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I. INTRODUCTION

In 1995 several groups succeeded in producing Bose-Einstein condensation in dilute gases of alkali atoms[1–3]. In
2003 molecular Bose-Einstein condensates of alkali dimers were reported[4–6]. The temperatures of these atomic and
molecular condensates is in the order of nK − µK. Theoretical studies show that at these ultracold temperatures,
chemical reactions may occur and even may be very fast[7, 8].
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In this chapter we start our journey with Arrhenius’ 19th century description of reactions at ambient temperatures
and then work our way down to lower and lower temperatures. In the Arrhenius equation the temperature (T )
dependent reaction rate is given by

k(T ) = Ae−Ea/kBT , (1)

where kB is the Boltzmann constant and A is a proportionality constant. The activation energy EA is the energy
required to pass the transition state. The expression can be derived using classical statistical mechanics. It predicts
that the reaction rate drops to zero quickly when kBT � Ea.

Some reactions, however, are barrierless and their rate may increase at lower temperatures. This is particularly
true for ion-molecule reactions. Already in 1905, Langevin derived an expression for the reaction rate of ion-molecule
reactions. This expression only depends on the long range part of the potential and the model is called a ‘capture
model’ [9]. Later, it was found that also neutral radical - neutral radical reactions and even some radical - molecule
reactions may be fast at low temperatures. These barrierless reactions are very important in the lower parts of the
stratosphere, where temperatures may be around 200 K.

The air around us contains in the order of 1019 molecules per cm3. In the interstellar space, areas where the density
is in the order of 106 cm−3 look like clouds when observed with telescopes, because densities are even lower in most of
the interstellar space. Interstellar clouds have temperatures in the range of 10-100 K. Still, chemical reactions occur
and play a crucial role in, e.g., the formation of stars[10].

The calculation of a reaction rate requires a potential energy surface. Depending on the system it may be sufficient
to only know the potential around the transition state or only the long range part. The computation of the potential
always requires quantum mechanics, since it involves the motion of the electrons. To compute the nuclear dynamics,
classical mechanics is generally a good starting point. At lower temperatures, one has to consider quantum effects,
such as tunneling, resonances, zero-point energy, quantization of the angular momenta of the reactants and products,
and quantization of the angular momentum of the colliding complex as a whole.

Such quantum effects become dominant around 1 K. The cosmic background radiation has a temperature of 2.76
K, and presumably no parts of the universe are colder than that. However, in lab experiments such low temperatures
can be reached. At temperatures around 1 K molecules have a kinetic energy that is comparable to the interaction
energy of the molecules with electric and magnetic fields that are achievable in experiments. This provides many
opportunities to study an manipulate cold gases and this has become an active area of research[11].

II. CLASSICAL CAPTURE THEORY

A. Classical central force problem

To introduce the key concepts of low energy scattering theory we review the problem of two point particles interacting
through a potential V (r) that only depends on the distance r between the two particles. Let the positions of the
particles A and B, with masses mA and mB , be given by the Cartesian coordinates rA and rB with respect to a
space-fixed frame. The first step in finding the classical equations of motion of the particles is the introduction of
Jacobi coordinates, i.e., the coordinates of the center of mass of the system,

RCM =
mArA +mBrB

mA +mB
(2)

and the relative coordinates

r = rB − rA. (3)

The classical kinetic energy of the system is given by

T =
1

2
mAṙA · ṙA +

1

2
mB ṙB · ṙB =

1

2
MṘ · Ṙ +

1

2
µṙ · ṙ, (4)

where M = mA +mB is the total mass of the system, µ = (1/mA + 1/mB)−1 is the reduced mass, and the dot over
a symbol indicates its time-derivative. The center of mass of the system moves with a constant velocity. The relative
motion is decoupled from the center of mass and the equations of motion for r correspond to the equations of motion
of a single particle with mass µ moving in a potential V (r). The conjugate momentum p is defined by

pi =
∂T

∂ṙi
= µṙi, (5)
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where i = 1, 2, 3 labels the Cartesian components of the vectors. The classical Hamiltonian of the system can be
expressed as a function of coordinates and their conjugate momenta as

H =
p2

2µ
+ V (r). (6)

The Hamilton-Jacobi equations of motion are given by

ṙi =
∂H

∂pi
=
pi

µ
(7)

ṗi = −∂H
∂ri

= −∂V (r)

∂ri
= − ∂r

∂ri

∂V (r)

∂r
= −ri

r

∂V (r)

∂r
. (8)

With r = rr̂, these equations may be written in vector notation as

ṙ = µ−1p (9)

ṗ = −r̂
∂V (r)

∂r
. (10)

For readers not familiar with the Hamilton-Jacobi equations we note that from the last two equations one readily
recovers Newtons equations of motion F = µr̈, where the force F is seen to be equal to ṗ.

The angular momentum of the system,

l = r × p (11)

is conserved, i.e., independent of time, since

l̇ = ṙ × p + r × ṗ = µ−1p × p − r
∂V (r)

∂r
r̂ × r̂ = 0. (12)

Hence, the vectors r, p, and ṙ are always in a plane perpendicular to l. The square of the length of l is given by

l2 = l · l = (r × p) · (r × p) = (r · r)(p · p) − (r · p)(r · p) = r2p2 − (r · p)2. (13)

Defining the momentum along the vector r as pr ≡ r̂ · p, we may rewrite the equation as

r2p2 = l2 + r2p2
r, (14)

which we may use to write the Hamiltonian of the system as

H =
p2

2µ
+ V (r) =

l2

2µr2
+
p2

r

2µ
+ V (r) (15)

Hence, the problem of finding r(t) is equivalent to solving a one-dimensional problem with an effective potential

Veff(r) =
l2

2µr2
+ V (r), (16)

where the first term is called the centrifugal term. The equation of motion for r is

µr̈ = −dVeff(r)

dr
. (17)

To find the complete solution r(t) = r(t)r̂(t) we expand r̂ as

r̂ = ex cosϕ+ ey sinϕ, (18)

where ex and ey are two orthonormal vectors in the plane perpendicular to l and ϕ is a time dependent polar angle.
For the time derivative of the direction r̂ we have

˙̂r = ϕ̇(−ex sinϕ+ ey cosϕ) = ϕ̇r̂⊥ (19)
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From Eqs. (11) and (9) we have

l = µr2r̂ × ˙̂r = µr2ϕ̇r̂ × r̂⊥ (20)

and so

l = µr2ϕ̇. (21)

Since l is a constant and r(t) can be found from Eq. (17) the angle ϕ is given by the integral

ϕ(t) = ϕ(0) +

∫ t

0

l

µr(t)2
dt. (22)

As initial conditions (t = 0) we assume the particle is in the xy-plane with a large positive value of the x coordinate,
moving in the negative ex direction

ṙ(0) = −vex (23)

and the position at (t = 0) is

r(0) = aex + bey. (24)

The coefficient b, which is taken positive, is called the impact parameter. If the potential V (r) would be zero then r(t)
would move parallel to the x-axis and pass the origin at a distance b, i.e., the impact parameter would correspond to
the nearest approach of the two particles. By substituting Eqs. (23) and (24) into (11) we get

l = −v(aex + bey) × ex = µvbez (25)

and we find how the impact parameter, the initial velocity, and the reduced mass determine the angular momentum
of the system

l = µvb. (26)

When l is known the effective potential Eq. (16) is known and Eq. (17) can be solved to find r(t). The result may be
substituted into Eq. (22) to find the full trajectory.

B. Cross sections

Collisions may be elastic, inelastic, or reactive. In an elastic collision the direction of relative motion of the particles
changes. In the center of mass frame, the speeds of the particles are conserved. However, in the laboratory-fixed
frame speeds may change as a result of collisions. By this mechanism, thermal equilibrium is reached after a hot gas
is expanded into a cold gas. This principle is used in the buffer gas cooling technique, where, e.g., laser-ablated CaH
is cooled to 0.4 K by collisions with a cryogenically cooled helium buffer gas[12]. For this reason elastic collisions are
sometimes called good collisions.

In an inelastic collision the internal state of at least one of the colliding particles changes, e.g., it is rotationally or
vibrationally excited. Molecules with nonzero spin, and hence with a magnetic moment, can be trapped in a magnetic
field. In a collision the orientation of the spin may change into a state that is expelled from the trap, and hence this
kind of inelastic collision is sometimes called a bad collision.

In a reactive collision the composition of the particles changes (e.g., A+BC → AB+C). Whether or not a collision
leads to a reaction depends on the impact parameter. If a reaction only occurs when the impact parameter b of the
trajectory is less than bmax, then the cross section for that process is

σ = πb2max. (27)

The cross section has the dimension of area and in general depends on the kinetic energy of the particles E = 1
2µv

2.
It is also possible that the reaction occurs with some probability that depends on the impact parameter and on the
energy, 0 ≤ P (b, E) ≤ 1. In this case the cross section is given by

σ(E) = 2π

∫ ∞

0

P (b, E)bdb. (28)

The function P (b, E) is called the opacity function. Cross sections for elastic and inelastic processes are defined in a
similar way.
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C. Canonical reaction rates

For a binary process

A+B → C

the time development of the concentrations [A], [B], and [C] (in molecules cm−3) is given by

−d[A]

dt
= −d[B]

dt
=
d[C]

dt
= k(T )[A][B], (29)

where k(T ) is the temperature dependent reaction rate in cm3s−1/molecule. It may be computed as the Boltzmann
average of the cross section 〈vσ(E)〉,

k(T ) =

∫ ∞

0

vσ(E)f(v)dv, (30)

where f(v) is the Maxwell-Boltzmann speed distribution. At ultralow temperatures this expression completely breaks
down, not only because the rate will depend on whether the particles are bosons or fermions, but also because Eq.
(29) will no longer apply, as we shall see in Section xxx. The Maxwell-Boltzmann speed distribution for particles with
mass m is given by

f(v) = 4π

(
m

2πkBT

)3/2

v2e−mv2/2kBT , (31)

where k is Boltzmann’s constant. The distribution is normalized such that
∫ ∞

0

f(v)dv = 1. (32)

For the average kinetic energy we have
∫ ∞

0

1

2
mv2f(v)dv =

3

2
kBT (33)

and the average speed of the particles is

v̄ =

∫ ∞

0

vf(v)dv =

√
8kBT

mπ
. (34)

It is possible to have a mixture of gases for which the speed distributions are characterized by different temperatures
T1 and T2. If the masses of the different particles are m1 and m2, the relative speed distribution is found by replacing
the temperature T by

T̄ =
m2T1 +m1T2

m1 +m2
(35)

and m by the reduced mass µ. If the two gases are in thermal equilibrium we have T1 = T2 = T̄ = T . If, however,
one gas is much colder than the other, e.g., T2 � T1, we must use

T̄ =
m2

m1 +m2
T1 =

µ

m1
T1. (36)

The rate constant may also be written as an integral over the relative kinetic energy E = 1
2µv

2, using dE = µvdv,

k(T ) =

√
8kBT

πµ

1

(kBT )2

∫ ∞

0

σ(E)e−E/kBTEdE. (37)

Substituting x = E
kBT and v̄ =

√
8kBT

µπ gives

k(T ) = v̄

∫ ∞

0

σ(xkBT )e−xxdx = v̄σ̄. (38)

This shows that if σ(E) is constant, then k(T ) ∝ v ∝
√
E. Equation (30) shows that if σ(E) ∝ v−1 ∝ E−

1
2 then k(T )

is a constant. Below we will see that these two cases apply to elastic and inelastic collisions at low temperatures,
respectively.
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D. Isotropic interactions

In capture theory we assume that cross sections are completely determined by long range attractive interactions
between particles. Collisions with zero impact parameter b = 0 are assumed to be reactive. For nonzero impact
parameter b > 0 the system has nonzero angular momentum l = µvb and the effective potential contains a repulsive
centrifugal term [Eq. (16)], which may give rise to a centrifugal barrier. It is assumed that trajectories contribute to
the cross section if, and only if they pass this centrifugal barrier. In many cases the long range interaction is well
described by the leading term of the potential when expanded in powers of 1/r. By assuming a long range interaction
of the form

Vn(r) = − cn
rn
, (39)

where cn > 0 is called the long-range coefficient, we derive analytic formulas for cross sections and reaction rates in
the capture model. We give the derivation only for n > 2. For n = 2 it is actually easier. We do not consider n = 1,
i.e., ion-ion collisions. First, we find the maximum in the effective potential by solving

d

dr
Veff(r) = − l2

µr3
+

ncn
rn+1

= 0. (40)

The solution r = r0 is

r0 =
(nµcn

l2

) 1
n−2

. (41)

For the centrifugal barrier Veff(r0) we find, after factorization,

Veff(r0) =
l2

2µr20
− cn
rn
0

=

(
l2

µ

) n
n−2 n− 2

2n
(ncn)−

2
n−2 . (42)

Trajectories are reactive when Veff(r0) ≤ E. This results in a maximum value for l:

l2max = µn(cn)
2
n

(
2E

n− 2

)n−2
n

, (43)

a corresponding maximum impact parameter

bmax =
lmax

µv
, (44)

a cross section

σ(E) = πb2max =
π

2
n

(
2

n− 2

)n−2
2 (cn

E

)2/n

, (45)

and a rate

k(T ) =

√
2π

µ
n

(
2

n− 2

)n−2
n

(cn)2/n(kBT )
n−4
2n Γ(2 − 2

n
), (46)

where the Gamma function is defined by

Γ(n) =

∫ ∞

0

xn−1e−xdx. (47)

The Gamma function has the special value Γ(1/2) =
√
π, and it satisfies the recurrence relation Γ(n+ 1) = nΓ(n), so

we also have Γ(3/2) = 1
2

√
π. For integer values Γ(n+ 1) = n!.

The position of the centrifugal barrier with height E is found by substituting Eq. (43) into Eq. (41),

r0 =

(
(n− 2)cn

2E

)1/n

. (48)
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TABLE I: Classical capture theory energy dependent cross sections σn(E) and temperature dependent reaction rates kn(T ) for
−cn/rn long range potentials.

n σn(E) kn(T )

2 πc2/E 2
q

2π
µ

c2(kBT )−1/2

3 3π
√

2
(c3/E)2/3 4

q

π
3µ

Γ(1/3)(c3)
2
3 (kBT )−1/6

4 2π
p

c4/E 2π
q

2c4
µ

5 5π
√

23−3/2 (c5/E)2/5 5
q

2π
µ

`

2

3

´3/2
(c5)

2/5(kBT )1/10Γ(3/5)

6 3π
4

(c6/E)1/3 2
11
6 Γ(2/3)

q

π
µ
(c6)

1/3(kBT )1/6

For the model to be valid, the potential for r ≥ r0 must be given to a good approximation by the leading long range
term Vn(r).

Capture theory was first developed by Langevin in 1905, who studied reactions between ions and polarizable atoms.
In that case the interaction is proportional to r−4 and the long range coefficient is given by

c4 =
1

2
αq2, (49)

where q is the charge of the ion, and α is the polarizability of the atom. Substituting c4 into the capture rate coefficient
(see table I) gives

kLangevin(T ) = 2πq

√
α

µ
. (50)

Note that this Langevin rate is independent of the temperature.
The expression for the rate for n = 6 was first given by E. Gorin in 1939. When there are no electrostatic interactions

between two atoms or molecules, the leading long range term is proportional to r−6. This interaction term is called
the dispersion interaction.

E. Anisotropic interactions

The first order electrostatic interaction between two neutral molecules with a nonzero dipole moment is proportional
to r−3. However, we cannot use the k3(T ) capture rate formula directly in this case, because the interaction depends
on the orientation of the molecules. For some orientations the interaction will be attractive, but for other orientations
the interaction will be repulsive. To be precise, the interaction potential is given by

V (r, θ1, φ1, θ2, φ2) = −µ1µ2

r3
[2 cos θ1 cos θ2 − sin θ1 sin θ2 cos(φ1 − φ2)], (51)

where r is the distance between the centers of mass of the molecules, µ1 and µ2 are the magnitudes of the dipole
moments of the molecules, and (θ1, φ1) and (θ2, φ2) are the spherical polar angles defining the orientations of the
dipole vectors of the molecules in a dimer fixed frame, i.e., a frame in which the z-axis is the parallel to the vector
pointing from the center of mass of molecule 1 to the center of mass of molecule 2. In principle, the classical capture
rate can found by computing a large number of classical trajectories and by determining for each trajectory whether
or not it crosses the centrifugal barrier. One strategy is to determine the opacity function as the fraction of “reactive
trajectories” for a given impact parameter b, and use Eq. (28), where the integral over b is also done numerically.

An approximate analytical result can be found with the Infinite Order Sudden Approximation. In this approximation
the expression for k3(T ) is found as the average over all orientations of both dipole vectors, setting the rate equal to
zero whenever the interaction for a certain orientation is repulsive. When the interaction is attractive an orientation
dependent c3 coefficient is determined from Eq. (51) and the formula from table I is used. Reorientation of the
molecules during the collision is not taken into account. The result of the procedure is

kdip−dip
3 (T ) = 1.765(µ1µ2)

2
3

√
π

µ
(kBT )−1/6. (52)

More cases can be found in Ref. [9].
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III. QUANTUM CAPTURE THEORY

So far, our treatment was completely classical. Quantum mechanics requires several modifications of the model.
First of all, in quantum mechanics angular momenta are quantized. For clarity, we will, from now on, use l2c for the
classical angular momentum squared, and l(l+1)h̄2 as the quantum expression, where l is a nonnegative integer and h̄
is Planck’s constant divided by 2π. The wave functions corresponding to different values of the quantum number l are
referred to as partial waves. The classical expression lc = µvb [Eq. (26)] shows that for a fixed value of lc, the impact
parameter b goes to infinity when the velocity v goes to zero. This suggests that when the temperature approaches
zero, only the l = 0 partial wave can contribute to cross sections, and in general, that at lower temperatures fewer
partial waves contribute than at higher temperatures.

When the interaction potential is anisotropic, which in general is the case in collisions involving molecules, we
must also treat rotation of the colliding fragments. Since the rotational constants of the molecules may be much
larger than the rotational constant of the colliding complex, quantization of the rotation of the molecules may be
important at temperatures where still many partial waves contribute to the cross sections. This is particularly true
in molecular scattering experiments, where the molecules are cooled to the lowest rotational states, while the center
of mass collision energy may still be high.

In the classical capture theory, trajectories are assumed reactive when the energy is above the centrifugal barrier,
and nonreactive otherwise. In quantum mechanics tunneling may lead to reaction at energies below the barrier, while
reflection may occur even if the energy is above the barrier.

To derive quantum capture theory, we start with the exact quantum mechanical expression for the energy dependent
state-to-state differential cross section. This gives the most detailed information of a collision event.

A. Quantum scattering theory

If there is no interaction between the two particles the wave function may be written as a plane wave. We denote the
quantum numbers describing the states of the particles collectively by |n〉. For example, for a system consisting of two
diatomic molecules in a certain rovibrational state we have |n〉 = |vajama, vbjbmb〉, where va, vb are the vibrational
quantum number, ja and jb are the diatom angular momentum quantum numbers and ma and mb are the projections

of the angular momenta on a space fixed axis. A flux normalized plane wave with wave vector kn = knk̂ is given by

Ψpw
n

= |n〉v−
1
2

n eikn·r = |n〉v−
1
2

n

∑

l

il(2l + 1)jl(knr)Pl(k̂ · r̂), (53)

where Pl is a Legendre polynomial and jl a spherical Bessel function of the first kind. Using the spherical harmonic
addition theorem

Pl(k̂ · r̂) =
4π

2l+ 1

l∑

ml=−l

Ylml
(r̂)Ylml

(k̂)∗ (54)

and the asymptotic form of the spherical Bessel function

jl(z) ≈
sin(z − lπ/2)

z
=
ei(z−lπ/2) − e−i(z−lπ/2)

2iz
(55)

the plane wave may be written, for large r, as

Ψpw
n

≈ 2π

iknr

∑

lml

|n〉v−
1
2

n Ylml
(r̂)[ei(knr−lπ/2) − e−i(knr−lπ/2)]ilYlml

(k̂)∗. (56)

The effect of switching on the interaction is to modify the outgoing part of the wave function, so asymptotically the
scattering wave function can be written as

Ψsc
n ≈ 2π

iknr

∑

lml

∑

n′

∑

l′m′

l

|n′〉v−
1
2

n′ Yl′m′

l
(r̂)

×[−e−i(knr−lπ/2)δn′nδl′lδm′

l
ml

+ ei(knr−lπ/2)Sn′l′m′

l
;nlml

]ilYlml
(k̂)∗. (57)
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Solving the time-independent scattering problem amounts to finding solutions of the Schrödinger equation that satisfy
the so-called S-matrix boundary conditions for large r,

Ψn,l,ml
=

1

r

∑

n′

∑

l′m′

l

|n′〉v−
1
2

n′ Yl′m′

l
(r̂)[−e−i(knr−lπ/2)δn′nδl′lδm′

l
ml

+ ei(knr−lπ/2)Sn′l′m′

l
;nlml

]. (58)

These individual solutions are called partial waves. The matrix with elements Sn′l′m′

l
;nlml

is called the S-matrix. It
is a complex symmetric unitary matrix. When the potential is zero the S-matrix is a unit-matrix, Sn′l′m′

l
;nlml

=
δn′nδl′lδm′

l
ml

, and the partial waves add up to a plane wave again. The S-matrix is related to the T -matrix through

S = 1− T , where 1 is a unit matrix. The scattering wave function of Eq. (57) may be reorganized into an incoming
plane wave plus an outgoing spherical wave

Ψsc
n
≈ |n〉v−

1
2

n eikn·r +
∑

n′

|n′〉v−
1
2

n′

eik
n
′ r

r
fn′←n(r̂; k̂), (59)

where the so called scattering amplitude is given by

fn′←n(r̂, k̂) =
2π

ikn

∑

lmll′m′

l

il−l′Yl′m′

l
(r̂)Tn′l′m′

l
;nlml

Ylml
(k̂)∗. (60)

The notation with the arrow is used because initial and final quantum numbers should not be interchanged. The

state-to-state differential cross section for a particular incident direction k̂ is given by

σn′←n(r̂, k̂) = |fn′←n(r̂, k̂)|2. (61)

The state-to-state integral cross section for a particular incident direction is given by

σn′←n(k̂) =

∫∫
σn′←n(r̂, k̂)dr̂. (62)

Assuming that the incident directions are isotropically distributed, the state-to-state integral cross section is obtained

by taking an average over all incoming directions k̂

σn′←n =
1

4π

∫∫
σn′←n(k̂)dk̂ =

π

k2
n

∑

lmll′m′

l

|Tn′l′m′

l
;nlml

|2 =
π

k2
n

Pn′n, (63)

where we introduced the reaction probability matrix P in the last step. So far, the formalism applies to inelastic
scattering. To extend it to reactive scattering we only have to include an arrangement label γ to the quantum numbers
n that describe the molecules. This modification is sufficient as long as three-body breakup cannot occur.

B. Connection with classical capture theory

The diagonal elements of the T -matrix determine the elastic scattering cross sections and the off-diagonal elements
determine the inelastic and reactive cross sections. The off-diagonal elements of the T -matrix are equal to the off-
diagonal elements of the S-matrix. The S-matrix is unitary, so the sum of the squares of the absolute values of all
elements of a given column is equal to one. Hence, the sum over l′,m′l in Eq. (63), excluding the diagonal element,
gives at most one for each column. This is still true if we sum over all possible reaction products n′. Thus, the
maximum contribution of the partial wave with a given l to the inelastic or reactive cross section for some initial state
|n〉 is given by

σmax
n,l =

π

k2
n

(2l + 1), (64)

where the factor (2l + 1) arises from the summation over ml. Assuming that all partial waves up to some maximum
value lmax are fully reactive and higher partial waves are nonreactive, gives an initial state selected cross section

σn =

lmax∑

l=0

σmax
n,l =

π

k2
n

(lmax + 1)2. (65)
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To compare this result to the classical expression Eq. (27) we associate an angular momentum squared l2c with
h̄2lmax(lmax + 1). Using Eq. (26) this gives

b2max =
h̄2lmax(lmax + 1)

µ2v2
(66)

and with µv = p = h̄kn this gives

σ = πb2max =
π

k2
n

lmax(lmax + 1). (67)

One expects the classical theory only to work when a sufficient number of partial waves contribute, in which case
lmax(lmax + 1) ≈ (lmax + 1)2.

C. Coupled channels capture theory

In quantum capture theory it is assumed that the capture cross sections can be found by solving the Schrödinger
equation in a restricted region that is located entirely in the reactant arrangement. The computation then becomes
very similar to a coupled channels calculation for inelastic scattering. The only difference is that the boundary
conditions at small r are different. The wave function is not assumed to be finite, but the flux is assumed to be
inwards at some point r = ra. Here we will not derive the coupled channels equation, but only summarize the main
results and give the capture theory boundary conditions.

In the coupled channels approach the Hamiltonian is written as the sum of the radial kinetic energy operator and
the remainder (∆Ĥ),

Ĥ = − h̄2

2µ
r−1 d

2

dr2
r + ∆Ĥ (68)

and the Schrödinger equation in the reactant arrangement is written as

h̄2

2µ
r−1 d

2

dr2
rΨ = (∆Ĥ −E)Ψ. (69)

The wave function is expanded in channel functions |n′〉,

Ψn = r−1
∑

n′

|n′〉Un′n(r), (70)

where each column of the matrix U(r) defines a wave function. To keep the notation short we assume that the partial
wave quantum numbers l and ml are included in n. By substituting the expansion into the Schrödinger equation
and projecting onto the channel eigenfunctions, a set of coupled second order differential equations for the expansion
coefficients is found

U ′′(r) = W (r)U(r), (71)

where the primes denote derivatives with respect to r and the coupling matrix is given by

Wn′n(r) =
2µ

h̄2 〈n′|∆Ĥ −E|n〉. (72)

In an inelastic scattering problem the condition that the wave function is finite gives the boundary condition that
U(r = 0) = 0. This boundary condition, together with the coupled channels equation (71), defines a linear relation
between the expansion coefficients and their derivatives with respect to r,

U ′(r) = Y (r)U(r), (73)

where Y (r) is called the log-derivative matrix. In the capture problem the boundary condition is that at some small
value of r, inside the centrifugal barrier, the flux can only be inwards. For a one-dimensional single channel problem
with ∆Ĥ = V (r), this means that around some point r = ra the wave function has the form e−ikr , where k is the
wave number at r = ra, i.e.,

h̄2k2

2µ
= E − V (ra) (74)



11

and the boundary condition for the (1 × 1) log-derivative matrix is Y (ra) = −ik. To define the boundary conditions
in the multichannel case the coupling matrix W (ra) is diagonalized to obtain a set of uncoupled one dimensional
problems,

W (ra)Q(ra) = Q(ra)Λ(ra), (75)

where Λ(ra) is a diagonal matrix with eigenvalues and the columns of the matrix Q(ra) are the eigenvectors of the
matrix W (ra). The negative eigenvalues correspond to open channel eigenfunctions, with Λoo = −k2

o , and the positive
eigenvalues correspond to closed channel eigenfunctions with Λcc = k2

c . Transforming the coupled channels problem
to the channel eigenfunction basis with

Ũ (r) = Q†(ra)U(r) (76)

gives

Ũ ′′(r) = Q†(ra)W (r)Q(ra)Ũ (r) ≈ Λ(ra)Ũ (r). (77)

The approximation of assuming that the W (r) matrix is constant around ra results in a set of one dimensional

problems, and the matrix Ũ (r) becomes diagonal. The inward flux boundary condition for open channel eigenfunctions
are now given by

Ũoo(r) = e−ikor (78)

and the boundary conditions for closed channels are

Ũcc(r) = ekcr. (79)

The log-derivative matrix in the channel eigenfunction basis is also diagonal at r = ra, and the boundary conditions
are given by

Ỹii(ra) = [Q†Y (ra)Q]ii =

{
−iki, for open channels,

ki, for closed channels.
(80)

Since the matrix Q with eigenvectors is unitary the boundary conditions for the log-derivative matrix in the original
basis are given by

Y (ra) = Q(ra)Ỹ (ra)Q†(ra). (81)

The boundary conditions Eqs. (78) and (79) apply if the channel eigenvalues Λ(r) are approximately constant around
r = ra. Sometimes it is better to approximate the channel eigenvalues by a linear function of r. For that case the
boundary conditions can be found in Ref. [13].

The general technique to propagate the log-derivative matrix to some point r = rb sufficiently far outside the
centrifugal barrier relies on dividing [ra, rb] in a set of small sectors [rn, rn+1]. In each sector one determines a so
called imbedding type propagator defined by

[
U ′n

U ′n+1

]
=

[
Y(n)

1 Y(n)
2

Y(n)
3 Y(n)

4

] [
−Un

Un+1

]
, (82)

where Un = U(rn). The minus sign in the definition is not essential, but with this choice one can show that

Y(n)
2 = Y(n)

3 . To find the propagator one can diagonalise the W matrix in the middle of the sector and assume it to be
constant, which results in a set of uncoupled one-dimensional problems, as above. For the one-dimensional problems
the propagator can be found analytically, and the result can be transformed back to the original basis. More accurate
propagators have been developed, which, e.g., assume the eigenvalues of the W (r) matrix to change linearly over the
interval, and correct for nonzero coupling with a Green’s function technique. Once the sector propagator is found it
can be used to propagate the log-derivative matrix at r = rn, defined by

U ′n = Y (rn)Un (83)

to rn+1:

Y (rn+1) = Y(n)
4 − Y(n)

3 [Y (rn) + Y(n)
1 ]−1Y(n)

2 . (84)
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In this way, the log-derivative matrix can be propagated to r = rb. For sufficiently large r the S-matrix boundary
conditions for U(r) are given by

U(r) = −I(r) + O(r)S, (85)

where I(r) is a diagonal matrix with flux normalized incoming waves

In,n(r) = v
− 1

2
n e−i(knr−lπ/2) (86)

and O(r) = I(r)∗ are the outgoing waves. By substituting the asymptotic form of the wave function in the defining
relation of the log-derivative matrix [Eq. (73)] we can relate the S matrix to the log-derivative matrix

S(E) = [Y (rb)O(rb) − O′(rb)]
−1[Y (rb)I(rb) − I ′(rb)]. (87)

Because of the complex boundary conditions at r = ra, the S-matrix is not unitary and the capture probability for a
given incoming channel can be found by

Pnlml
(E) = 1 −

∑

n′l′m′

l

|Sn′l′m′

l
;nlml

(E)|2 (88)

where we have written the partial wave quantum numbers explicitly again for clarity. The capture cross section for
incoming channel n is found as

σn(E) =
π

k2
n

∑

lml

Pnlml
(E). (89)

Note that this capture approximation provides initial state selected cross sections only and information about the
product state distribution is lost. A model exists for complex forming reactions in which capture theory ideas are used
in reactant as well product arrangements which, together with a statistical model to describe the complex, provides
partial information about the product state distribution[13].

D. Quantum adiabatic capture theory

At low temperatures the collision time is long compared to characteristic vibrational and rotational timescales in the
colliding molecules. This allows us to introduce an approximation analogous to the Born-Oppenheimer approximation,
which exploits the difference in time scales of electronic and nuclear motion. Solving the Schrödinger equation for
the fast motion amounts to diagonalising the W (r) matrix on a grid of r points, as in Eq. (75) and treating the
eigenvalues Λnn(ra) as uncoupled one-dimensional potentials (multiplied by a factor 2µ/h̄2). These potentials will
asymptotically correlate with molecular states. For each molecular state asymptotically allowed at an energy E,
the capture probability is computed by solving the one-dimensional quantum capture problem. This calculation is
done exactly as the coupled channels equation, except that all matrices become scalars, and the propagators and
log-derivative matrices in the channel eigenfunction basis are never transformed back to the original basis. The result
is again a capture probability for each initial state n, and the capture cross section is obtained as in Eq. (89).

Often, the result of this approximation is in good agreement with full coupled channels capture theory. [9, 14, 15]
When the coupling between different rotational states is strong, the initial state selected capture rates may not be
very good. However, often one is only interested in the Maxwell-Boltzmann average of the capture rates over all
possible initial states, in the case of thermal equilibrium. These thermally averaged rates may still be good, even for
strong rotational coupling. In the next section we show that the thermal capture rate only depends on the cumulative
capture rate at a given total energy.

E. Thermal capture rates

For an initial state |n〉 with channel energy εn and kinetic energy E
(kin)
n the total energy is

E = εn +E(kin)
n = εn +

h̄2k2
n

2µ
. (90)
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In time-independent scattering theory one computes the state-to-state cross section as a function of the total energy
[Eq. (63)],

σn′←n(E) =
π

k2
n

Pn′n(E). (91)

The state-to-state temperature dependent reaction rate is given by [Eq. (37)]

kn′←n(T ) =

√
8kBT

πµ

1

(kBT )2

∫ ∞

0

σn′←n(E)e−E(kin)
n

/kBTE(kin)
n dE(kin)

n . (92)

Sometimes, only the Boltzmann averaged reaction rate is required,

k(T ) = Q−1
int(T )

∑

n′n

kn′←n(T )e−εn/kBT , (93)

where the internal partition function is given by

Qint(T ) =
∑

n

e−εn/kBT . (94)

By substituting Eq. (92) into Eq. (93) and changing the order of integration and summation, one obtains a much
simplified expression

k(T ) =
1

2πh̄QtQint

∫ ∞

−∞

N(E)e
− E

kB T dE, (95)

where the translational partition function per volume is given by

Qt =
1

h̄3

(
µkT

2π

)3/2

(96)

and the cumulative reaction probability N(E) is defined as the sum of the reaction probabilities over all open reactant
and product states

N(E) =
∑

n′n

Pn′n(E). (97)

When there are no open channels at a given total energy, N(E) is set to zero, so the range of integration can be
taken from −∞ to +∞ in Eq. (95). Since N(E) depends on the unweighted sum over initial states one sees that
an approximation that does not properly describe the mixing of initial states, may still produce an accurate thermal
rate. In particular, this explains why adiabatic capture theory may be much more accurate for the thermal capture
rate, than for initial state selected rates.

F. Total angular momentum representation

In Section III A we employed an uncoupled angular basis for two colliding molecules. For an atom-diatom system
the uncoupled rotational bases is |jmj〉|lml〉, where |jmj〉 is the rotational wave function of the molecule and |lml〉 is
the orbital angular momentum of the collision partners. The coupled angular momentum basis is defined by

|(jl)JMJ〉 =

j∑

mj=−j

l∑

ml=−l

|jmj〉|lml〉〈jmj lml|JMJ〉, (98)

where 〈jmj lml|JMJ〉 is a Clebsch-Gordan coefficient. The coupled states are eigenfunctions of the total angular

momentum operator squared of the system (Ĵ2) and of its space-fixed z-component Ĵz. The total angular momentum
quantum number J can take the values |j − l|, |j − l|+ 1, . . . , j + l, and the projection quantum number MJ can take
the values −J,−J + 1, . . . , J . For a given j and l there are as many coupled basis functions as uncoupled ones

l+j∑

J=|l−j|

(2J + 1) = (2j + 1)(2l + 1), (99)
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and the coupled basis functions are orthonormal, i.e., the Clebsch-Gordan coefficients are elements of a unitary
transformation. When a scattering wave function is written in the coupled basis, the S-matrix is related to the
S-matrix in the uncoupled basis through

S
J′,M ′

J ;JMJ

n′j′l′,njl =
∑

m′

j
m′

l
mjml

〈J ′M ′J |j′m′j l′m′l〉Sn′j′m′

j
l′m′

l
;njmj lml

〈jmj lml|JMJ〉. (100)

When the system has cylindrical symmetry, i.e., when there is no external field or an external field parallel to the
space-fixed z-axis, the projection of the total angular momentum on the z-axis is conserved, i.e., M ′J = m′j +m′l =
mj +ml = MJ , and the S-matrix elements are zero when M ′J 6= MJ . When the system has spherical symmetry, i.e.,
there are no external fields, then J is also a good quantum number, and the S-matrix is independent of MJ ,

S
J′,M ′

J ;JMJ

n′j′l′,njl = δJ′JδM ′

J
MJ

SJ
n′j′l′;njl (101)

and the equation 100 may be inverted to give

Sn′j′m′

j
l′m′

l
;njmj lml

=
∑

JMJ

〈j′m′j l′m′l|J ′MJ〉SJ
n′j′l′;njl〈JMJ |jmj lml〉. (102)

The T -matrix satisfies an analogous relation, and hence, using the orthogonality relations of the Clebsch-Gordan
coefficients we may derive for the sum of the reaction probabilities over all projection quantum numbers

∑

m′

jm′

l
mjml

Pn′j′m′

j
l′m′

l
;njmj lml

=
∑

J

(2J + 1)P J
n′j′l′;njl (103)

where the factor (2J + 1) is the result of summing over MJ .
To construct a total angular momentum basis for two colliding molecules one must first couple the rotational wave

functions of the molecules, |jama〉 and |jbmb〉 to a coupled basis |(jajb)jmj〉, which in turn can be coupled with the
end-over-end rotational function |lml〉 to obtain the total angular momentum basis functions | {(jajb)jl}JMJ〉.

For cold collisions in electrostatic of magnetic traps it may be important to include the external field in the
calculation. In such cases it is advantageous to use the uncoupled representation, otherwise the coupled representation
is more efficient.

IV. WIGNER THRESHOLD LAWS

Already in the early days of quantum mechanics, solutions of the Schrödinger equation in the limit of low collision
energies were analysed and expressions were found for the energy-dependence of cross sections. For example, it was
found that for potentials of finite range, i.e., potentials that are vanishingly small when the distance between collision
partners is larger than some value r0, the elastic cross section at low energy is dominated by s-wave scattering, i.e.,
by the contribution of the l = 0 partial wave, and the cross section is energy independent. The inelastic cross section
is also dominated by the s-wave, but it increases as E−

1
2 when the collision energy E is sufficiently low. Here we will

derive the general results obtained by Wigner in 1948. These results are known as the Wigner threshold laws.

A. Bouncing off a cliff

To demonstrate the difference between quantum mechanics and classical mechanics in the limit of low energies we
consider the one-dimensional problem shown in Fig. 1. The potential V (x) = 0 for x < 0 and V (x) = V0 < 0 for
x > 0. A classical particle with mass µ moving in the positive x-direction will have zero probability of reflection at
x = 0 and unit probability of transmission.

In the quantum mechanical description the wave function consists of a unit flux incoming part and a reflected part
for x < 0,

ΨL(x) = v−
1
2 (eikx −Re−ikx) (104)

and a transmitted part for x > 0,

ΨR(x) = v
− 1

2
0 Teik0x. (105)
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FIG. 1: Real and imaginary part of the scattering wave function for a one-dimensional step-function potential V (x).

The total energy is

E =
h̄2k2

2µ
= V0 +

h̄2k2
0

2µ
(106)

with v = h̄k/µ and v0 = h̄k0/µ. Matching the wave functions ΨL(x) and ΨR(x) and their first derivatives at x = 0
gives

T =
2α

α2 + 1
(107)

R =
1 − α2

α2 + 1
(108)

where α =
√
k/k0 and |T |2 + |R|2 = 1. Hence, in this one-dimensional problem, the probability of transmission is

proportional to |T |2 ∝ k ∝
√
E and the probability of reflection, |R|2, approaches unity when the energy E approaches

zero. This quantum result is very different from the classical result, where the probability of reflection is always zero.
The quantum effect is sometimes referred to as quantum suppression. The classical result is recovered in the high
energy limit (E � V0, k ≈ k0, and α ≈ 1).

B. s-wave elastic scattering

Solutions of the quantum central force problem may be expanded in partial waves

Ψlm(r) = r−1ul(r)Ylm(r̂). (109)

For u0(r), the so-called s-wave, the radial Schrödinger equation is

[
− h̄2

2µ

d2

dr2
+ V (r) −E

]
u0(r) = 0 (110)

and the boundary condition at r = 0 is u0(0) = 0. As before, we assume that the potential is negligible for r > r0.
The log-derivative matrix at r0, defined by

u′0(r0) = Y (r0)u0(r0), (111)

is found by propagation from r = 0 to r = r0. In this region, the energy

E =
h̄2k2

2µ
(112)
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is assumed to be so small compared to the potential V (r) that it may be neglected and Y (r0) becomes energy
independent. To find the energy dependence of the T -matrix we first determine the radial wave function with K-
matrix boundary conditions, which is convenient because it uses real functions,

u0(r) = sin kr −K cos kr, for r > r0. (113)

Here r−1 sin kr is called the regular solution, since r−1 sin kr is finite for r = 0, and r−1 cos kr is called the irregular
solution. We now assume that kr0 � 1 so that we can replace sin(kr) and cos(kr) by the leading term in their Taylor
expansion for r = r0,

u0(r) ≈ kr −K (114)

and

u′0(r) ≈ k. (115)

Since we assume the log-derivative matrix at r = r0 to be energy-independent, we find that the K-matrix must be
proportional to k,

K ∝ k ∝
√
E. (116)

The S-matrix is related to the K-matrix through

S = (1 − iK)(1 + iK)−1. (117)

For small K we have to first order in K

(1 + iK)−1 ≈ 1 − iK + . . . (118)

so

T = 1 − S ≈ 1 − (1 − iK)2 ≈ 2iK (119)

Hence, the T -matrix is also proportional to k and the elastic s-wave scattering cross section

σ(E) =
π

k2
|T |2 (120)

is energy independent for small E.

C. Scattering length

The boundary condition for scattering off a hard sphere with radius rh is u0(rh) = 0. The wave function u0(r) in
Eq. (114) looks like the wave function corresponding to a hard-sphere problem, with radius rh = K/k. This motivates
the definition of the scattering length a as

a = lim
k→0

K

k
. (121)

The scattering length may also be defined in terms of the phase shift δ, which is related to the S-matrix by S = e2iδ ,
so for small phase shifts we have S ≈ 1 + 2iδ and K ≈ −δ. With Eq. (120) and T ≈ 2iK, the elastic s-wave cross
section in the limit of low energy is related to the scattering length through

σ = 4πa2. (122)

In the Born approximation the total elastic cross section, in the case of an isotropic potential, is given by

σ =
µ2

4πh̄4

∣∣∣∣
∫ ∫ ∫

V (r)dr

∣∣∣∣
2

. (123)

Thus, for a δ-function potential

V (r) =
4πah̄2

µ
δ(r), (124)
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we have

σ =
µ2

4πh̄4

∣∣∣∣
4πah̄2

µ

∣∣∣∣
2

= 4πa2. (125)

To compute the properties of ultracold gases one often replaces the actual potential by a δ-function potential that
gives the same scattering length and hence the same elastic cross section, to simplify the calculations. Notice that
a positive scattering length corresponds to a repulsive interaction, and a negative scattering length to an attractive
interaction.

D. Inelastic scattering at low energy

We will now consider the energy dependence of the cross section for an inelastic or reactive process when the kinetic
energy in the incoming channel approaches zero. As above, we assume that the potential is negligible for r > r0.
Furthermore, we will consider all partial waves, and not limit ourselves to s-wave scattering. This is important since
one may be interested in a process that changes the angular momentum of the molecules. In the absence of external
fields the total angular momentum is conserved, so the ingoing and outgoing partial waves cannot both be s-waves.

As in the one-channel elastic case, we will use K-matrix boundary conditions, which gives real wave functions. The
expansion of the wave function,

Ψnl = r−1
∑

n′l′

|n′l′〉Un′l′;nl(r), (126)

is similar to the expansion of the wave function with S-matrix boundary conditions, but instead of incoming and
outgoing waves there are regular and irregular waves for large r,

Un′l′;nl(r) ≈ fnl(r)δn′nδl′l + gn′l′(r)Kn′l′;nl. (127)

The regular waves are defined by

fnl(r) = v
− 1

2
n knrjl(knr) (128)

and the irregular waves by

gnl(r) = v
− 1

2
n knryl(knr) (129)

where yl is a spherical Bessel functions of the second kind[16]. For l = 0 we have the s-wave functions, zj0(z) = sin z
and zy0(z) = − cos z. The total energy is conserved,

E = εn +
h̄2k2

n

2µ
= εn′ +

h̄2k2
n′

2µ
. (130)

We will analyse the wave function for small kinetic energy in the incoming channel kn → 0. This means that all
inelastic processes must be exothermic, and the kinetic energy in the outgoing channel |n′l′〉, h̄2k2

n′/2µ, is determined

by εn−εn′ � h̄2k2
n/2µ. Hence, we will assume fn′l′(r) and gn′l′(r) to be energy independent. As in the derivation for

s-wave scattering, we assume that the kinetic energy of the incoming channel may also be neglected when propagating
the log-derivative matrix Y (r0) from r = 0 to r = r0. When matching the wave function at r = r0 to the K-matrix
boundary conditions, we assume that for the incoming channel knr0 � 1 and the regular and irregular functions are
replaced by the leading term in the Taylor expansion. For the Bessel functions we have

jl(knr) ≈ (knr)
l, (131)

yl(knr) ≈ (knr)
−(l+1), (132)

and hence for the regular and irregular waves around r = r0,

fnl(r) ∝ k
l+ 1

2
n , (133)

gnl(r) ∝ k
−(l+ 1

2 )
n . (134)
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The defining equation for the log-derivative matrix Eq. (73) shows that Y (r0) is energy independent only if each
column of the matrix U(r0) has the same dependence on kn, since the log-derivative matrix is independent of scaling
of the columns of U . Hence the kn dependence of the matrix elements Kn′l′;nl follows from Eq. (127) and the kn

dependence of the regular and irregular waves for the elastic and inelastic channels. Hence, for the elastic K-matrix
elements for the incoming channel with small kinetic energy we must have

k
l+ 1

2
n ∝ k

−(l′+ 1
2 )

n Knl′;nl (135)

or

Knl′;nl ∝ kl+l′+1
n . (136)

Since we assumed the irregular waves for exothermic channels to be energy independent we find for inelastic matrix
elements

Kn′l′;nl ∝ k
l+ 1

2
n . (137)

In the K-matrix there are also elements that relate two exothermic channels, and these must of course be independent
of kn. Hence, the K-matrix, which is real and symmetric, has a block structure

K =

(
Kn,n KT

n′,n

Kn′,n Kn′,n′

)
, (138)

Because of the energy independent (n′,n′) block we cannot directly use the analogue of Eq. (118), but we use instead

T = 1− S = 1− 1− iK

1 + iK
= −2i(1 + iK)−1K (139)

and together with the general expression for the inverse of a block matrix

(
A B

C D

)−1

=

(
(A − BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A − BD−1C)−1 (D − CA−1B)−1

)
(140)

one may derive for the T -matrix elements for low energy elastic scattering

|Tnl′;nl|2 ∝ k2l+2l′+2
n

(141)

and for low energy inelastic scattering

|Tn′l′;nl|2 ∝ k2l+1
n . (142)

Hence, for elastic cross sections we find

σnl′←nl ∝ k2l+2l′

n (143)

and for the inelastic cross sections

σn′l′←nl ∝ k2l−1
n

. (144)

We find again that for low energy s-wave scattering, l = l′ = 0, the cross sections are energy-independent. The

s-wave inelastic cross sections depend on the kinetic energy as E
− 1

2

kin , which results in a temperature independent rate
constant. A temperature independent rate constant was also found for the classical Langevin ion-molecule capture
rate, but that was the result of classical motion on the long-range 1/r4 potential. The effect of the long-range potential
in the quantum regime is discussed in Ref. [17]. It is concluded that the formula for low energy inelastic T -matrix
elements is valid if the potential falls off in the long range more rapidly than 1/r2. The formula for single channel
elastic scattering is valid if l > (n− 3)/2 for a long range potential −cn/r

n, while Tl,l ∝ kn−2 otherwise.
For processes that result in a change of the angular momentum projection quantum number by ∆m, but which do

not change the internal energy, the threshold law for the cross section is k∆m
n when ∆m is even and k∆m+1

n for m is
odd[18].

Finally, for exothermic reactive processes, the threshold law is the same as for exothermic inelastic processes. This
quantum result does not rely on a capture model, and so it also applies when there is a reaction barrier.

Here we only considered processes in which there are at most two reactants or two products. More complicated
processes including, e.g., three-body breakup are discussed in Ref. [19].
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V. ULTRACOLD CHEMISTRY

We will consider ultracold gases that are confined in space, e.g., in a three-dimensional box. Experimentally, gases
have been confined in magnetic traps, which can be modeled as three-dimensional harmonic oscillators. In a T = 0
ideal Bose gas, i.e., a gas of non-interacting bosons, the translational motion of each particle is described by the same
ground state wave function of the trap. This is not true for fermions, since two fermions cannot be in the exact same
quantum state.

So far, we assumed that the rate of a reaction is determined by the collision rate and the cross section for two-particle
collisions. When considering reactions in a T = 0 Bose gas, this is no longer appropriate, since the bosons occupy the
same wave function, the “collisions” occur simultaneously throughout the trap, and full quantum description of the
system is required.

For a macroscopic system, e.g., a cubic box with a volume of 1 cm3, the excitation energy to the first excited
quantum state is extremely small. For example, for a sodium atom in such a box it would be on the order of 10−15

cm−1 (1 cm−1 corresponds to 1.44 K). As a result of a quantum statistical effect, however, the ground state of the
trap will acquire a macroscopic population at much higher temperatures if the density of the gas is sufficiently high.
This effect is called Bose-Einstein condensation. It happens when the density is on the order of one particle per Λ3,
where Λ is the thermal de Broglie wavelength. For a particle of mass m, Λ is given by

Λ =

√
2πh̄2

mkBT
. (145)

In the next section we will derive this result for an ideal Bose gas. Section V D, on the Gross-Pitaevskii equation,
shows how the condensate wave function changes when interactions between the bosons are taken into account. In
the last section we will show how the quantum statistics of bosons and fermions affects the rates of reactions.

A. Particle in a box

The energy levels of a one-dimensional particle in a box with size a are given by

εn =
h̄2π2

2ma2
n2, n = 1, 2, 3, . . . (146)

where m is the mass of the particle. The corresponding wave functions are

φn(x) =

√
2

a
sinn

πx

a
. (147)

The canonical partition function for distinguishable particles at a temperature T is

qt(T ) =
∞∑

n=1

e−βεn , (148)

where β−1 = kBT . For a large cubic box the energy spacings are small, so the sum may be replaced by the integral

qt(T ) =

∫ ∞

0

e−β h̄2π2

2ma2 n2

dn =
a

Λ
, (149)

when the box is sufficiently large, or when the temperature is sufficiently high (and β small). For a three-dimensional
box the energy levels are

εn = εnx
+ εny

+ εnz
(150)

and the wave functions are

φn(r) = φnx
(x)φny

(y)φnz
(z). (151)
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B. Bose-Einstein condensation

To describe Bose-Einstein condensation we will use the grand canonical partition function

Z(V, T, µ) =
∞∑

N=0

eβµNQ(N, V, T ), (152)

where V is the volume, µ is the chemical potential, N is the number of bosons, and Q is the canonical partition
function. For an ideal Bose gas, this expression becomes[20]

Z(V, T, µ) =
∏

k

1

1 − λe−βεk
, (153)

where k runs over all single particle energy levels and λ is the fugacity

λ = eβµ = e
µ

kB T . (154)

The equation of state of the ensemble is

pV = kBT lnZ, (155)

where p is the pressure. The connection with thermodynamics is made through the relation

d(pV ) = SdT +Ndµ+ pdV, (156)

where S is the entropy. For the total number of particles in the system N we find,

N =
d(pV )

dµ

∣∣∣∣
V,T

= kBT

(
∂ lnZ

∂µ

)

V,T

=
∑

k

λe−βεk

1 − λe−βε
=
∑

k

nk. (157)

The average population of state k, with energy εk, is

nk =
λe−βεk

1 − λe−βεk
. (158)

The fugacity λ and the related chemical potential µ are simply parameters that, together with the temperature and
the energy levels εk, determine the populations nk through Eq. (158) and hence the total number of particles N . The
possible values of λ and µ are determined by the requirement that populations cannot be negative. This condition is

0 ≤ λe−βεk = e−β(εk−µ) < 1. (159)

With ε0 defined as the lowest energy, the condition is µ < ε0. In the expressions only εk − µ appears, so we take
the zero of energy as ε0 = 0, and hence µ < 0 and 0 ≤ λ < 1. When λ is small the populations of the states are
proportional to e−βεk , which corresponds to the classical Maxwell-Boltzmann distribution. Notice that in this case
the chemical potential µ� 0, even though the interaction between the particles is zero for our ideal Bose gas. Next,
consider the population of the ground state with ε0 = 0,

n0 =
λ

1 − λ
. (160)

When λ approaches 1 (µ approaches 0), the population of the ground state n0 can become arbitrarily large. The
total number of particles N is the sum of n0 and the total population of the excited states (N − n0). We will now
determine N −n0 as a function of λ in the statistical limit. This means that for a given temperature T , or a given β,
we assume the box to be so large that the energy spacings between the levels εk are small compared to kBT . Hence,
for the lowest excited state, which is three fold degenerate, we assume that βε1 � 1 such that e−βε1 ≈ 1 − βε1. We
note that the population of the ground state can only be considerably larger than that of k = 1 and higher states if
λ is very close to 1. If we write λ = 1− δ, where δ ≈ 0, we find that the ground state population is

n0 =
λ

1 − λ
≈ 1

δ
(161)
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and the population of the first excited state is

n1 ≈ (1 − δ)(1 − βε1)

1 − (1 − δ)(1 − βε1)
≈ 1

δ + βε1
. (162)

Hence, n0 can only be considerably larger than n1 if δ is small compared to βε1. When λ increases, the population
nk of each level increases, since the numerator in Eq. (158) increases with λ and the denominator decreases with λ.
Hence, we may compute an upper limit to the population of all excited states by setting λ = 1,

N − n0 =
∑

k>0

e−βεk

1 − e−βεk
. (163)

For bosons in a three-dimensional box, the energy levels εk are given by εn of Eq. (150) and the summation over k
must be replaced by

∑

k

=

∞∑

nx=1

∞∑

ny=1

∞∑

nz=1

. (164)

The energies εn can be written as bn2, with n2 = n2
x + n2

y + n2
z and

b =
h̄2π2

2ma2
. (165)

The summation can be approximated by an integral over one octant of a sphere,

∑

nx>0

∑

ny>0

∑

nz>0

f(n) =
π

2

∫ ∞

0

n2f(n)dn (166)

or, with ε = bn2 and n2dn = (1/2)b−3/2
√
εdε,

N − n0 =
π

4
b−3/2

∫ ∞

0

√
εe−βε

1 − e−βε
dε. (167)

To evaluate the integral we use the series expansion

(1 − x)−1 =

∞∑

l=0

xl, for |x| < 1, (168)

for x = e−βε which gives

N − n0 =
π

4
b−3/2

∞∑

l=1

∫ ∞

0

√
εe−βlεdε =

π

4
b−3/2

∞∑

l=1

Γ(3/2)

(βl)3/2
. (169)

With Γ(3/2) = 1
2

√
π, a3 = V , the Riemann-zeta function defined by

ζ(n) =

∞∑

l=1

1

ln
, (170)

and the de Broglie wavelength defined in Eq. (145) the contribution of the excited states to the density is at most

ρex =
N − n0

V
=

(
mkBT

2πh̄2

)3/2

ζ(3/2) = Λ−3ζ(3/2), (171)

where ζ(3/2) ≈ 2.612. This equation shows that if the temperature is lowered, the excited states can contain less
density. When ρex drops below the total density ρ, the ground state must accommodate the difference ρ0 = ρ− ρex,
and a Bose-Einstein condensate is formed. This happens at the critical temperature Tc. The corresponding density
is called the critical density ρc. Below the critical temperature the total density is given by

ρ = ρ0 + ρex =
1

V

λ

1 − λ
+ Λ−3ζ(3/2). (172)
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The excited states density is related to the density ρc at the critical temperature through

ρex

ρc
=

(
Λc

Λ

)3/2

=

(
T

Tc

)3/2

, (173)

where Λc is the de Broglie wavelength at temperature Tc. Hence, the condensate fraction is

ρ0

ρc
=
ρc − ρex

ρc
= 1 −

(
T

Tc

)3/2

. (174)

In this limit of a large volume there is a discontinuity in the derivative of the condensate fraction at T = Tc which
marks the phase transition.

C. Condensate in a harmonic trap

Bose-Einstein condensates of dilute gases that have been created in experiments, were not confined by walls, but
by magnetic traps. The confining field in such a trap may be modeled by a three-dimensional harmonic oscillator
potential

Vtrap(r) =
1

2
(Kxx

2 +Kyy
2 +Kzz

2). (175)

We will only consider isotropic potentials for which the three force constants Kx = Ky = Kz are equal to K. In that
case the one-particle energy levels are given by

εn = (nx + ny + nz +
3

2
)h̄ω, (176)

where ω =
√
K/m is 2π times the trap frequency and the quantum numbers nx, ny, and nz are nonnegative integers.

The ground state one-particle wave function is given by

φ(r) =
(mω
πh̄

)3/4

e−
1
2

mω
h̄

r2

. (177)

The relation between the number of particles and the critical temperature is

kBTc =

(
h̄ωN1/3

ζ(3)

)1/3

≈ 0.94h̄ωN1/3 (178)

and the formula for the condensate fraction is

N0

N
= 1−

(
T

Tc

)3

. (179)

The derivation of this relation is similar to the derivation in the previous section and can be found, e.g., in Ref. [21].

D. The Gross-Pitaevskii equation

The wave function for a condensate of N non-interacting bosons is the Hartree product,

Ψ(r1, r2, . . . , rN ) =

N∏

i=1

φ(ri), (180)

where the single particle wave function φ(r) is normalized,

〈φ|φ〉 =

∫
|φ(r)|2dr = 1. (181)
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For particles in a cubic box φ(r) is φ0,0,0 in Eq. (151) and for an isotropic three-dimensional harmonic trap it is given
by Eq. (177). To find an approximate wave function for the condensate in the presence of interactions between the
particles, we will use the Hartree product as an Ansatz for the wave function and variationally optimize the single
particle wave function φ(r). This is a mean-field approach and it is analogous to the Hartree-Fock approach for
fermions. We consider a pairwise additive interaction with the effective pair potential of Eq. (124)

Û = U0

∑

i<j

δ(ri − rj), (182)

where U0 is determined by the scattering length, U0 = 4πah̄2/µ. The total Hamiltonian of the gas also contains the
kinetic energy of the particles and the trap potential Vtrap(r),

Ĥ =

N∑

i=1

[
p2

i

2m
+ Vtrap(ri)

]
+ Û , (183)

where p = h̄
i ∇. For the trap potential the expectation value is given by

〈Ψ|
N∑

i=1

Vtrap(ri)|Ψ〉 = N〈φ|Vtrap(r)|φ〉 = N

∫
Vtrap(r)|φ(r)|2dr (184)

and for the kinetic energy it is

〈Ψ|
N∑

i=1

p2
i

2m
|Ψ〉 =

N

2m
〈φ|p2|φ〉 =

N

2m
〈pφ|pφ〉 =

Nh̄2

2m

∫
|∇φ(r)|2dr. (185)

Finally, to evaluate the expectation value of the two-particle interaction operator we use

∫ ∫
φ(ri)

∗φ(rj)
∗δ(ri − rj)φ(ri)φ(rj)dridrj =

∫
|φ(ri)|4dri. (186)

and we note that the sum over all i < j gives N(N − 1)/2 identical contributions,

〈Ψ|Û |Ψ〉 = U0
N(N − 1)

2

∫
|φ(r)|4dr. (187)

We assume N to be large, so we set N(N − 1)/2 ≈ N 2/2, and find the total energy

E = N

∫ [
h̄2

2m
|∇φ(r)|2 + Vtrap(r)|φ(r)|2 +

1

2
NU0|φ(r)|4

]
dr. (188)

Before we variationally minimize this energy expression we, consider the particles in a box problem, for which
Vtrap(r) = 0. If we take the ground state particle in a box wave function [Eq. (151)] for φ(r) we find

E =
π2h̄2

2m
ρ+

27

16
ρ2V U0, (189)

where V = a3 is the volume of the box, ρ = N/V is the particle density, and we used the integral

∫ a

0

sin4
(πx
a

)
dx =

3a

8
. (190)

We note that the second term in Eq. (189) scales with the volume of the box and the square of the density. Hence, if
either the volume or the density is sufficiently high, this term will dominate. We may also compute the expectation
value of the energy for the wave function for a homogeneous gas: φ(r) = V −

1
2 . Strictly, this wave function does not

satisfy the particle in a box boundary conditions, but if we assume that the volume is large, we may neglect the effects
at the boundary and we find

E =
1

2
ρ2V U0. (191)
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Thus, when the interaction is repulsive (U0 > 0) and the volume and density are sufficiently high, we find that
the homogeneous gas wave function describes the condensate better than the particle in a box wave function, since
1
2ρ

2V U0 <
27
16ρ

2V U0. For attractive interactions (U0 < 0) we observe that the nonlinear |φ(r)|4 term favors the least
homogeneous solution which in practice may result in collapse of the condensate.

We will now derive the Gross-Pitaevskii equation, which minimizes the energy of Eq. (188) variationally. It is
convenient to introduce the function

ψ(r) = N1/2φ(r). (192)

The normalization of ψ is such that the particle density is given by

ρ(r) = |ψ(r)|2. (193)

The integral over the density is the total number of particles N . Thus, within the present Ansatz, ψ(r) contains all
information about the condensate wave function and it is sometimes referred to as “the condensate wave function”.
The energy expression as a functional of ψ is

E[ψ] =

∫ [
h̄2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 +

1

2
U0|ψ(r)|4

]
dr. (194)

According to the variational principle, we must vary ψ to minimize the energy E, but we must satisfy the constraint
that the number of particles

∫
|ψ(r)|2dr = N [ψ] = N (195)

is conserved. For this constraint minimization the Lagrange multiplier method is used. This amounts to introducing a
new parameter, µ, and performing the unconstrained minimization of E[ψ]−µN [ψ], such that for first order variations
δψ,

E[ψ + δψ] − µN [ψ + δψ] = E[ψ] − µN [ψ]. (196)

In principle the wave function may be complex, but instead of varying the real and imaginary part it is more convenient
(and mathematically equivalent) to vary ψ and ψ∗ separately. Therefore, we rewrite the energy expression as

E[ψ] =

∫ [
− h̄2

2m
ψ∗(r)∇2ψ(r) + V (r)ψ∗(r)ψ(r) +

1

2
U0ψ

∗(r)2ψ(r)2
]
dr, (197)

substitute ψ∗ → ψ∗ + δψ∗, and set terms linear in δψ∗ equal to zero. The result

[
− h̄2

2m
∇2 + V (r) + U0|ψ(r)|2

]
ψ(r) = µψ(r) (198)

is known as the time-independent Gross-Pitaevskii equation. The variation ψ → ψ + δψ can be used to show that
µ must be real. If one finds a ψ(r) that satisfies the Gross-Pitaevskii equation, one cannot normalize the result to
obtain a condensate wave function for a given number of particles N , because the equation is nonlinear in ψ. Instead,
one must choose a value for µ, find a solution ψ(r), and determine the number of particles to which it corresponds.

The parameter µ is the chemical potential, µ = ∂E/∂N . This follows from rewriting Eq. (197) as

µ =
E[ψ + δψ] −E[ψ]

N [ψ + δψ] −N [ψ]
=

∆E

∆N
. (199)

E. Thomas-Fermi approximation

We saw above that when the volume is large and the interaction U0 is repulsive, the kinetic energy term in the
Gross-Pitaevskii equation may be neglected. This is known as the Thomas-Fermi approximation. The solution is

|ψ(r)|2 = ρ(r) =
µ− Vtrap(r)

U0
(200)
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in regions where the right hand side is positive, and ψ(r) = 0 otherwise. The discontinuity in the derivative of the
wave function at the edge of the cloud defined by Vtrap(r) = µ is the result of neglecting the kinetic energy term.
As before, we find that the density is constant when Vtrap(r) = 0. In that case we also find µ = NV −1U0 and
E = N2V −1U0/2, which agrees with the definition of the chemical potential µ = ∂E/∂N .

The density profile of a Bose-Einstein condensate is very characteristic. The classical thermal Boltzmann distri-
bution is proportional to e−V (r)/kBT . If the temperature is lowered and a condensate fraction is formed, it is easily
recognized in the experiment as a separate phase with a localized density distribution near the minimum of the trap.

F. Bose-enhancement and Pauli-blocking

For a reaction occurring in a trap, the available product states are fully quantized. Not only the internal states
of the atoms or molecules that are formed are quantized, but also the translational motion. When the products are
fermions, they must satisfy Pauli’s exclusion principle: the occupation of a given product state can be at most 1.
This is called Pauli-blocking. It can only affect the rate of a process at ultralow temperatures, because at normal
temperatures the number of available product states is enormous and the average population of product states will
be much smaller than 1. For bosons, there is no restriction on the occupation of a given state. In fact, the rate of
a process producing a product in an already occupied state is enhanced. This effect is called Bose enhancement or
Bose stimulation.

To show the origin of this enhancement, we consider a model two level system of N1 +N2 = N identical bosons.
For instance, a Bose Einstein condensate of N2 ground state atoms in which N1 atoms in some excited state are
introduced. We also consider a perturbation that induces transitions between the two levels. For concreteness we
take the component of the dipole operator that connects the two levels. Matrix elements of this operator determine
the rate of spontaneous emission.

To define the wave functions we introduce the shorthand notation a(i) = φ1(ri) and b(i) = φ2(ri), where φ1 and φ2

are the one-particle wave functions corresponding to the two levels and i labels the particles. We will assume those
functions to be normalized and orthogonal to each other. The wave function that describes a system with N1 particles
in level 1 and N2 particles in level 2 may be written as

|N1N2〉 = n(N1, N2) Ŝ[a(1)a(2) . . . a(N1)b(N1 + 1)b(N1 + 2) . . . b(N1 +N2)], (201)

where Ŝ is the symmetrizer, which is the sum of all N ! permutations P̂k of the N = N1 +N2 particle labels,

Ŝ =
N !∑

k=1

P̂k (202)

and n(N1, N2) is the normalization constant. To compute it we note that

P̂lŜ =
∑

k

P̂lP̂k = Ŝ, (203)

because P̂lP̂k runs over all permutations, although in a different order. We can use this result to show that

Ŝ2 = (
∑

l

P̂l)Ŝ = N !Ŝ. (204)

Since Ŝ is Hermitian, we may derive

〈N1N2|N1N2〉 = |n(N1, N2)|2 〈Ŝa(1) . . . b(N)|Ŝ|a(1) . . . b(N)〉
= |n(N1, N2)|2 〈a(1) . . . b(N)|Ŝ2|a(1) . . . b(N)〉 (205)

= |n(N1, N2)|2N !
∑

k

〈a(1) . . . b(N)|P̂k|a(1) . . . b(N)〉.

Out of the N ! terms, there will be N1!N2! terms that yield 1, and all the others will be zero, so the normalization
constant is

n(N1, N2) = (N !N1!N2!)
− 1

2 . (206)
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Let µ̂ be the component of the dipole operator that couples the levels a and b. It is written by the sum of one-particle
operators

µ̂ =

N∑

i=1

µ̂i, (207)

with matrix elements

〈a(i)|µ̂i|b(i)〉 = µab. (208)

The rate of spontaneous emission, a process in which the population of the upper level is decreased by one, and the
population of the lower level is increased by one is proportional to

k̃ = |〈N1N2|µ̂|N1 − 1, N2 + 1〉|2. (209)

A derivation similar to the one used to derive the normalization of the wave function shows that

k̃ = N1(N2 + 1)|µab|2. (210)

What is remarkable about this result is that the rate not only depends on the number of particles N1 in the upper
level, but also on the number of particles in the lower level, N2. This effect is called Bose enhancement of the dipole
matrix element. The above treatment of spontaneous emission is still lacking some essential ingredients. E.g., photons
carry momentum, and total momentum must be conserved. A more rigorous theoretical treatment [22] predicts that
enhancement of spontaneous emission can occur in an interacting Bose Einstein condensate.

The analogous relation for fermions contains a factor N1(1 −N2), which shows that the process can only proceed
if the initial state has an occupation of 1, and the final state is empty.

At ultralow temperatures there is no energy available for endothermic reactions, and one would expect that the
energy released by an exothermic reaction would destroy the condensate. However, Bose enhancement may occur in
resonance reactions, where the energy of the reactants is equal to the energy of the products. For example, two alkali
atoms may form a diatomic molecule in its highest vibrational state. The molecular level can be tuned into resonance
with the atomic level with a magnetic field, since the molecule and the magnetic moment of the diatom will in general
not be exactly two times the magnetic moment of the atom. Such a resonance is called a Feshbach resonance and this
technique has been used to produce ultracold molecules and molecular Bose-Einstein condensates[23]. Other methods
to achieve resonance are the use of Raman transitions [24] or photodissociation of Bose-Einstein condensates [25].

Most theoretical papers on ultracold chemistry use second quantization formalism to denote wave functions of the
form 180 and the operators acting on[17]. A short introduction to this formalism, with applications to Bose-Einstein
condensates can be found in Ref. [26].
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