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I. VIBRATIONAL SPECTROSCOPY

The part of the electromagnetic spectrum that is resonant with molecular vibrations is

the infrared. It includes wavelengths ranging from 1 µm to 100 µm. At longer wavelengths

(100 µm to 1 cm) lies the domain of rotational spectroscopy, which uses the microwave part

of the spectrum to study rotational transitions in molecules. At shorter wavelengths (10 nm

to 1 µm) the visible and ultraviolet regions of the spectrum can be found, which induce

electronic transitions in molecules; hence comes the name electronic spectroscopy. Figure 1

illustrates the physical processes underlying these types of spectroscopy using the diatomic

molecule as an example.
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FIG. 1. The three degrees of freedom of a diatomic molecule that form the basis for rotational,

vibrational and electronic spectroscopy. For molecules that are composed of two different atoms

the binding electrons will not be divided equally among the two atoms, which leads to partial

charges on the two atoms (δ+ and δ−). a) The rotational motion of the molecule causes these

two charges to oscillate, thus providing a coupling with microwave radiation. b) The vibrational

motion of the nuclei occurs at higher frequencies and leads to a charge oscillation that is resonant

with infrared radiation. c) The interaction of optical radiation with the electrons constituting the

chemical bond between the two atoms forms the basis for electronic spectroscopy.

II. VIBRATIONAL SPECTROSCOPY OF HYDROGEN-BONDED SYSTEMS

Hydrogen bonds arise when hydrogen is covalently bound to an electronegative element,

such as O, N or F. The binding electrons are drawn towards the electronegative atom, and

this causes the hydrogen atom to acquire a small positive charge. As a result, the hydrogen

atom is attracted to the lone pairs of other electronegative elements. The hydrogen bond

is a motif that is encountered everywhere in living nature, not only in liquid water. The

majority of biological macromolecules, such as DNA and proteins, are shaped by hydrogen

bonds (figure 2), which, in addition to structuring these macromolecules, also provide them

with the flexibility they need to function properly.
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FIG. 2. a) Tetrahedral structure of liquid water. The hydrogen bonds are represented as dotted

lines. b) The alpha-helix, a structural motif in proteins, is held together by hydrogen bonds between

the amide groups of different amino acids.

In liquid water hydrogen bonds of the type OH· · ·O are responsible for the strong at-

traction between water molecules. A water molecule can engage into a maximum of four

hydrogen bonds; it can accept two hydrogen bonds and simultaneously donate two. In ice

this maximum number of hydrogen bonds is indeed formed, which leads to a tetrahedral

structure in which every water molecule is fourfold coordinated by other water molecules.

In the liquid phase the ordered structure collapses and acquires some degree of disorder.

Locally, however, the average tetrahedral coordination is retained (figure 2a) and liquid

water is said to be a highly coordinated and structured liquid. Other hydrogen bonded

liquids than water exist, such as methanol, but water is unique in its ability to form a three-

dimensional network of hydrogen bonds. This three-dimensional hydrogen-bond network

is highly dynamic: hydrogen bonds stretch, contract, break and reform on a picosecond

timescale.

Infrared spectroscopy can be used for studying water and other hydrogen-bonded sys-

tems. Figure 3 shows the mid-infrared spectrum of water. This region of the spectrum is
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sensitive to molecular vibrations. In the spectrum two resonances can be discerned: one

around 1600 cm−1, which is due to the HOH bending vibration, and one around 3400 cm−1

due to the two OH stretching vibrations. The OH stretching vibration is particularly well

suited to study hydrogen bonding, as its frequency provides direct information about the

hydrogen-bond strength: the stronger the hydrogen bonds, the lower the OH stretching

frequency. In liquid water many different conformations of water molecules exist, some of

which are strongly hydrogen bonded, others which are weakly hydrogen bonded. These

conformations absorb at different frequencies, which causes the large spectral width of the

OH-stretching absorption. The band is said to be inhomogeneously broadened.1 Because

of the rapid interconversion of different hydrogen-bonded conformations, conventional (lin-

ear) infrared spectroscopy can only obtain time-averaged information about the structure of

water. In order to obtain dynamic information one has to resort to nonlinear spectroscopic

techniques, which use ultrashort laser pulses (∼100 fs) to obtain instantaneous snapshots

of the hydrogen bond structure. In this thesis we will use one of these techniques, mid-

infrared pump-probe spectroscopy, to study the dynamical aspects of hydrogen bonding in

pure water and other systems. An advantage of mid-infrared pump-probe spectroscopy is

that, when it is performed in a polarization-resolved manner, it also allows one to monitor

the rotational motion of water molecules, and we will make extensive use of this property.

In fact, the central question in this thesis is how the motion of water molecules is affected

by hydrogen bonds and by the nearby presence of other molecules.

1An additional factor contributing to the width of the OH-stretching band is the coupling of the

two OH vibrations of H2O, which leads to a symmetric and antisymmetric combination which

absorb at different frequencies.
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FIG. 3. Mid-infrared spectrum of water which shows the absorption due to the bending and

stretching vibrations of the water molecule. The OH-stretching vibration is strongly inhomo-

geneously broadened as a result of the hydrogen-bond interaction. There is a strong correlation

between the hydrogen-bond strength of a water molecule and its OH-stretching frequency. Strongly

bound water molecules absorb on the low-frequency side of the spectrum, and weakly bound water

molecules absorb on the high-frequency side.

III. THE HARMONIC OSCILLATOR

The vibrations of molecules can be described as a collection of quantum mechanical har-

monic oscillators. Figure 4a displays the simplest possible example of a harmonic oscillator:

a particle of mass m that is connected to a body of infinite mass by spring with spring

constant k. This system has the following Hamiltonian

Ĥ0 =
p̂2

2m
+

1

2
kx̂2, (1)

where p̂ and x̂ are the momentum and position operators.2 Of course, this is an idealized

system that is very different from a real molecule; however, it is convenient because more

2Quantum mechanical operators will be denoted by a hat .̂
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complex systems, such as diatomic and polyatomic molecules, are described by Hamiltonians

of the same form. Clearly for these systems the parameters in eqn. 1 have to be interpreted

in a different way. For a diatomic molecule the mass m no longer represents the particle

mass but rather the reduced mass of the two atoms (figure 4b). In the case of polyatomic

molecules the situation is more complex because we have to take into account the fact

that multiple atoms move at the same time. By working with normal mode coordinates,

however, a vibration can still be described by a single displacement coordinate x . A normal

mode coordinate describes the synchronous displacement of all atoms during the course

of a vibration. As an example figure 4c shows the antisymmetric vibration of H2O. For

polyatomic molecules the mass m in eqn. 1 represents the effective mass of the vibration,

which is a measure for the amount of mass that moves around during the vibration and is

generally a complicated expression of the atomic masses.
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FIG. 4. a) The harmonic oscillator. A particle of mass m is attached to a body of infinite

mass by an ideal spring with spring constant k. The vibrations of molecules can be described by

harmonic oscillators provided that certain substitutions are made. b) For the diatomic molecule

the only change is that the mass m of the oscillator should be replaced by the reduced mass of the

system (m1m2/(m1+m2)). c) Vibrations of polyatomic molecules are described in terms of normal

modes. Here the antisymmetric mode of H2O is shown. Such a vibration can still be described by

a single coordinate, which represents a linear combination of the atomic displacements during the

vibration.

We now consider the solutions to the harmonic oscillator. The allowed states |φ〉 follow

from the time-independent Schrödinger equation:
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Ĥ|φ〉 = E|φ〉, (2)

where E is the total energy. In more detail:

−
(

h̄2

2m

) (
d2φ(x)

dx2

)
+

1

2
kx2φ(x) = Eφ(x), (3)

with h̄ = h/2π, φ(x) the wave function, k = mω2 the spring constant, ω the angular

frequency (=2πν). The solutions are φv(x) = NvHv(y)e−y2/2 with y =
√

mω/h̄x, Nv a

normalisation constant Hv a Hermite polynomial. The eigenenergies are given by

Ev = h̄ω0(v +
1

2
), (4)

where ω0 =
√

k/m represents the resonance frequency of the classical oscillator and v the

vibrational quantum number. A wavefunction |φv〉, which we will also denote as |v〉, is

associated with every eigenenergy Ev. We see that the energies are equally spaced, as shown

in figure 5.
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FIG. 5. Energy level diagram of the harmonic oscillator.
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For the transition dipole matrix elements we have

〈φv|x|φv〉 = 0 (5)

and:

〈φv|x|φv−1〉 ∼
√

v (6)

A. What is oscillating with a quantum harmonic oscillator?

Is 〈x〉 time dependent? To answer this question one has to evaluate 〈x〉 =

∫∞
−∞ dxψ∗(x, t)xψ(x, t). This can be done with the time-dependent Schrödinger equation:

Hψ = ih̄
dψ

dt
(7)

When the Hamilton operator (=−
(

h̄2

2m

) (
d2

dx2

)
+ 1

2
kx2) is not time dependent:

ψ(x, t) = Cvφve
−Evt/h̄ (8)

Expectation value 〈x〉 for ψ(x, t) = φ0(x)e−iE0t/h̄ (ground state):

∫ ∞

−∞
dxφ∗0(x)eiE0t/h̄xφ0(x)e−iE0t/h̄ = 〈φ0|x|φ0〉 = 0. (9)

Expectation value for ψ(x, t) = φ1(x)e−iE1t/h̄:

∫ ∞

−∞
dxφ∗1(x)eiE1t/h̄xφ1(x)e−iE1t/h̄ = 〈φ1|x|φ1〉 = 0. (10)

Expectation value for ψ(x, t) = C0φ0(x)e−iE0t/h̄ + C1φ1(x)e−iE1t/h̄:

〈ψ(x, t)|x|ψ(x, t)〉 = C∗
0C0〈φ0|x|φ0〉+ C∗

1C1〈φ1|x|φ1〉+ (11)

C∗
0C1〈φ0|x|φ1〉e−i(E1−E0)t/h̄ + C∗

1C0〈φ1|x|φ0〉ei(E1−E0)t/h̄ =

2 [C∗
0C1〈φ0|x|φ1〉+ c.c] cos(ωt)
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B. Transitions for a quantum harmonic oscillator

Transitions between the energy levels can be induced by applying a time-dependent

perturbation to the Hamiltonian. In the case of a vibrating molecule, irradiation with

infrared light provides such perturbation. The effect of such a perturbation can be described

with the time-dependent Schrödinger equation,

ih̄
∂

∂t
|φ〉 = Ĥ|φ〉. (12)

The Hamiltonian is the sum of the unperturbed Hamiltonian Ĥ0 and the time-dependent

perturbation V̂int(t),

Ĥ = Ĥ0 + V̂int(t). (13)

We will assume that the perturbation varies harmonically with time,

V̂int = V̂ (eiωt + e−iωt), (14)

as this is the form of the light-matter interaction if the coupling V̂ is written as

V̂ = −1

2
~̂µ · ~E0. (15)

Here ~̂µ is the dipole moment operator. In the above equation we have used the electric-dipole

approximation and assumed the following expression for the oscillating electric field

~E(t) = ~E0 cos ωt, (16)

=
1

2
~E0(e

iωt + e−iωt). (17)

Fermi’s golden rule gives the rate Wkl at which transitions occur from state |l〉 to |k〉

Wkl =
2π

h̄2 |〈k|V̂ |l〉|2 [δ(ωkl − ω) + δ(ωkl + ω)] , (18)

where ωkl = (Ek − El)/h̄. The delta functions ensure that transitions occur only when the

photon energy h̄ω matches the energy difference between the states. A result of Fermi’s
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golden rule is that the probability of light absorption equals the probability of stimulated

emission.

If we explicitly write out the coupling term in the above equation, we obtain

Wkl =
π

2h̄2 |〈k| ~E0 · ~̂µ|l〉|2, (19)

=
πE2

0

2h̄2 cos2(θ)µ2
kl, (20)

where we have assumed resonant excitation. The quantity ~µkl = |〈k|~̂µ|l〉| is called the

transition dipole moment; it is the molecular quantity that determines the strength of an

absorption. θ is the angle between the transition dipole moment and the electric field

polarization. We see that transitions are most likely to occur if the radiation is polarized

parallel to the transition dipole moment.

As it stands the above equation can refer to any type of dipolar transition. In order to

have it refer to a vibrational transition we need to specify the form of the dipole moment

operator. This operator depends on the electronic wave function but we can obtain a useful

phenomenological expression by expanding it as a function of the vibrational coordinate x

~̂µ ≈ ~µ0 + x̂
∂~µ

∂x
. (21)

Note that the operator character has been switched from ~̂µ to x̂. If we use this expression

for the dipole moment, we arrive at

Wkl =
πE2

0

2h̄2 cos2 θ

(
∂~µ

∂x

)2

|〈k|x̂|l〉|2. (22)

This expression contains a number of factors, each of which represents a selection rule in

vibrational spectroscopy. Below we summarize these selection rules:

• Wkl ∝ (∂~µ
∂x

)2

A vibration is only infrared active if the vibrational motion leads to a change in the

dipole moment. As a consequence symmetric vibrations, such as the vibrations of O2

and N2 and the symmetric stretching vibration of CH4 are not observed in infrared

spectroscopy.
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• Wkl ∝ |〈k|x̂|l〉|2

In the harmonic approximation the matrix element 〈k|x̂|l〉 is only non-zero for l = k±1.

As a consequence the only allowed transitions are those that change the excitation of

the oscillator by one quantum of energy. There are two effects that can lead to a

relaxation of this selection rule. The first is an anharmonicity in the potential energy

of the oscillator (i.e. the presence of higher order terms in the potential energy: ∼ x3,

∼ x4, etc.). This mechanical anharmonicity leads to the coupling of wave functions

for which |l − k| > 1. A second possibility is the presence of quadratic and higher

order terms in the expansion of the dipole moment (eqn. 21). Higher order coupling

terms of the form x̂n lead to the coupling of states for which |l − k| = n. This kind

of anharmonicity is known as electrical anharmonicity. In general multiple-quantum

transitions are much weaker than single-quantum transitions.

• Wkl ∝ cos2(θ)

Only the electric field component parallel to the transition dipole moment (i.e. in the

direction of change of the dipole moment) can induce transitions. No transitions can

occur if the radiation is polarized perpendicular to the transition dipole.

IV. LAMBERT-BEER’S LAW

Fermi’s golden rule provides a microscopic expression for the rate at which energy is

absorbed from a beam of light. In this section we relate this equation to a macroscopic

expression for the attenuation of the light beam. We begin with the expression for the

intensity I in terms of the amplitude of the electric field (eqn. 16)

I(ω) =
1

2
cε0E

2
0(ω). (23)

Here c is the speed of light and ε0 is the permittivity of free space. In terms of the intensity

we can write the transition rate from eqn. 20 as
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Wkl =
πI(ωkl)

3h̄2cε0

µ2
kl, (24)

where we have assumed that the sample is isotropic so that we can replace cos2 θ by its

average value of 1
3
. The rate at which energy is absorbed from a beam of light by a single

molecule is found by multiplying the transition rate by the photon energy

P (ωkl) = h̄ωklWkl. (25)

In writing this equation we have assumed that the population of the excited state is negligible

compared to the ground state population. Since the absorbed power is proportional to the

intensity of the light beam, we can define a new molecular quantity, the absorption cross

section σ, as the absorbed power scaled to the intensity of the light,

σ(ωkl) =
P (ωkl)

I(ωkl)
. (26)

A

Iin

dx

dEabs

Iout

FIG. 6. Cylindrical region of space through which a beam passes. The absorption in this region

equals the difference between the flux entering and leaving the region.

Finally by combining equations 24 to 26, we see that the absorption cross-section is

related to the transition dipole moment in the following manner

σ(ωkl) =
πωkl

3h̄cε0

µ2
kl. (27)

We remark that the cross section is a quantity that is averaged over all molecular orientations,

whereas the transition dipole moment is linked to the molecular frame. We would now like

to relate the power absorbed by a single molecule to the attenuation of the light because

this is a quantity that can be straightforwardly determined. For this purpose we consider
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a volume V through which a beam of light propagates (figure 6). This volume contains

absorbing molecules at a concentration C and has a cross-sectional area A. The amount of

energy (dEabs) that is absorbed in this volume during the time dt is given by

dEabs(ωkl) = Ptot(ωkl) dt, (28)

= CV σ(ωkl)I(ωkl) dt, (29)

= Cσ(ωkl)I(ωkl)Adx dt. (30)

In the upper equation Ptot stands for the power absorbed by all molecules in the volume;

in the second equation we have used eqn. 26 and the fact that the number of molecules in

the volume is given by CV . dEabs can also be obtained by considering the incoming and

outgoing intensities (figure 6)

dEabs(ωkl) = (Iin(ωkl)− Iout(ωkl))Adt, (31)

= −AdI dt. (32)

Equating these two we obtain

dI(ωkl) = −σ(ωkl)CI(ωkl) dx. (33)

This is Lambert-Beer’s law in differential form; integration leads to the familiar result

T (ωkl) =
I(ωkl)

I0(ωkl)
= e−σ(ωkl)Cl, (34)

where I0 is the light intensity before the entering the sample, T is the transmission and l is

the sample length. In general one works with the absorbance, which is the natural logarithm

of the transmission and has the advantage that it depends linearly on all parameters

α(ωkl) = − ln (T (ωkl)) = σ(ωkl)Cl. (35)

Lambert-Beer’s law provides the connection between the absorption cross section, which is a

molecular property, and the attenuation of a beam of light, which can be easily determined

experimentally.
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V. MAXWELL-BLOCH EQUATIONS AND POLARITONS

A. Two-level system

in many spectroscopic techniques the studied material properties are related to those of

atoms and molecules, which implies that the response of the systems should be described

quantum-mechanically. Here we will derive the expression for the dielectric response of a

two-level system. Starting point of the description of the dynamics of these systems and

their interaction with the light field is the time-dependent Schrödinger equation:

(Hsys + Hem) Ψ(t) = ih̄
∂Ψ

∂t
, (36)

with Hsys the Hamiltonian of the system, Ψ(t) the time-dependent wavefunction and Hem

the Hamiltonian expressing the coupling of the system with the electro-magnetic field. In

the electric-dipole approximation the Hamiltonian Hem equals e
∑

n rnE(t) cos(ωt) with e the

elementary charge, rn the position operator of the n-th electron, E(t) the envelope function

of the electric field of the light and ω the frequency of the light.

For a two-level system the electromagnetic field can induce a transition between the two

eigenstates of Hsys with wavefunctions φ0 and φ1 (Hsysφ0 = h̄ω0φ0 and Hsysφ1 = h̄ω1φ1).

The time dependent wavefunction Ψ(t) can then be written as :

Ψ(t) = C0(t)ψ0(t) + C1(t)ψ1(t) (37)

with ψj(t) = φje
−iωjt. Substitution of this equation in the time dependent Schrödinger

equation gives :

Hem (C0(t)ψ0(t) + C1(t)ψ1(t)) = ih̄

(
∂C0(t)

∂t
ψ0(t) +

∂C1(t)

∂t
ψ1(t)

)
(38)

We define V10 = (eE/h̄)µ10 with µ10 = 〈φ1|∑n rn|φ0〉. Multiplication of both sides of

equation (38) with ψ∗0 and integration over space yields :

V ∗
10 cos ωte−iω01tC1 = i

∂C0

∂t
(39)
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with ω01 equal to ω1 − ω0. Here we used that
∫

drψ∗1ψ1 = 1 and
∫

drψ∗1ψ0 = 0 Similarly,

multiplication of both sides of equation (38) with ψ∗1 and integration over space yields:

V10 cos ωteiω01tC0 = i
∂C1

∂t
(40)

The dynamics of the system that results from the interaction with light is thus fully expressed

in the time dependence of the coefficients C0(t) and C1(t). As will be shown later, it is useful

to express the dynamics of these coefficients in terms of so-called Bloch density matrix

element ρij. This matrix element is defined as CiC
∗
j . When we substitute ρ̃10e

i(ω0−ω)t for ρ10

and we neglect the rapidly oscillating terms (rotating-wave approximation) we obtain the

following equations for the density matrix elements :

∂ρ̃10

∂t
=

∂ρ̃∗01

∂t
= − i

2
V10(ρ00 − ρ11)− i(ω01 − ω)ρ̃10 (41)

∂ρ11

∂t
= −∂ρ00

∂t
=

i

2
(V01ρ̃10 − V10ρ̃01) (42)

The polarization P of a two level system is given by P = −Ne{µ10ρ10e
−iω01t + c.c.} and P

is equal to 1
2
{Pe−iωt + c.c.}. The envelope function P (t) is equal to −2Neµ1ρ̃10. Using this

equality and setting n = ρ11 = 1 − ρ00 we obtain the Bloch equations for the polarization

and the population of the upper state :

∂P

∂t
=

iNe2|µ01|2
h̄

E(1− 2n) + i(ω − ω0)P (43)

∂n

∂t
=

i

4h̄N
(EP ∗ − E∗P ) (44)

Adding relaxation terms:

∂P

∂t
=

iNe2|µ01|2
h̄

E(1− 2n) + i(ω − ω0)P − P

T2

(45)

∂n

∂t
=

i

4h̄N
(EP ∗ − E∗P )− n

T1

(46)

The (nonlinear effects) of the coupling of light with a two-level system can be described

by these two equations in combination with the wave equation.

In the case of linear response, the change in the population can be neglected which

implies that the two equations for the polarization and the population are decoupled. The
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equation for the polarization can easily be solved in the frequency domain. This means that

we write E(t) = (1/2)
∫

dω′E(ω′)e−i(ω′)t + c.c.}. The same can be done for the polarization:

P (t) = (1/2)
∫

dω′P (ω′)e−i(ω′)t + c.c.}. Substitution of these expressions for P and E in the

equation for P (t) yields:

−
∫

dω′e−i(ω′)tiω′P (ω′) =
iNe2|µ01|2

h̄
E(ω′)(1− 2n0) + (47)

i(ω − ω01)P (ω′)− P (ω′)
T2

(48)

This equation can be solved for each frequency component separately. If we redefine

ω = ω + ω′ and define P (ω) = χ(ω)E(ω), we obtain:

χ(ω) =
Ne2|µ01|2

h̄

1

ω01 − ω − iγ
(49)

Separating the real and imaginary parts, the response of the two-level system can be

written as:

χ(ω) =
Ne2|µ01|2

h̄

{
1

ω01 − ω − iγ

}
=

Ne2|µ01|2
h̄

{
(ω01 − ω)

(ω01 − ω)2 + γ2
+

iγ

(ω01 − ω)2 + γ2

}
(50)

The imaginary part of this response represents a Lorentzian with central frequency ω0 and

width 2γ.

B. Polaritons

From Maxwell’s equation for a dielectric the so-called wave equation can be derived:

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
E =

1

ε0c2

(
∂2ε0E
∂t2

+
∂2P
∂t2

)
(51)

The function E(r, t) can be expressed as a sum of plane waves: E(r, t) =

(1/2)
∫

dω{E(ω)eik(ω)r−i(ω)t + c.c.}. In this expression the r dependence of the field is con-

tained in the sum over eik(ω)r, where k(ω) represents the wave vector depending on the fre-

quency ω. The same can be done for the polarization P(r, t) = (1/2)
∫

dω{P (ω)eik(ω)r−i(ω)t+

c.c.}. If we substitute these expressions for E(r, t) and P(r, t) in the wave equation, we ob-

tain:
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k2(ω)E(ω)eik(ω)r−i(ω)t =
1

ε0c2

(
ω2ε0E(ω)eik(ω)z−i(ω)t + ω2P (ω)eik(ω)z−i(ω)t

)
(52)

Substitution of P (ω) = ε0χ
(1)(ω)E(ω) in the wave equation gives a relation between the

wave vector k and the frequency ω for each frequency component:

k2 =
ω2(1 + χ(1)(ω))

c2
. (53)

The wave vector is a complex quantity and can be written as k = (ω/c)[n(ω) + iκ(ω)].

The parameter n(ω) is denoted as the refractive index and determines the phase velocity

of light: vp = c/n. The parameter κ(ω) represents the damping of the light wave in the

medium: eik(ω)r = eiωn(ω)/ce−ωκ(ω)/c. Hence, the light shows a simple exponential damping

as a function of r for each frequency. The parameter κ is related in a very simple manner

to the decrease of the amplitude of light following the law of Lambert Beer:

I(z, ω) = I(0, ω)e−αz. (54)

It follows that the absorption coefficient α is equal to 2ωκ(ω)/c. It should be noted that

this does not mean that a light pulse propagating through a medium would only show a

change (decrease) of its amplitude and not of its shape. The afore mentioned exponential

damping of the amplitude applies to the light in the frequency domain. In the time domain

the propagation of light through a medium can lead to very complicated interference effects

and thus to a strong distortion of the original shape of the light pulse.

The parameters n and κ are related to the real and imaginary part of the dielectric

susceptibilty in the following way:

n2(ω)− κ2(ω) = 1 + χ(1)
re (ω) (55)

2nκ = χ
(1)
im (ω) (56)

The decomposition of the light field in plane waves eik(ω)r−i(ω)t is a powerful method to

calculate the change of the shape of a light pulse upon propagation. For instance, at r = 0:

E(r = 0, t) = 1
2
{∫ E(ω)e−i(ω)tdω+c.c.}, while at r = l: E(r = l, t) = 1

2
{∫ E(ω)eik(ω)l−i(ω)tdω+
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c.c.}. Hence, the change of the shape of the light pulse upon propagation from z = 0 to

z = l can be obtained by taking the Fourier transform
∫

dωeiωtE(0, t) (yielding the Fourier

components E(ω), multiplying each of these components with eikωl, and taking the Fourier

transform
∫

dωe−iωtE(ω)eikωl back to the time domain yielding E(l, t). In a single equation:

E(l, t) =
∫

dωeik(ω)l−iωt
∫

dteiωtE(0, t) (57)

The effects of propagation are illustrated in Figure 7.

FIG. 7. Effect of polariton propagation near the resonance with the 1S exciton transition in a

Cu2O crystal. The light pulse has an initial pulse duration of 30 ps. The points are experimental

results and the curves are calculated using equation (57). Figure b shows the frequency of the light

components as a function of the group velocity. (After D. Forster et al., Phys. Rev. Lett. 67, 2343

(1991))

It is clearly seen in this figure that frequency components close to a resonance propagate

much slower and leave the sample much later than the frequency components that are far

away from the resonance.

The coupled equations for the polarization and the wave equation can also be solved in

the time domain:

E(r, t) = E0(t− r/v)− bx

2

∫ t−x/v

−∞
dt′e[(1/T2)−i∆ω][t′−t]E0(t

′)
J1{[bx(t− t′)]1/2}

[bx(t− t′)]1/2
, (58)
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where J1 denotes the Bessel function of first order. This equation holds for any pulse

shape entering the sample at x = 0. The factor b contains several material parameters

b = 2α/T2 = 8πωNe2|µ12|2/ch̄, where α denotes the absorption coefficient at the maximum

of the absorption band.

It should be noted that the obtained solution for E(l, t) is only a correct solution of

the Maxwell wave equation if the polarization depends linearly on the electric field. If the

polarization contains terms that are nonlinear in the electric field, the right-hand side of

the transformed wave equation of equation (56) contains additional terms. These additional

terms will give rise to modifications of the propagated light pulse and can give rise to the

generation of new light fields.

VI. VIBRATIONAL SATURATION SPECTROSCOPY

A. Nonlinear optics in general

For strong light fields the response of the material acquires non-linear components in the

electric field of the light:

P = χ(1)E + χ(2)E2 + χ(3)E3 + · · · = χ1E + PNL, (59)

with P the polarization (=induced dipole per volume) of the medium and E the electric field

of light.

Other definition for nonlinear optics: light changes the response for light. Is this possible

for a harmonic oscillator? For example a light pulse excites 100% from v = 0 to v = 1.

Absorption of v = 0 → 1 before the excitation:

B0→1 ∼ |〈φ1|x|φ0〉|2 = 1 (60)

after excitation:

B1→2 ∼ |〈φ2|x|φ1〉|2 = 2 (61)
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However, there is also stimulated emission:

B1→0 ∼ −|〈φ1|x|φ0〉|2 = −1 (62)

B1→2 + B1→0 = B0→1 (63)

In general, the absorption Bn→n+1 ∼ n+1 while the stimulated emission equals Bn→n−1 ∼ n.

Hence, irrespective how the population is distributed over the different levels of the harmonic

oscillator, the net absorption (difference between absorption and emission) is always the

same. Clearly, this is no longer the case if the frequency spacing between the levels is not

constant: anharmonic oscillator. In that case the stimulated emission can no longer be

subtracted from the absorption. Hence, to acquire nonzero χ2, χ3, the resonances of the

medium (= electronic transitions, vibrations, rotations) should be anharmonic.

An example of an extremely anharmonic system is the two-level system. If 50% of the

population is excited to v = 1 in a two-level system: the absorption is given by B0→1 ∼
|〈φ1|x|φ0〉|2, while the stimulated emission equals B1→0 ∼ −|〈φ1|x|φ0〉|2. There clearly is no

absorption from v = 1 as the system only contains two levels. Hence, the total absorption

is: B0→1 + B1→0 = 0. The medium has thus become completely transparent

B. Vibrational pump-probe spectroscopy

FIG. 8. Schematic representation of the pump-probe experiment. A sample of thickness l

is illuminated by a pump pulse, which excites a significant fraction of the molecules. Next a

time-delayed probe pulse is used to monitor the spectral changes induced by the first pulse.
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Up to now we have mainly dealt with linear absorption, which provides information

about the static properties of molecules. In some cases dynamical information can also be

obtained from a linear spectrum. This is because the spectral widths of transitions contain

information about the equilibrium fluctuations experienced by molecules. However, often

there are additional (inhomogeneous) broadening mechanisms at play which obscure the

dynamical information contained in the absorption lineshape. Nonlinear spectroscopies, such

as pump-probe spectroscopy, overcome this problem by directly probing non-equilibrium

properties of a sample. In particular, the sample is first brought into a non-equilibrium state

by an intense pump pulse, after which the relaxation to the equilibrium state is monitored

by a weak, time-delayed probe pulse (figure 8).

Here we will discuss the general principles that underlie the pump-probe experiment,

focusing in particular on those aspects that are observed in the vibrational pump-probe

spectroscopy of water. We first consider the absorption α0 experienced by a weak probe

pulse in the absence of a pump pulse

α0(ω) = σ01(ω)Cl, (64)

= σ01(ω)n, (65)

where we have introduced the symbol n to denote the concentration per unit surface. After

excitation by the pump pulse the sample will exhibit a modified absorption due to three

effects (figure 9). First, after excitation there are less molecules in the ground state, so that

the sample shows a decreased absorption at the fundamental frequency. A second effect

leading to a decreased absorption at this frequency is stimulated emission from the excited

state. Finally, the excited molecules can be further excited to the v = 2 state, which causes

an increased absorption at the frequency of the 1 → 2 transition. These effects lead to the

following expression for the absorption

α(ω) = σ01(ω)(n− 2N1) + σ12(ω)N1, (66)

where N1 is the concentration of excited molecules. The factor 2 enters because ground

state depletion and stimulated emission contribute equally to the absorption change. In a
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pump-probe experiment we usually record the absorption spectrum of the probe beam in

the presence and absence of the pump pulse. The transient absorption ∆α is defined as the

difference between these two spectra

∆α(ω) = α(ω)− α0(ω) = (−2σ01(ω) + σ12(ω))N1. (67)
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FIG. 9. Principle of vibrational pump-probe spectroscopy. a,c) Potential energy diagram of a

typical vibration. In thermal equilibrium all molecules are in the ground state, which leads to an

absorption at ω01. b,d) A pump pulse promotes a significant fraction of the molecules to the first

excited state. This leads to a decreased absorption at ω01 and an increased absorption at ω12. e)

The transient spectrum is the difference between the spectra in the presence and absence of the

pump pulse.

The transient spectrum consists of two contributions; the negative contribution, arising

from the ground state depletion and stimulated emission, is called the bleaching signal; the

positive contribution is called the induced absorption or excited state absorption.
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C. Vibrational relaxation

FIG. 10. a) Example of a relaxation mechanism in which an excited vibration relaxes directly

to the ground state. b) Example of a relaxation mechanism that involves an intermediate state.

In this example the molecules do not relax to the original ground state. This accounts for an

irreversible change induced by the pump pulse, such as a chemical reaction or sample heating.

In this figure wiggly lines denote radiative transitions, while the arrows represent non-radiative

transitions.

After excitation the transient spectrum will decay because excited molecules relax to

the ground state. In general the excited state population decays exponentially with time. If

relaxation proceeds immediately to the ground state (figure 10a) this leads to an exponential

decay of both the induced absorption and the bleach,

∆α(ω, t) = (−2σ01(ω) + σ12(ω))N1(t), (68)

= (−2σ01(ω) + σ12(ω))N1(0)e−t/τ1 , (69)

where τ1 is the lifetime of the vibration. The lifetime of a vibration depends strongly on its

surroundings; in solution it can vary from hundreds of picoseconds to less than a picosecond.

For example, the vibrational lifetime of the OD vibration of HDO in H2O is 1.8 ± 0.2 ps,

while the surface OD groups of deuterated zeolites can have lifetimes of 70 ps.

In general vibrational relaxation proceeds through complicated mechanisms that may

involve a number of intermediate states. An example is shown in figure 10b. Here the
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intermediate levels represent states in which the original vibration has relaxed and excited

a low-frequency inter- or intramolecular vibration. If the two vibrations are coupled via an

anharmonic interaction, excitation of the low-frequency mode will result in a frequency shift

of the high-frequency vibration. Figure 11 illustrates this effect for the H2O molecule. We

will describe this effect by assigning different spectra to the intermediate states than to the

excited state. The relaxation mechanism in figure 10b also shows that excited molecules do

not necessarily relax to the original ground state. This is a way of describing irreversible

changes induced by the pump pulse. For pump pulses in the visible or ultraviolet the

irreversible change often consists in a chemical reaction. In the infrared it is generally

only heating of the sample, although a few examples of infrared-induced chemical reactions

are known. For the relaxation mechanism shown in figure 10b we can write the following

expression for the transient signal

∆α(ω, t) = σ12(ω)N1(t)− σ01N1(0)− σ01(ω)N1(t)

+σ∗01(ω)N∗
0 (t) + σ′01(ω)N ′

0(t), (70)

where σ∗01(ω) and σ′01(ω) represent the cross section spectra of the intermediate state and of

the modified ground state. The expression consists of five terms. The first term represents

the excited state absorption. The second and third term arise from ground state depletion

and stimulated emission, respectively. Finally the fourth and the fifth term are due to the

absorption of the intermediate state and the modified ground state.
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FIG. 11. Effect of the anharmonic interaction between the OH stretching vibration (ν) and the

bending vibration (δ) of H2O. a) An H2O molecule in its vibrational ground state and an H2O

molecule with one excitation quantum in the bending vibration. b) Absorption spectrum of the

OH-stretching vibration of H2O for the vibrational ground state and for the first excited state of the

bending vibration. The OH stretching spectrum shifts to lower frequencies if the bending vibration

is excited. c) Energy level diagram of H2O taking into account only the first excited states of the

stretching (ν) and bending vibrations (δ). Due to the anharmonic interaction (∆Eanh) the doubly

excited state lies lower in energy than the sum of the two singly excited states.

VII. RIGOROUS: NONLINEAR COUPLING OF LIGHT TO A TWO-LEVEL

SYSTEM

The nonlinear interaction between light and material resonances can often be described in

a perturbative approach. Starting point for this approach are the Bloch equations for a two-

level system of the last chapter. We will in this case use the rotating wave approximation.

In addition we will use the notation ρ
(n)
10 for ρ̃

(n)
10 . The subsequent orders in the electric field

can be generated as follows:
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∂ρ
(n+1)
10

∂t
= −ieEµ10

2h̄
(ρ

(n)
00 − ρ

(n
11))−

{
i(ω01 − ω) +

1

T20→1

}
ρ

(n+1)
10 (71)

∂ρ
(n+1)
11

∂t
= −∂ρ

(n+1)
00

∂t
=

ieE∗µ01

2h̄
ρ

(n)
10 −

ieEµ10

2h̄
ρ

(n)
01 (72)

In these equations the superscript (n) denotes the order in the electric field. Before the

interaction with the light field there is in general no coherence present for the ensemble.

Hence, ρ
(0)
01 = ρ

(0)
10 = 0. The initial population difference between the levels 1 and 2 will

in general not be equal to zero: ρ
(0)
00 − ρ

(0)
11 6= 0. The electric field E represents the total

electric field. This field can thus be formed by the sum of different light pulses applied to

the system.

In many experiments, the generated signal results from a polarization that is of third-

order in the electric field. Examples are saturation spectroscopy and photon-echo spec-

troscopy. The third-order polarization is proportional to the off-diagonal density matrix

elements ρ
(3)
10 and ρ

(3)
01 . For ρ

(3)
10 we have:

ρ
(3)
10 (t) = −iµ10

2h̄

∫ t

−∞
dt1E(t1)(ρ

(2)
00 (t1)− ρ

(2)
11 (t1))R(t− t1) (73)

This equation implies that the value of ρ
(3)
10 at time t is the sum of the products of the electric

field and the diagonal density matrix element ρ
(2)
D over all previous times t1. In addition,

each of these contributions to ρ
(3)
10 can show relaxation in the time interval between its time

of generation t1 and the time t. In addition the relative phase of these contributions will

evolve depending on the frequency difference between the generating electric field and the

resonance frequency. The relaxation and phase evolution are expressed by the function

R(t− t1). In case the relaxation can be described with a single time constant T20→1 :

R(t− t1) = e−i(ω−ω01)(t−t1)e(t−t1)/T20→1 . (74)

For the diagonal matrix element ρ
(2)
11 a similar equation applies. Hence:

ρ
(2)
11 (t) =

iµ01

2h̄

{∫ t

−∞
dt1E

∗(t1)ρ
(1)
10 (t1) + E(t1)ρ

(1)
01 (t1)

}
P (t− t1), (75)

with P (t1 − t2) a population relaxation function:
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P (t− t1) = e(t−t1)/T1 . (76)

Similar:

ρ
(2)
00 (t) = −iµ01

2h̄

{∫ t

−∞
dt1E

∗(t1)ρ
(1)
10 (t1) + E(t1)ρ

(1)
01 (t1)

}
P (t− t1). (77)

Finally:

ρ
(1)
10 (t) = −iµ01

2h̄

∫ t

−∞
dt1E(t1)(ρ

(0)
00 − ρ

(0)
11 )R(t− t1) (78)

Substitution of equation (78) and its complex conjugate in equations (75) and (77)for ρ
(2)
11 and

ρ
(2)
00 , and substitution of the latter equations in equation (73) yields in total four contributions

to the third-order off-diagonal density matrix element ρ
(3)
10 . These terms can be represented

with so-called Feynman diagrams, as illustrated in Figure 12.

FIG. 12. Double-sided Feynman diagrams representing the field interactions and corresponding

response functions to generate a third-order polarization in a two-level system.
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The arrows in the Feynman diagram represent the field interactions, leading to a change

in state of either the ket or the bra. An E field can either excite the ket or de-excite the bra,

while an E∗ field either generates a bra or destroys a ket. The states |0〉 and 〈0| can only

be excited, while the states |1〉 and 〈1| (in a two-level system) can only be de-excited. The

terms corresponding to ρ
(2)
11 and ρ

(2)
00 can be taken together, yielding the following expression

for ρ
(3)
10 :

ρ
(3)
10 (t) = −i

(
2
µ01

2h̄

)3 ∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3 (79)

[E(t1)E(t2)E
∗(t3)R(t− t1)P (t1 − t2)R

∗(t2 − t3) +

E(t1)E
∗(t2)E(t3)R(t− t1)P

∗(t1 − t2)R(t2 − t3)]

The above equation is very general in nature. The different third-order signals that are

generated can be distinguished by the directions (wave vectors) of the electric fields that

constitute the total electric field E and the direction in which the generated signal is ob-

served. For instance, in the case of pump-probe saturation spectroscopy, the electric field E

consists of two fields with wave vectors kpu and kpr and the nonlinear signal in the direction

of the probe is detected. However, simultaneously with this signal a signal in the direction

2kpu − kpr will be generated that can be independently detected.

VIII. BLOCH EQUATIONS FOR A THREE-LEVEL SYSTEM

The above formalism can be easily extended to a three-level system. In a three-level

system the states |1〉 and 〈1| can be further excited to |2〉 and 〈2|. In this section we will

derive the expression for the dielectric response of a three-level system. Starting point of

the description of the dynamics of these systems and their interaction with the light field is

the time-dependent Schrödinger equation:

(Hsys + Hem) Ψ(t) = ih̄
∂Ψ

∂t
, (80)

with Hsys the Hamiltonian of the system, Ψ(t) the time-dependent wavefunction and Hem

the Hamiltonian expressing the coupling of the system with the electro-magnetic field. In
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the electric-dipole approximation the Hamiltonian Hem equals e
∑

n rnE cos(ωt) with e the

elementary charge, rn the position operator of the n-th electron, E the amplitude of the

electric field of the light and ω the frequency of the light.

For a three-level system the electromagnetic field can induce transitions between the three

eigenstates of Hsys with wavefunctions φ0, φ1, and φ2 (Hsysφj = h̄ωjφj with j = 0, 1, 2). The

time dependent wavefunction Ψ(t) can then be written as :

Ψ(t) = C0(t)ψ0(t) + C1(t)ψ1(t) + C2(t)ψ2(t) (81)

with ψj(t) = φje
−iωjt. Substitution of this equation in the time dependent Schrödinger

equation gives :

Hem (C0(t)ψ0(t) + C1(t)ψ1(t) + C3(t)ψ3(t)) = ih̄

(
∂C0(t)

∂t
ψ0(t) +

∂C1(t)

∂t
ψ1(t) +

∂C2(t)

∂t
ψ2(t)

)

(82)

Here we have used that Hsysφj = h̄ωjφj and that ih̄∂ψj(t)

∂t
= h̄ωjψj(t). Succesive multiplica-

tion of both sides of this equation with ψ∗j and integration over space yields :

ih̄
∂C0(t)

∂t
= C0(t)Hem,00e

−iω0t + C1(t)Hem,01e
−iω1t + C2(t)Hem,02e

−iω2t (83)

ih̄
∂C1(t)

∂t
= C0(t)Hem,10e

−iω0t + C1(t)Hem,11e
−iω1t + C2(t)Hem,12e

−iω2t (84)

ih̄
∂C2(t)

∂t
= C0(t)Hem,20e

−iω0t + C1(t)Hem,21e
−iω1t + C2(t)Hem,22e

−iω2t, (85)

with Hem,jk = 〈ψj|Hem|ψk〉. Using Hem = e
∑

n rnE0cos(ωt), we define Vjk = (eE0µjk/h̄)

with µjk = 〈φj|∑n rn|φk〉. If we assume that µjj = 0 and we define ω01 = ω1 − ω0,

ω02 = ω2 − ω0, and ω12 = ω2 − ω1, we obtain:

i
∂C0(t)

∂t
= C1(t)V01cos(ωt)e−iω01t + C2(t)V02cos(ωt)e−iω02t (86)

i
∂C1(t)

∂t
= C0(t)V10cos(ωt)eiω01t + C2(t)V12cos(ωt)e−iω12t (87)

i
∂C2(t)

∂t
= C0(t)V20cos(ωt)eiω02t + C1(t)V21cos(ωt)eiω12t (88)

We use the above equations to derive expressions for the density matrix elements ρjk = CjC
∗
k :
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∂ρjk

∂t
= Cj

∂C∗
k

∂t
+

∂Cj

∂t
C∗

k (89)

It follows that:

∂ρ00

∂t
= icos(ωt)

{
ρ01V10e

i(ω1−ω0)t + ρ02V20e
i(ω2−ω0)t − ρ10V01e

−i(ω1−ω0)t − ρ20V02e
−i(ω2−ω0)t

}
(90)

∂ρ11

∂t
= icos(ωt)

{
ρ10V01e

i(ω0−ω1)t + ρ12V21e
i(ω2−ω1)t − ρ01V10e

−i(ω0−ω1)t − ρ21V12e
−i(ω2−ω1)t

}
(91)

∂ρ22

∂t
= icos(ωt)

{
ρ20V02e

i(ω0−ω2)t + ρ21V12e
i(ω1−ω2)t − ρ02V20e

−i(ω0−ω2)t − ρ12V21e
−i(ω1−ω2)t

}
(92)

∂ρ10

∂t
= −icos(ωt)

{
V10(ρ00 − ρ11)e

i(ω1−ω0)t − V20ρ12e
i(ω2−ω0)t − V12ρ20e

i(ω1−ω2)t
}

(93)

∂ρ20

∂t
= −icos(ωt)

{
V20(ρ00 − ρ22)e

i(ω2−ω0)t − V10ρ21e
i(ω1−ω0)t − V21ρ10e

i(ω2−ω1)t
}

(94)

∂ρ21

∂t
= −icos(ωt)

{
V21(ρ11 − ρ22)e

i(ω2−ω1)t − V01ρ20e
i(ω0−ω1)t − V20ρ01e

i(ω2−ω0)t
}

(95)

When we substitute ρ10 by ρ̃10e
i(ω1−ω0−ω)t, ρ21 by ρ̃21e

i(ω2−ω1−ω)t, ρ20 by ρ̃20e
i(ω2−ω0−2ω)t, and

if we use the rotating wave approximation, the above equations become:

∂ρ00

∂t
=

i

2

{
ρ̃01V10 + ρ02V20e

iωt − ρ̃10V01 − ρ20V02e
−iωt

}
(96)

∂ρ11

∂t
=

i

2
{ρ̃10V01 + ρ̃12V21 − ρ̃01V10 − ρ̃21V12} (97)

∂ρ22

∂t
=

i

2

{
ρ̃20V02e

−iωt + ρ̃21V12 − ρ̃02V20e
iωt − ρ̃12V21

}
(98)

∂ρ̃10

∂t
= − i

2

{
V10(ρ00 − ρ11)− V20ρ̃12e

iωt − V12ρ̃20 − i(ω1 − ω0 − ω)ρ̃10

}
(99)

∂ρ̃20

∂t
= − i

2

{
V20(ρ00 − ρ22)e

iωt − V10ρ̃21 − V21ρ̃10 − i(ω2 − ω0 − 2ω)ρ̃20

}
(100)

∂ρ̃21

∂t
= − i

2

{
V21(ρ11 − ρ22)− V01ρ̃20 − V20ρ̃01e

iωt − i(ω2 − ω1 − ω)ρ̃10

}
(101)

(102)

IX. NONLINEAR SPECTROSCOPY IN A THREE-LEVEL SYSTEM

Based on the equations of the previous section we can now derive in a perturbative

approach an expression for the third-order polarization in a three-level system. We will

assume that the levels |0〉, |1〉, and |2〉 are similar to the lower three levels of a harmonic

oscillator. Hence, we will take µ20 and thus V20 equal to zero. This also means that ρ22
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cannot be generated with less than four field interactions, meaning that terms involving ρ22

can also be neglected in the evaluation of the third-order polarization.

In a three-level system the third-order nonlinear polarization is not only given by ρ
(3)
10

but but also by ρ
(3)
21 :

ρ
(3)
21 (t) = −iµ21

2h̄

∫ t

−∞
dt1

{
E(t1)ρ

(2)
11 (t1)− E∗(t1)ρ

(2)
20 (t1)

}
R(t− t1) (103)

Note that there are contributions from ρ22 and V20. There are thus two contributions to ρ
(3)
21 ,

coming from ρ
(2)
11 and ρ

(2)
20 . This latter term can be created in a three-level system from:

ρ
(2)
20 (t) =

iµ21

2h̄

∫ t

−∞
dt1E(t1)ρ

(1)
10 (t1)R20(t− t1), (104)

where R20(t− t1) includes the dephasing of the coherence of levels 0 and 2:

R20(t− t1) = e−i(2ω−ω01−ω12)(t−t1)e(t−t1)/T20→2 . (105)

This equation does not contain a term ρ21 because this density matrix element can only be

generated by three field interactions and thus does not enter in a second-order contribution.

Finally, it should be noted that ρ
(2)
20 also contributes to ρ

(3)
10 :

ρ
(3)
10 (t) = −

∫ t

−∞
dt1

{
iµ10

2h̄
E(t1)(ρ

(2)
00 (t1)− ρ

(2)
11 (t1))− iµ21

2h̄
E∗(t1)ρ

(2)
20

}
R(t− t1) (106)

These expressions imply that there are in total eight contributions to the third-order

polarization, six contributing to ρ
(3)
10 and two to ρ

(3)
21 . The eight contributions can be

represented by Feynman diagrams as illustrated in Fig. 13.
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FIG. 13. Double-sided Feynman diagrams representing the field interactions and corresponding

response functions for a three-level system. The symbols 1∗, 1, and 2 denote the fields E∗
1 , E1, and

E2, respectively, thereby representing the signal generated in pump-probe saturation spectroscopy.
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A. Pump-probe saturation spectroscopy

In the case of a pump-probe experiment, two pulses are used: E1(r, t) = E1e
i(k1·r−ω1t) +

c.c. and E2(r, t) = E2e
i(k2·r−ω1t) + c.c. with E1 (the pump) being much stronger than E2

(the probe). The generated P (3) in the direction of the probe (k2) is given by:

P (3)(k2, t) ∝
∫ t

−∞
dt3

∫ t3

−∞
dt2

∫ t2

−∞
dt1

(E2(t3)E1(t2)E
∗
1(t1) + E1(t3)E2(t2)E

∗
1(t1))×

3∑

1

Ri(t, t3, t2, t1) +

(E2(t3)E
∗
1(t2)E1(t1) + E1(t3)E

∗
1(t2)E2(t1))×

6∑

4

Ri(t, t3, t2, t1) +

(E∗
1(t3)E2(t2)E1(t1) + E∗

1(t3)E1(t2)E2(t1)×
8∑

7

Ri(t, t3, t2, t1) + c.c. (107)

The Ri functions represent the response of the system, following a certain generation path

(Feynman diagram) of generating the third-order polarization. In each of the eight paths

there are two possible orders of the fields E1 and E2. Hence, the total number of field in-

teractions giving rise to the third-order polarization in pump-probe saturation spectroscopy

equals sixteen.

The ordinary (incoherent) pump-probe signal is represented by the (1∗12) and (11∗2)

interactions (with 1, 1∗, and 2 denoting the fields E1, E∗
1 , and E2, respectively) and the

response functions R1−6. These interactions involve the excitation of the v = 1 state and

a depletion of the v = 0 state by two subsequent interactions with the pump field. The

excitation of v = 1 leads to v = 1 → 0 stimulated emission. (R1,4). The depletion of

v = 0 leads to less v = 0 → 1 absorption (R2,5). Hence, both effects lead to an increased

transmission at the v = 0 → 1 transition frequency. In addition, the excitation of v = 1

by the pump leads to an induced absorption (R3,6) at the (v = 1 → 2) transition frequency

(which can be observed at a frequency that is redshifted by approximately 300 cm−1 with

respect to the v = 0 → 1 absorption). The (1∗21) and (21∗1) interactions and the response

functions R1−6 represent the excitation of a population grating (with wave vector k2−k1) by

the pump and probe fields. The diffraction of the pump field from this grating gives a signal
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in the direction of the probe (k2) that contributes to the coherent artefact. The generated

P (3)(k2, t) generates a field in the direction k2 that interferes with the probe field E2. The

pump-induced change on the probe transmission is thus proportional to E∗
2P

(3)(k2, t)+c.c.

The response functions R contain terms that reflect the population relaxation out of the

levels v = 1 and v = 2 and the homogeneous dephasing of the coherence of the levels v = 0

and v = 1 and levels v = 1 and v = 2. The response functions have the following forms:

R1,2 = |µ01|4e−i(ω−ω01)(t−t3−(t2−t1))e−(t−t3+(t2−t1))/T20→1e−(t3−t2)/T1 (108)

R3 = |µ01|2|µ12|2e−i(ω−ω01)(t1−t2)e−i(ω−ω12)(t−t3)

e−(t2−t1)/T20→1e−(t−t3)/T21→2e−(t3−t2)/T1

R4,5 = |µ01|4e−i(ω−ω01)(t−t3+(t2−t1))e−(t−t3+(t2−t1))/T20→1e−(t3−t2)/T1

R6 = |µ01|2|µ12|2e−i(ω−ω01)(t2−t1)e−i(ω−ω12)(t−t3)

e−(t2−t1)/T20→1e−(t−t3)/T21→2e−(t3−t2)/T1

R7 = |µ01|2|µ12|2e−i(ω−ω01)(t−t3+(t2−t1))e−i(2ω−ω01−ω12)(t3−t2)

e−(t−t3+(t2−t1))/T20→1e−(t3−t2)/T20→2

R8 = |µ01|2|µ12|2e−i(ω−ω01)(t2−t1)e−i(2ω−ω01−ω12)(t3−t2)e−i(ω−ω12)(t−t3)

e−(t2−t1)/T20→1e−(t−t3)/T21→2e−(t3−t2)/T20→2

with µij the transition dipole moment of the v = i → j transition, ωij, the resonance

frequency of this transition, and T2i→j
the dephasing time of this transition. The functions

R1−6 also contain a term representing the population relaxation out of level v = 1.
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X. INHOMOGENEOUS BROADENING AND SPECTRAL DIFFUSION
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FIG. 14. Inhomogeneous broadening and spectral diffusion. a) A pump pulse that is narrower

than the width of an inhomgeneously broadened absorption band will burn a hole in it. b) At

zero delay the transient spectrum will show bleaching and induced absorption features, the widths

of which are determined by the pump pulse. As the pump-probe delay is increased frequency

fluctuations will lead to the broadening and shifting of the transient spectrum until it reaches its

equilibrium shape. c) Typical shape of the transient spectrum of water. The bleaching and induced

absorption (dotted lines) are broadened to such extent that they overlap. The solid line represents

the sum of the bleaching and induced absorption.

In the foregoing discussions it was implicitly assumed that infrared absorption lines are

homogeneously broadened. This means that every molecule has essentially the same absorp-

tion spectrum. The bandwidth over which a single molecule absorbs radiation is referred

to as the homogeneous linewidth of the particular transition. However, infrared absorption

bands can also be inhomogeneously broadened, an example of which is the OH stretching

vibration in liquid water. In this case the broadening of the absorption arises because dif-

ferent molecules absorb at different center frequencies. In linear spectroscopy homogeneous

and inhomogeneous broadening cannot be distinguished; in pump-probe spectroscopy, on

the other hand, the difference is immediately clear.

Figure 14 exemplifies this issue. We investigate the effect of using a pump-pulse that has

a narrower frequency distribution than the (inhomogeneously broadened) absorption band.

Since the absorption band consists of species that absorb at different center frequencies,
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rather than of a single species that absorbs over a wide frequency interval, not all molecules

are resonant with the pump pulse. As a result only part of the absorption band is bleached

(figure 14a) and the spectrum after excitation by the pump will have a hole in it. As a

consequence of this effect the transient spectrum can be narrower than the linear spec-

trum. In this case pump-probe spectroscopy is sometimes also referred to as hole-burning

spectroscopy.

The variation in the center frequencies is due to the different environments of the various

molecules. In a liquid these environments interconvert on a characteristic timescale and this

causes the absorption frequency of a particular molecule to fluctuate in time. If a narrow-

band pulse is used to excite the sample, this will lead to the excitation of a non-equilibrium

distribution of transition frequencies. The transient spectrum will therefore broaden upon

increasing the pump-probe delay until it reaches the equilibrium shape. The rate at which

the transient spectrum broadens provides a way to determine the timescale of the frequency

fluctuations.

Finally we point out that in the case of inhomogeneous broadening the width of absorp-

tion bands can be so large that ground state bleach and induced absorption overlap. This

is the case for the OH stretch vibration of water. Figure 14c displays the characteristic

lineshape that this leads to.

A. Photon-echo spectroscopy

In a three-pulse photon-echo experiment, the interacting fields E1, E2 and E3 have a

comparable amplitude. In this case, pulses with wave vectors k1, k2 and k3 are combined to

generate a third-order polarization P (3) in the direction k3 + k2 − k1. This P (3) is given by:

P (3)(k3 + k2 − k1, t) ∝
∫ t

−∞
dt3

∫ t3

−∞
dt2

∫ t2

−∞
dt1

(E3(t3)E2(t2)E
∗
1(t1) + E2(t3)E3(t2)E

∗
1(t1))×

3∑

1

Ri(t, t3, t2, t1) +

(E3(t3)E
∗
1(t2)E2(t1) + E2(t3)E

∗
1(t2)E3(t1))×

6∑

4

Ri(t, t3, t2, t1) +
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(E∗
1(t3)E3(t2)E2(t1) + E∗

1(t3)E2(t2)E3(t1))×
8∑

7

Ri(t, t3, t2, t1) + c.c. (109)

In a photon-echo experiment, the field generated by P (3)(k3 + k2 − k1, t) can be detected

background-free. In a photon-echo experiment there exists an inhomogeneous distribution

of oscillators that for some configurations and orders of interactions can show a rephasing

effect. The overall third-order polarization is a sum of the third-order polarizations of the

individual oscillators. In the response functions we have to replace the resonance frequencies

ω01 and ω12 by distributions of resonance frequencies:
∫

dω01,iG(ω01,i) and
∫

dω12,iG(ω12,i). If

we assume that these distributions are correlated, meaning that ω12,i−ω12 = ω01,i−ω01 = δωi,

we obtain the following response functions:

R1,2 =
∫

δωiG(δωi)|µ01|4e−i(ω−ω01−δωi)(t−t3−(t2−t1))e−(t−t3+(t2−t1))/T20→1e−(t3−t2)/T1 (110)

R3 =
∫

δωiG(δωi)|µ01|2|µ12|2e−i(ω−ω01−δωi)(t1−t2)e−i(ω−ω12−δωi)(t−t3)

e−(t2−t1)/T20→1e−(t−t3)/T21→2e−(t3−t2)/T1

R4,5 =
∫

δωiG(δωi)|µ01|4e−i(ω−ω01−δωi)(t−t3+(t2−t1))e−(t−t3+(t2−t1))/T20→1e−(t3−t2)/T1

R6 =
∫

δωiG(δωi)|µ01|2|µ12|2e−i(ω−ω01−δωi)(t2−t1)e−i(ω−ω12−δωi)(t−t3)

e−(t2−t1)/T20→1e−(t−t3)/T21→2e−(t3−t2)/T1

R7 =
∫

δωiG(δωi)|µ01|2|µ12|2e−i(ω−ω01−δωi)(t−t3+(t2−t1))e−i(2ω−ω01−ω12−2δωi)(t3−t2)

e−(t−t3+(t2−t1))/T20→1e−(t3−t2)/T20→2

R8 =
∫

δωiG(δωi)|µ01|2|µ12|2e−i(ω−ω01−δωi)(t2−t1)e−i(2ω−ω01−ω12−2δωi)(t3−t2)e−i(ω−ω12−δωi)(t−t3)

e−(t2−t1)/T20→1e−(t−t3)/T21→2e−(t3−t2)/T20→2

The field interactions and the response functions for a photon-echo experiment are de-

picted schematically in Fig. 15.

38



FIG. 15. Double-sided Feynman diagrams representing the field interactions and correspond-

ing response functions in three-pulse photon-echo spectroscopy, giving a signal in the direction

k3 + k2 − k1. The symbols 1∗, 2, and 3 denote the fields E∗
1 , E2, and E3, respectively.

39



The photon-echo signal can also be generated by two pulses. In this case field E2 performs

two of the three field interactions giving rise to a signal in the direction 2k2 − k1. In the

limit of very short pulses, only the first terms with response functions R1−3 are important.

Variation of the signal as a function of the time between the pulses gives information on the

homogeneous dephasing time constants T20→1 and T21→2 .

The functions Ri differ in their rephasing characteristics. For inhomogeneously broad-

ened transitions, R1−3 describe a rephasing effect, R4−8 do not. This becomes clear if we

consider the frequency dependent terms in the response function. The response functions

R1,2 contain the term e−i(ω−ω01−δωi)(t−t3−(t2−t1)). It follows that for (t − t3) = (t2 − t1), the

third-order polarizations are in phase generating the so-called photon-echo signal. The ori-

gin of this effect is that the first field interaction was with E∗
1 contributing a wave vector

−k1 to the population grating with wave vector k2−k1 and the third-order polarization with

wave vector k3 + k2− k1. This means that the phase evolution of the first-order polarization

generated by E∗
1 in the time interval between t1 and t2 is the complex conjugate of the phase

evolution of the third-order polarization between t3 and t. Hence, the accumulated relative

phase −δωi(t2− t1) of the oscillator with resonance frequency ω01 + δωi can be compensated

by δωi(t − t3) in the third-order polarization. As this is the case for all oscillators within

the inhomogeneous distribution G(δωi), all oscillators become in phase at t, leading to a

macroscopic third-order polarization that acts as source term in the wave equation to emit

a light pulse. This light pulse is denoted a photon echo as it is emitted at a time after the

third pulse that is equal to the time difference between the first two pulses.

An interesting issue is how the phase information is stored during the time period of

the population grating. The relative phase between the second field and the polarization

generated by the first field interaction determines whether population is further pumped up

to the excited state or rather being pumped back to the ground state. As the wave vectors

of the first and the second field interactions have different direction, this phase difference

depends on the transverse position on the sample. As a result, a population grating is

formed. The phase difference also depends on the phase accumulation of the polarization
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generated by the first field interaction, i.e. on the resonance frequency of the oscillator. This

means that for t2 − t1 > 0 the population gratings associated with the different oscillators

will differ in transverse phase. Between the second and the third field interaction there is

no further phase accumulation and the differences in accumulated phase are stored in the

form of the transverse phase shifts of the population gratings.

The generation of the photon echo requires that the oscillator remains at the same

frequency position within the inhomogeneous distribution at all times. Often however, there

are spectral diffusion processes. In this case the photon-echo signal can be used to measure

the time scale of the spectral diffusion. In case the inhomogeneous distribution is static, the

photon-echo signal is practically independent of the time interval t3− t2, except for the often

relatively slow population relaxation. However, if there is spectral diffusion, the photon-echo

signal will be dependent on the length of the time interval t3 − t2, because a change of the

resonance frequency during this time will make the rephasing impossible thus leading to a

decrease of the photon echo signal. The photon-echo signal as a function of t3− t2 can thus

give information on the spectral diffusion, provided that the contribution to the decay of

the signal due to population relaxation is known.

In the liquid phase there is often not a clear distinction between homogeneous and

inhomogeneous line-broadening contributions. Here the dynamics is often influenced by

spectral diffusion with a time constant that is comparable to the pulse duration and/or

the lifetime T1 of the excitation. In this case, the response functions Ri become more

complicated and should be evaluated using a more advanced description, like for instance

the Gauss-Markov model or the Brownian oscillator model.

XI. POLARIZATION-RESOLVED NONLINEAR SPECTROSCOPY

Until now it was silently assumed that the excited molecules are distributed isotropically.

However, in reality the distribution of excited molecules is anisotropic because molecules

that have their transition dipole moments aligned parallel to the pump polarization are
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excited preferentially (figure 16a). As a consequence the amplitude of the pump-probe

response depends on the relative polarizations of the pump and probe pulses (figure 16b). For

parallel pump and probe polarizations the response is initially larger than for perpendicular

polarizations (because the concentration of excited molecules is zero for molecules that have

their transition dipole moments perpendicular to the pump polarization). The orientational

motion of the excited molecules scrambles their orientations and eventually causes their

distribution to become isotropic. As a consequence the parallel signal decays faster than the

perpendicular signal and this continues until the two signals are identical. At this point the

excited molecules have lost all memory of their initial orientations. It is clear that the rate

at which the difference between the parallel and perpendicular signals decays is determined

by the orientational motion of the molecules .

FIG. 16. a) Preferential excitation of molecules that have their transition dipole moments

parallel to the pump pulse polarization. b) Delay scan of the parallel and perpendicular signals.

The dotted line shows the signal if the orientations of the excited molecules were distributed

isotropically. The parallel signal is initially higher than the isotropic signal but decays faster; the

perpendicular signal is initially lower than the isotropic signal but decays more slowly.
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A. Isotropic signal

FIG. 17. Contribution of a single dipole to the parallel and perpendicular pump-probe signals

in two dimensions (a) and in three dimensions (b).

Both the parallel and perpendicular response shown in figure 16b are affected by the

orientational motion of the molecules, which is inconvenient if one wants to study vibrational

relaxation. It would be more convenient to dispose of a response such as the dotted line

in figure 16 which depends only on the total concentration of excited molecules. This

response is referred to as the isotropic response. It may seem that averaging the parallel

and perpendicular responses would yield the isotropic response. However, it turns out that

this is only correct if molecules rotate in two dimensions. In three dimensions the isotropic

response is found by weighing the perpendicular response more heavily,

∆αiso =
∆α|| + 2∆α⊥

3
, (111)

where ∆α|| and ∆α⊥ are the absorption changes when the pump and probe beams are polar-

ized parallel and perpendicular to each other, respectively. This equation can be rationalized

with the help of figure 17. We first consider the two dimensional situation. A single ex-

cited dipole ~µ contributes to the induced absorptions of both the parallel and perpendicular

responses according to

∆α|| ∝ cos2 θ, (112)

∆α⊥ ∝ cos2 χ. (113)
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It is directly clear that the sum of these two signals does not depend on the orientation of

the dipole. Therefore in two dimensions the isotropic signal is given by the simple average

of the parallel and perpendicular signals.

In three dimensions the quantity that is independent of orientation is cos2 θ + cos2 χ +

cos2 ψ (figure 17b) so that the absorption needs to be probed in three orthogonal directions

to obtain the isotropic response. Experimentally this would not be very straightforward but

fortunately matters are simplified by the cylindrical symmetry of the sample after excitation.

As a result of this symmetry the average responses are equal for the two perpendicular probe

directions, so that 〈cos2 θ +2 cos2 χ〉 is the quantity that is independent of orientation. This

explains the form of eqn. 111.

In order to prepare for the coming discussion we also show how the above conclusion

can be reached by considering the distribution of excited molecules N(θ, φ, t). Immediately

after excitation this distribution is given by

N(θ, φ, t) = g(θ, φ, t)N1, (114)

where N1 represents the total concentration of excited molecules as it did in the previous

sections and g(θ, φ, t) is the function that represents the orientational distribution of excited

molecules. g(θ, φ, t) has a number of properties:

• Being a distribution function it is normalized at all times

∫
g(θ, φ, t) dΩ = 1, (115)

where the integral runs over the unit sphere and dΩ = sin θ dθ dφ is the surface element

in spherical coordinates.

• At zero delay its functional forms is determined by the excitation probability

g(θ, φ, 0) =
3

4π
cos2 θ. (116)
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• In the limit of long delay times it evolves to an isotropic distribution

lim
t→∞ g(θ, φ, t) =

1

4π
. (117)

• Finally, in an isotropic sample g(θ, φ, t) is a function of only the polar angle

g(θ, φ, t) =
gθ(θ, t)

2π
, (118)

where gθ(θ, t) is the distribution function of the polar coordinate. The factor 2π enters

to ensure its normalization

∫ π

0
gθ(θ, t) sin θ dθ = 1. (119)

The parallel and perpendicular absorption changes can be expressed in terms of integrals

over the distribution function

∆α||(t) = 3σ12N1

∫
g(θ, φ, t) cos2 θ dΩ, (120)

∆α⊥(t) = 3σ12N1

∫
g(θ, φ, t) sin2 θ sin2 φ dΩ, (121)

where in the second equation we have used the fact that cos2 χ = sin2 φ sin2 θ. The factor

of 3 enters because the cross section is defined as the average (i.e. isotropic) cross section,

which is three times as small as its maximum value. The independence of the isotropic signal

on the distribution function can be shown as follows

∆αiso(t) =
1

3
(∆α||(t) + 2∆α⊥(t)), (122)

= σ12N1

∫
g(θ, φ, t)(cos2 θ + 2 sin2 θ sin2 φ) dΩ. (123)

We use the fact that the sample is isotropic and integrate over the azimuthal coordinate,

∆αiso(t) = σ12N1

∫ gθ(θ, t)

2π
(cos2 θ + 2 sin2 θ sin2 φ) dΩ, (124)

= σ12N1

∫ π

0
gθ(θ, t) sin θ dθ, (125)

= σ12N1. (126)
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This definition of the isotropic signal ensures that all the equations introduced in the previous

paragraphs remain valid if ∆α denotes the isotropic signal. The isotropic signal reflects the

dynamics due to vibrational relaxation and spectral diffusion but is independent of any

orientational processes.

B. Anisotropy

It has been demonstrated that the difference between the parallel and perpendicular

absorption changes contains information about the orientational dynamics of molecules. A

quantity that depends exclusively on the orientational dynamics is obtained by normalizing

this difference to the total signal

R(t) =
∆α|| −∆α⊥
∆α|| + 2∆α⊥

. (127)

This is the anisotropy, which we shall employ frequently throughout this thesis to study the

orientational motion of water molecules.

In terms of the orientational distribution function g(θ, φ, t) the anisotropy reads

R(t) =
∫

g(θ, φ, t)(cos2 θ − sin2 θ sin2 φ) dΩ. (128)

This expression shows that the anisotropy does indeed only reflect the orientational motion

of molecules, as required. However, as it stands the expression is not very convenient.
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FIG. 18. Polar coordinates used to define the initial and final orientations of a dipole. The

coordinates (θr, φr) are defined relative to the initial coordinates (θ0, φ0).
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In the following we will rewrite the expression for the anisotropy in such a way that it

reflects the motion of individual molecules.

The orientational diffusion of the ensemble of aqueous solvation shells that are excited

by the pump pulse is described by the equation

∂n(θ, t)

∂t
=

Dθ

sin θ

∂

∂θ

(
sin θ

∂n(θ, t)

∂θ

)
, (129)

with θ the angle with respect to the pump-pulse polarization, n(θ, t)dΩ the number of

particles in a solid angle dΩ (dΩ = dφdθ sin θ), φ the azimuth angle, and Dθ the orientational

diffusion constant. Equation (1) does not contain any dependence on the azimuth angle φ,

because the excitation is symmetric around the pump-pulse polarization axis. The solution

of this equation can be written as a sum of exponentially decaying Legendre polynomials Pl:

n(θ, t) =
∑

l≥0

alPl(cos θ)e−Dθl(l+1)t, (130)

with al the coefficients that are determined by the distribution of n(θ, t) at t=0. The

initial distribution is given by:

g(θ, φ, 0) =
3

4π
cos2 θ (131)

The solution of the orientational diffusion equation is thus given by

g(θ, φ, t) =
1

4π

[
3 cos2 θ − 1)e−t/6D + 1

]
(132)

The rotational anisotropy is the difference between cos2 θ and sin2 θ cos2 φ weighted with

the distribution function g(θ, φ, t).:

R(t) =

∫ ∫
dΩ(cos2 θ − sin2 θ cos2 φ)g(θ, φ, t)∫ ∫
dΩ(cos2 θ + 2 sin2 θ cos2 φ)g(θ, φ, t)

=
2

5
e−t/6D =

2

5
e−t/τor (133)

The measured anisotropy R(τ) thus equals 〈P2(cos θ)〉, and the time constant τor of the decay

of R(τ) is related to Dθ by τor = 1/(6Dθ). The orientational diffusion constant Dθ can be

related to the viscosity of the liquid using the Stokes-Einstein relation for orientational

diffusion of a sphere:
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Dθ =
kT

8πη(T )r3
hyd

, (134)

with k Boltzmann’s constant, T the temperature in Kelvin, η(T ) the temperature-

dependent viscosity, and rhyd the hydrodynamic radius of the reorienting molecules. Com-

bining this equation with τor = 1/(6Dθ) gives:

τor(T ) =
4πη(T )r3

hyd

3kT
. (135)
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