atoms of the retained water molecules appear as isolated spheres.

CARON et al. PHYSICAL REVIEW A 80, 012705 !2009"
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Base pair decamer with (some) water

• Two incident electron directions were studied, 

perpendicular to the decamer axis 

• Electron loss is modeled using an imaginary part 

in the potential

• The sharp resonances could play an important 

role in strand breaking because they could 

efficiently funnel electrons to the DNA backbone. 

• In particular, large energy losses to electronic 

excitation create additional very low-energy 

electrons, which have a propensity to transfer to 

the DNA backbone and break the C-O bond i.e., 

break the DNA chain

tion on the position of the hydrogen atoms. We therefore
generated a random orientation for each of the water mol-
ecules and used the same T-matrix transformation procedure
as for the bases. Figure 5 compares the directionally aver-
aged cross section for the decamer with and without water.
The difference stems from the contribution of the 23 water
molecules which have each an elastic cross section of order
of 40 a.u !17". Figure 6 compares the directionally averaged
axially scattered current coming from the bases at !" for the
decamer with and without water. Figure 7 shows the square
of the wave function averaged over the water molecules #top
part$ and averaged over the bases for the same two decamers
#bottom part$. The interference patterns below 9 eV for the
bases are quite similar in both of the latter figures contrary to
the findings of Orlando et al. !8" which associates features
solely to the water molecules. Comparing top to bottom
curves of Fig. 7 in the presence of water, one observes that
the wave functions on the water molecules are actually base
driven. The differences in the results from our model and that
of Orlando et al. may be related to the considerably different
scattering approach, the latter being based on the individual
atoms comprising all of the subunits and being limited to
first-order scattering. The bases retain their basic interference
modulations in the presence of water except for the appear-
ance of a strong peak at 9 eV in the axial current. The only
other significant difference is in the axial current above 9 eV
where amplitudes change appreciably. The internal diffrac-

tion hump at 11.4 eV is quite subdued in Fig. 6 by the pres-
ence of the water molecules. This is in line with the Orlando
et al. predictions. The water molecules scatter the incoming
electron in all directions which wash away some of the fea-
tures arising from normal incidence such as the internal dif-
fraction peak.

C. Decamer with inelastic losses

Inelastic losses lead to the disappearance of electrons
from the elastic channel. As mentioned earlier, this loss can
be incorporated in our theoretical description by introducing
an imaginary part to the electron wave number Im#k$=#−1,
where # is an amplitude coherence length for the electrons.

We have carried out the calculations for three values of
the coherence length #=60,40,30 a.u. which are represen-
tative of solids !12,24" and biological materials !25,26". Fig-
ure 8 compares the results for the two incident electron di-
rections: the in-plane and the out-of-plane ones of Fig. 1. The
figure shows that strong resonances emerge and they also
shift in energy as the coherence length decreases from 40 to
30 a.u. In these main peak resonances, the wavelength of the
electron is roughly half of the coherence length. It is also
seen that the resonance amplitudes are sensitive to the elec-

!"!!
!"#!
!"$!
!"%!
!"&!
'"!!
'"#!
'"$!
'"%!
'"&!

! ( '! '(

!
"#
$%
&#

'(
)%

$#
*+

,
%"
#

+)
-.
/0
*-

*-
,
%/
#$

1
*2
#.
)2
#'

!"!!
!"#!
!"$!
!"%!
!"&!
'"!!
'"#!
'"$!
'"%!
'"&!
#"!!

! ( '! '(

!
"#
$%
&#

'(
)%

$#
*+

,
%"
#

+)
-.
/0
*-

*-
3%

'#
'

4-#$&5 6#78

)*+, )-+./ )*+,01+)-+./

FIG. 7. Square of the electron-scattering wave function as a
function of energy: averaged over the water molecules, top part;
averaged over the bases, bottom part, compared to the situation
without water. It has also been averaged over the two chosen elec-
tron incident directions.
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by arrows$.
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Introduction

• Off-center atoms need 
different cutoff factor

• analytic integration 
is more difficult

• Two center integrals 
need to be 
implemented

• TDDFT scattering 
theory for molecules 
needs further 
development

Molecules with DFT: outlook

off-center atoms

two-center 
integrals



Summary



k =
√

2E

ψ(r) = eikz + f(θ,φ)
eikr

r
r →∞

• We are looking for a solution of the SE with as boundary condition an incoming 

wave plus an outgoing spherical wave



Scattering from potentials

• We can obtain cross-section from knowledge of the scattering amplitude f

• The scattering amplitude itself can be obtained from the phase shifts

• Obtain scattering information from matching the wave function at the 

boundaries of the (short-ranged) potential

• The same results can be obtained by placing a 1D or 3D spherical potential in 

a box

σ =
∑

|f |2

f(ε) =
∑

l=0,1

iεleiδl sin(δl)

f(θ) =
∞∑

l=0

2l + 1
k

eiδl sin δl Pl(cos θ)

1D

3D radial



Practical calculations: wave-function

• One often approximates the wave function by the following expansion

• This expression can be used as a trial wave function in a variational calculation

• Levels of approximation: static, static-exchange, static-exchange plus 

polarization

• Exchange is usually approximated by a local potential

Target
functions

1-electron
continuum 
functions

(N+1) electron 
short-range 
functions 
(Gaussians)

Ψk = A
∑

ij

aijkΦN
i ηij +

∑

m

bmkΦN+1
m

Anti-
symmetrizer



Practical calculations: wave-function

• R-matrix

exchange

correlation

“bound” states of N+1 
system

partial wave expansion 
of continuum functions

polarization

scattering from effective potential

R



Practical calculations: TDDFT

• We start from an (N+1)-electron ground state DFT calculation in a box

• Excite electron into the continuum with TDDFT and obtain phase shifts

• At the moment only atoms, but many-electrons can be treated in principle

• BSTO basis set allows for implementation in QC codes (ADF)

• Future: molecules -> will TDDFT become the new state-of-the-art for large 

molecules?
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