Towards molecules with TDDFT: basis sets

e Grid code can be used for atoms
e For efficient calculation of molecules most codes use basis sets (Gaussians)
e \Want to use ADF code: how to include a wall?

e Adapt the STO basis set




Towards molecules....

e |f all basis functions are 0 at the wall radius R and beyond, than any linear combination
of them (i.e. AOs and MOs) must also be 0: we implicitly include a wall
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e A smaller wall distance R limits the number of functions necessary but it must be
outside of the range of the density and/or the range of the occupied orbitals.
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The first derivative is not zero
in this case. Taking a numerical 45
derivative therefore leads to A
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Another intermezzo: compressed atoms

e \We will see that BSTOs can be used to describe scattering functions

e But we can also use them to describe compressed atoms

e Compressed systems are very interesting to study, we can study the effect of pressure
exerted on an atom

e For example, atom in buckyball, impurity in solid, atom in zeolite cage etc...
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The implementation of BSTO functions in ADF
allows for the calculation of properties of compressed

atoms and continuum functions (in a box)
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Square well in a box




Square well in a box




Square well in a box

® The energy of the occupied level rises and passes through
zero at the ionization radius

The polarizability has an S-shaped curve, going like R* in the
“particle in a box” region and converging from below to the
free value

jonization

Energy [a.u.]
Polarizability [a.u.]




Properties of confined atoms

® HOAO orbital energy of He and Ne:
® HPF results available (PW9I for ionization radius)

® DFT SAOP energies

® Polarizability of He and Ne:

® only finite field HF calculations available

® TDDFT SAOP/ALDA static polarizabilities




HOAOQO vs R
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Polarizability vs R

We obtain an S-shaped curve in both
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Polarizability vs R
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behavior of the continuum

describe the oscillatory
® B-spline basis sets are suitable

® Qur basis set needs to
® Qur BSTO basis set, if chosen

properly, turns out to be

suitable as well




Continuum functions from BSTOs

® Our basis set needs to
describe the oscillatory
behavior of the continuum
states

® B-spline basis sets are suitable

® Qur BSTO basis set, if chosen
properly, turns out to be
suitable as well
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Parameters for the BSTO set

® A smaller wall distance R limits the number of
functions necessary but it must be outside of the
range of the density and/or the range of the
occupied orbitals.

FBSTO — N (1 . %) Tn—le—om“

At a BSTO function maximum (n > 1) we have
the relation

r+n(r— R)
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® The maxima are distributed evenly and n
determines the “width” of the functions (n is
chosen, alpha determined by n and R)




e-H scattering

e-H s-wave phase shift
R=100
Reference
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e-He+ scattering

e-He+ s- and p-wave phase shift

® BSTO results (markers)
are on top of the grid
code results
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MOLECULES




Molecules: non-spherical systems

¢ The fact that molecules are non-spherical complicates matters

® The results are dependent on the scattering angle and the molecule might
break up and fragments can fly away in any direction /

~.o \




Body-frame and lab-frame

Useful when electron is far from the Useful when electron is close to the
molecule molecule (N+1 electron system)

Want to know more about the basics of break-up channels: download Han-lectures 1995 from
Jaap Snijders from theochem.chem.rug.nl




Elastic scattering

¢ Elastic scattering is often the only channel considered when studying large
molecules

e The Born-Oppenheimer approximation is assumed to be valid (this is not
always a good assumption for scattering calculations!)

e Exchange is almost always included as an effective potential, correlation only
through an effective polarization potential

¢ Even elastic scattering is much more involved when dealing with non-spherical
systems




Partial waves expansion

e Most scattering methods expand the continuum functions, and often also the
optical potential, in partial waves

HVgp = FEVg

one — particle target
Up = . . . .
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e Spherical systems: in the partial wave expansion, every |-value decouples, we
have s-wave scattering, p-wave scattering, etc.

¢ This is not true for non-spherical systems. For example, for linear systems we
have waves of Sigma, Pi, Delta, etc. symmetry (compare to MO theory)

e Each angular momentum combination |I,m is viewed as a channel, the channels
are then coupled using the close-coupling equation

e Since many |,m values need to be included for a correct description of the
continuum states and potential, a large set of coupled equations needs to be
solved

¢ Even when doing just elastic scattering!




DNA: state-of-the art
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DNA bases
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DNA bases

e Exchange and polarization (correlation) effects
are included using an effective potential

¢ | DA exchange potential is used

¢ Polarization-correlation potential is also based
on DFT

e The correlation potential LYP is used to
include polarization and “correlation”
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DNA bases

e Target states are obtained from HF

¢ Finite elements: basis functions consisting
of simple polynomials defined only in very
small sectors. Continuity between sectors
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e Resonances are mainly shape resonances where an electron is captured in one
of the low-lying unoccupied states of the molecules

® These resonant states might be precursors to dissociation of the molecule

e From their results C-C and C-N cleavage due to these resonances seems
possible reasonable

S. Tonzani and C. H. Greene. Low-energy electron scattering from dna and rna bases: Shape resonances and
radiation damage. J. Chem. Phys. 124:054312, 2006.




Backbone

¢ The same techniques have been used to
study models of backbone sugar and
phosphate units

Phosphoric acid




Backbone
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e Again TG find shape resonances that can be precursors to ring breakage
(THF)

¢ In phosphoric acid the shape resonances are very broad and are unlikely
to contribute

S. Tonzani and C. H. Greene. Radiation damage to dna: electron scattering from the backbone subunits.
J. Chem. Phys. 125:094504, 2006.




Base pair decamer with (some) water

¢ To study this large system, multiple scattering w
theory is applied
9 m

e The total (very complicated) potential is
decomposed in many local potential that do not
overla ®
P @

e A Muffin-Tin like potential is obtained from which
the electron is scattered

¢ Information from the DNA base calculations is used
to generate the potential

’ I \V/ \_‘ \J v FIG. 1. (Color online) Side view of the decamer. The oxygen
atoms of the retained water molecules appear as isolated spheres.




Base pair decamer with (some) water

¢ Two incident electron directions were studied,
perpendicular to the decamer axis

¢ Electron loss is modeled using an imaginary part
in the potential
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¢ The sharp resonances could play an important
role in strand breaking because they could
efficiently funnel electrons to the DNA backbone.

¢ In particular, large energy losses to electronic
excitation create additional very low-energy
electrons, which have a propensity to transfer to
the DNA backbone and break the C-O bond i.e.,
break the DNA chain
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Molecules with DFT: outlook

® Off-center atoms need

different cutoff factor off-center atoms

® analytic integration
is more difficult

® Two center integrals
need to be

implemented two-center

TDDFT scattering integrals
theory for molecules

needs further

development




Summary



1kr

U(r) = e 4 f(6,)—— oo

e \We are looking for a solution of the SE with as boundary condition an incoming
wave plus an outgoing spherical wave




Scattering from potentials

¢ \We can obtain cross-section from knowledge of the scattering amplitude f

o= I

¢ The scattering amplitude itself can be obtained from the phase shifts

Z i€l e sin(8;) 1D
1=0,1
= 20+ 1

k ' sin 6; P;(cos ) 3D radial

[=0

e Obtain scattering information from matching the wave function at the
boundaries of the (short-ranged) potential

® The same results can be obtained by placing a 1D or 3D spherical potential in
a box




Practical calculations: wave-function

e One often approximates the wave function by the following expansion

Uy = AZ ;i ®; Mij + Z Dt @D T

/ Zj/ " \
Anti-
Target (N+1) electron

symmetrizer _
functions short-range

1-electron functions

continuum (Gaussians)
functions

¢ This expression can be used as a trial wave function in a variational calculation

¢ | evels of approximation: static, static-exchange, static-exchange plus
polarization

e Exchange is usually approximated by a local potential




Practical calculations: wave-function

¢ R-matrix

partial wave expansion

) ) olarization
of continuum functions P

correlation
exchange
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Practical calculations: TDDFT

¢ \We start from an (N+1)-electron ground state DFT calculation in a box

e Excite electron into the continuum with TDDFT and obtain phase shifts

¢ At the moment only atoms, but many-electrons can be treated in principle

e BSTO basis set allows for implementation in QC codes (ADF)

¢ Future: molecules -> will TDDFT become the new state-of-the-art for large
molecules?
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