Modelling surface chemistry

Monte Carlo technique

Applications

Kinetic modelling of interstellar chemistry

Herma Cuppen

Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University

15-19 December 2008

ISM

Modelling surfac chemistry

- Monte Carlo technique
- Applications

1 Introduction to the ISM

- Molecular clouds
- Observations
- Interstellar gas phase chemistry
- Interstellar grain surface chemistry

2 Modelling surface chemistry

- Rate equations
- Master equations
- 3 Monte Carlo technique
 - Equilibrium statistical mechanics
 - Kinetic regime
 - Transition probabilities
- 4 Applications
 - H on graphite
 - CO hydrogenation

Introduction

ISM

- Observations Interstellar gas phase chemistry Interstellar grain surface chemistry
- Modelling surface chemistry
- Monte Carlo technique
- Applications

- Regions of space between stars not empty but filled with very dilute gas
- Molecules are found in the cold, neutral component of the interstellar medium (ISM)

Introduction

ISM

- Observations Interstellar gas phase chemistry Interstellar grain surface chemistry
- Modelling surface chemistry
- Monte Carlo technique
- Applications

- Interstellar clouds are birthplaces of new stars
 - Evolution abundances molecules: astrochemistry
 - Molecules as physical diagnostics: astrophysics
- Progress strongly driven by observations: technology and spectroscopy

Lifecycle of gas and dust


ISM

Molecular clouds Observations Interstellar gas phase chemistry Interstellar grain surface chemistry

Modelling surface chemistry

Monte Carlo technique

Applications

What are building blocks for life elsewhere in the Universe? How have they formed?

Interstellar Clouds

ISM

Molecular clouds Observations Interstellar gas phase chemistry Interstellar grain surface chemistry

Modelling surface chemistry _

Monte Carlo technique

	Diffuse	Dense	Sea level
UV photon flux	High	Low	
Gas composition	Atomic	Molecular	Molecular
Gas Temperature (K)	\sim 50-100	~ 10	~ 300
Grain Temperature (K)	~ 20	~ 10	
Densities (cm^{-3})	$\sim 10^2$	$\sim 10^4$	\sim 3 10^{19}

Timescales

ISM

- Molecular clouds Observations Interstellar gas phase chemistry Interstellar grain surface chemistry
- Modelling surface chemistry
- Monte Carlo technique
- Applications

- \blacksquare Collision time: ~ 1 month at 10^4 $\rm cm^{-3}$
- \blacksquare Chemical time: $\sim 10^5$ yr (~ 100 collisions/particle)
- \blacksquare Star formation: $\sim 10^6 \mbox{ yr}$
- \blacksquare Lifetime cloud: $\sim 10^7~{\rm yr}$
- \rightarrow Not expected to find molecules since reactions are slow

Surprise: many complex interstellar molecules!!

ISM

Molecular clouds Observations Interstellar gas phase chemistry Interstellar grain surface chemistry

Modelling surface chemistry

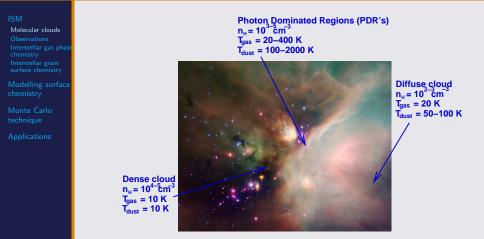
Monte Carlo technique

Applications

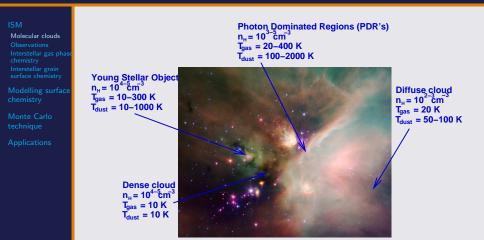
Star formation in the Rho Ophiuchi Cloud In blue 2800 cm $^{-1}$, green 1250 cm $^{-1}$ and red 410 cm $^{-1}$ (PAH's)

ISM

Molecular clouds Observations Interstellar gas phase chemistry Interstellar grain surface chemistry


Modelling surface chemistry

Monte Carlo technique


Applications

Star formation in the Rho Ophiuchi Cloud In blue 2800 cm⁻¹, green 1250 cm⁻¹ and red 410 cm⁻¹ (PAH's) Large range in temperatures and densities

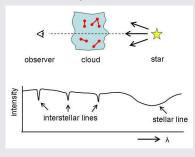
Star formation in the Rho Ophiuchi Cloud In blue 2800 cm⁻¹, green 1250 cm⁻¹ and red 410 cm⁻¹ (PAH's)

Star formation in the Rho Ophiuchi Cloud In blue 2800 cm⁻¹, green 1250 cm⁻¹ and red 410 cm⁻¹ (PAH's)

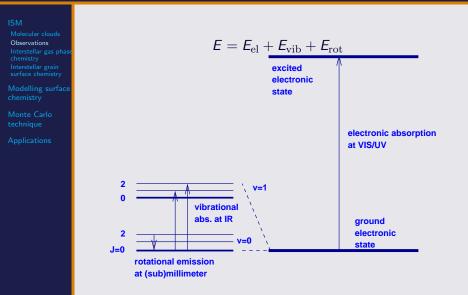
Observations of diffuse clouds

ISM

Observations Interstellar gas phase chemistry Interstellar grain surface chemistry


Modelling surface chemistry

Monte Carlo technique


Applications

Mostly atomic gas in diffuse clouds

- Observed primarily by absorption lines at visible (since 1900's) and UV wavelengths (since 1970's)
- Spectra show sharp interstellar lines super-imposed on broad spectral lines

Molecular Spectroscopy

Dense interstellar cloud cores

ISM

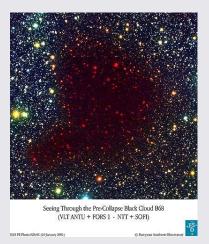
Molecular clouds

Observations Interstellar gas phase chemistry Interstellar grain surface chemistry

Modelling surface chemistry

Monte Carlo technique

Dense interstellar cloud cores


ISM

Molecular clouds

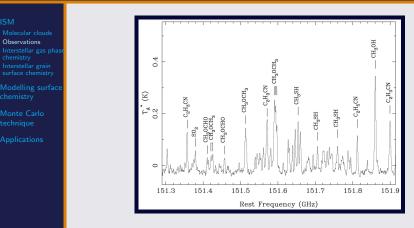
Observations Interstellar gas phase chemistry Interstellar grain surface chemistry

Modelling surface chemistry

Monte Carlo technique

Observations of dense clouds

ISM

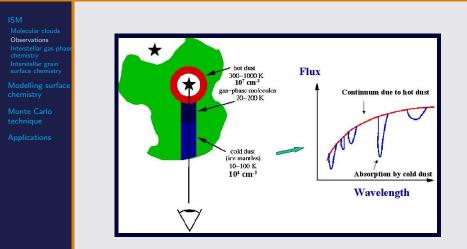

Molecular clouds Observations Interstellar gas phase chemistry Interstellar grain surface chemistry

Modelling surface chemistry

Monte Carlo technique

- Opaque at visible and UV wavelength → molecules shielded from dissociating UV radiation
- Millimeter emission: rotational transitions
 - - Advantage: many molecules down to low abundances; lines in emission \rightarrow map
- Infrared absorption: vibrational transitions
 Limitation: need background IR source → only info along line of sight
 Advantage: symmetric molecules + solid state
- Earth's atmosphere prevents observations of key molecules: H₂O, O₂, CO₂

Gas phase: sub-mm observations



Gibb et al. (2000)

Hot Core G327.3-0.6 (Swedish-ESO Submillimetre Telescope)

- Doppler shift: measured with respect to CO
- Not all lines identified

Infrared absorption

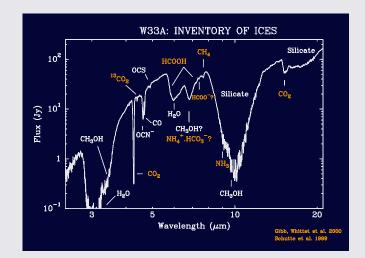
Vibrational transitions of gases and solids Mostly spacebased \rightarrow lower resolution, higher detection limit

Importance of molecules

ISM

- Molecular clouds Observations Interstellar gas phase chemistry Interstellar grain surface chemistry
- Modelling surface chemistry
- Monte Carlo technique
- Applications

- Exotic chemistry: unique laboratory
- Astrochemical evolution
- Molecules as diagnostics of temperature T_{kin}, density n_H, velocity, ?
- Molecules as coolants
 - Radiation escapes from cloud \rightarrow net kinetic energy lost
 - \rightarrow cloud cools down


Ice mantles on interstellar grains IR observations

ISM

Molecular clouds Observations Interstellar gas phase chemistry Interstellar grain surface chemistry

Modelling surface chemistry

Monte Carlo technique

Identified interstellar species

	2	3	4	5	6	7	8	9
ISM	H ₂	H3+	CH ₃	CH ₄	C ₂ H ₄	CH ₃ NH ₂	CH ₃ CH ₃	C ₂ H ₅ OH
Molecular clouds	CH	CH ₂	NH ₃	NH_4^+	сн ₃ он	сн ₃ ссн	C ₃ H ₄ O	CH ₃ OCH ₃
Observations	CH^+	NH ₂	H ₃ O ⁺	CH ₂ NH	CH3CN	с-С ₂ Н ₄ О	сн ₂ онсно	CH ₃ CH ₂ CN
Interstellar gas phase	NH	H ₂ O	C ₂ H ₂	н ₃ со+	CH ₃ NC	сн ₃ сно	сн ₃ соон	CH ₃ CONH ₂
chemistry	OH	$H_{2}^{-}O^{+}$	H ₂ CO	SiH ₄	NH ₂ CHO	CH ₂ CHCN	HCOOCH ₃	CH ₃ C ₄ H
Interstellar grain	OH+	С ₂ Н	HCNH ⁺	c-C ₃ H ₂	CH ₃ SH	с _б н	CH2 CCHCN	с ₈ н
surface chemistry	HF	HCN	H ₂ CN	H ₂ CCC	H ₂ C ₄	с ₆ н-	CH ₃ C ₃ N	с ₈ н-
Modelling surface	C ₂	HNC	c-C ₃ H	CH ₂ CN	HC ₄ H	HC ₅ N	C ₆ H ₂	HC7N
chemistry	CN	HCO	I-C ₃ H	H ₂ CCO	c-H ₂ C ₃ O		HC6H	
chernisery	CN ⁺ CO	HCO+	HCCN	NH ₂ CN	HC ₂ CHO		С ₇ Н	
Monte Carlo	co+	нN ₂ + нос+	HNCO	нсоон	C ₅ H			
technique			HNCO-	C ₄ H	C ₅ N			
	N2 ⁺ SiH	HNO H ₂ S	HOCO ⁺ H ₂ CS	C ₄ H ⁻	H₂C₃N ⁺ HC₄N			
Applications	NO	н ₂ 5 Н ₂ 5+		HC3H HCCNC	HC4N			
	CF ⁺		C ₃ N	HNCCC				
	HS	C3 C20	C ₃ O HNCS	C ₅				
	HS ⁺	CO2	SiC ₃	SiC ₄				
	HCI	co_2^+	CaS	5104				
	SiC	N ₂ Õ	230					
	SiN	HCS+						
	CP	NaCN				10	11	13
	CS	MgCN				CH ₃ CH ₂ CHO	СН ₃ С ₆ Н	HC ₁₁ N
	SiO	MgNC				CH ₃ COCH ₃	HC ₉ N	
	PN AIF	c-SiC ₂ AINC				HOCH ₂ CH ₂ OH NH ₂ CH ₂ COOH ??		
	NS	SiCN						
	so	SiNC						
	so+	C ₂ S						
	SiS	ocs						
	AICI	SO ₂						
	S2							
	FeO KCI							
	NaCl							

Diversity of molecules

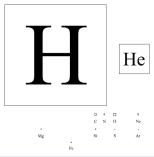
ISM

Molecular clouds Observations Interstellar gas phase chemistry Interstellar grain surface chemistry

Modelling surface chemistry

Monte Carlo technique

- More than 150 different molecules found
- Ordinary molecules (NH₃, H₂O, H₂CO, CH₃OH, ...)
- Exotic molecules (HCO⁺, N₂H⁺, HCCCCCCN, ...)
- Many unsaturated molecules
 - \rightarrow no thermodynamic equilibrium


Diversity of molecules

ISM

- Molecular clouds Observations Interstellar gas phase chemistry Interstellar grain surface chemistry
- Modelling surface chemistry
- Monte Carlo technique
- Applications

- More than 150 different molecules found
- Ordinary molecules (NH₃, H₂O, H₂CO, CH₃OH, ...)
- Exotic molecules (HCO⁺, N₂H⁺, HCCCCCCN, ...)
- Many unsaturated molecules → no thermodynamic equilibrium

Astronomers' Periodic Table

B. McCall 2001

Types of chemical reactions

ISM

- Molecular clouds Observations Interstellar gas phase chemistry Interstellar grain surface chemistry
- Modelling surface chemistry
- Monte Carlo technique
- Applications

Formation of bonds

- Radiative association:
- Grain surface:
- Associative detachment:
- Destruction of bonds
 - Photo-dissociation:
 - Dissociative recombination:
 - Collisional dissociation:

Rearrangement of bonds

- Ion-molecule reaction:
- Charge-transfer reaction:
- Neutral-neutral reaction:

 $\begin{array}{c} \mathsf{X} + \mathsf{Y} \to \mathsf{X}\mathsf{Y} + h\nu\\ \mathsf{X} + \mathsf{Y}: \mathsf{grain} \to \mathsf{X}\mathsf{Y} + \mathsf{grain}\\ \mathsf{X}^- + \mathsf{Y} \to \mathsf{X}\mathsf{Y} + \mathsf{e} \end{array}$

 $\begin{array}{c} \mathsf{X}\mathsf{Y} + h\nu \to \mathsf{X} + \mathsf{Y} \\ \mathsf{X}^+ + \mathsf{e} \to \mathsf{X} + \mathsf{Y} \\ \mathsf{X}\mathsf{Y} + \mathsf{M} \to \mathsf{X} + \mathsf{Y} + \mathsf{M} \end{array}$

 $\begin{array}{l} X^+ + YZ \rightarrow XY^+ + Z \\ X^+ + YZ \rightarrow X + YZ^+ \\ X + YZ \rightarrow XY + Z \end{array}$

Basic molecular processes

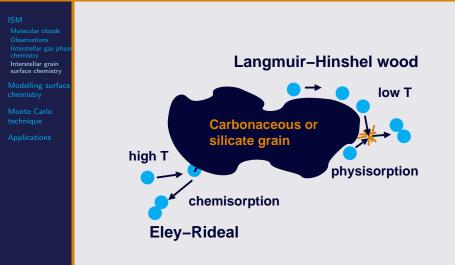
ISM

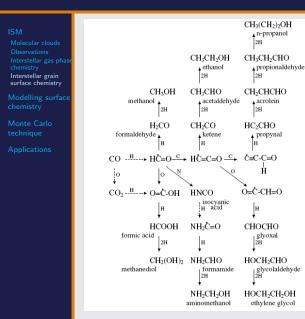
Molecular clouds Observations Interstellar gas phase chemistry Interstellar grain surface chemistry

Modelling surface chemistry

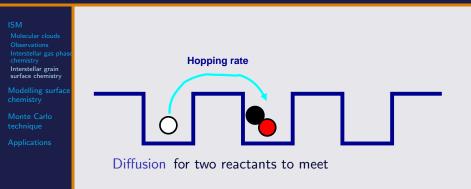
Monte Carlo technique

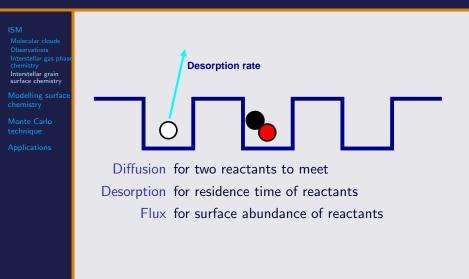
- Because of low temperatures and densities in clouds, chemistry is not in thermodynamic equilibrium but controlled by two body reactions → abundances depend on physical conditions (*T*, *n*, radiation field), history,...
- Three body reactions do not become important until n > 10¹² cm⁻³
- Although models contain thousands of reactions, only few different types of processes are important
- How would you model these reactions?

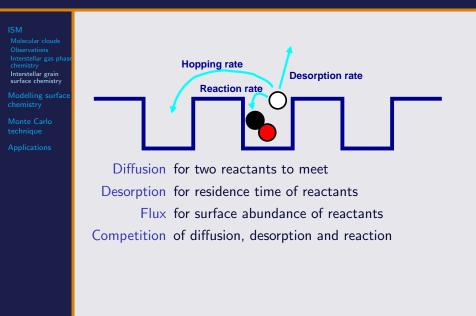

Basic molecular processes gas phase


ISM

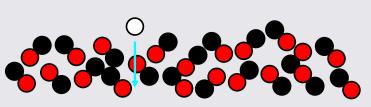
- Molecular clouds Observations Interstellar gas phase chemistry Interstellar grain surface chemistry
- Modelling surface chemistry
- Monte Carlo technique
- Applications


- Typical gas phase network contains over 4000 reactions
- Few reactions are studied in the laboratory
 - Obtaining unstable species
 - Low temperature regime (sticking of reactants)
 - Three body reactions
- Some reactions studied theoretically
- Other rates determined by analogy


Grain surface chemistry



- Mostly addition reactions
- Photodissociation plays important role
- Only handful of reactions are studied


ISM

Molecular clouds Observations Interstellar gas phase chemistry Interstellar grain surface chemistry

Modelling surface chemistry

Monte Carlo technique

Applications

Diffusion for two reactants to meet Desorption for residence time of reactants Flux for surface abundance of reactants Competition of diffusion, desorption and reaction Penetration depth : how many layers are affected

Types of surface reactions

ISM

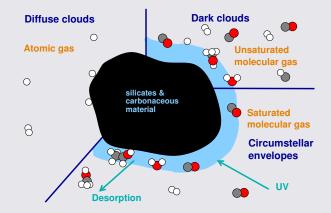
Molecular clouds Observations Interstellar gas phase chemistry Interstellar grain surface chemistry

Modelling surface chemistry

Monte Carlo technique

Applications

Reactants: Mainly mobile atoms and radicals $A + B \rightarrow AB$ $H + X \rightarrow XH(X = H, O, C, N, CO, etc)$ which converts $H \rightarrow H_2$ $0 \rightarrow 0H \rightarrow H_2O$ $C \rightarrow CH \rightarrow CH_2 \rightarrow CH_3 \rightarrow CH_4$ $N \rightarrow NH \rightarrow NH_2 \rightarrow NH_3$ $CO \rightarrow HCO \rightarrow H_2CO \rightarrow H_3CO \rightarrow CH_3OH$


Grain surface chemistry

ISM

Molecular clouds Observations Interstellar gas phase chemistry Interstellar grain surface chemistry

Modelling surface chemistry

Monte Carlo technique

- Surface chemistry important for simple molecules (H₂, H₂O, CH₃OH)
- Different processes important in different regimes
- Different modelling problems in different regimes

Different regimes

ISM

Molecular clouds Observations Interstellar gas phase chemistry Interstellar grain surface chemistry

Modelling surface chemistry

Monte Carlo technique

Applications

Small grains in diffuse clouds

Number densities can become very small and mean field methods cannot be applied. Diffusion is not the rate limiting step for reaction. (accretion limit) (Tielens (1982))

Icy mantles

Ice layers start to build-up. Due to layered structure some processes are blocked. (UV processing/accesibility of accreting species)

Modelling surface reactions

ISM

Modelling surface chemistry Rate equations Master equations

Monte Carl technique

Applications

Rate equations

Pickles & Williams (1977) ApJSS, 52, 443

- Macroscopic Monte Carlo simulations
 Stantcheva, Shematovich & Herbst. (2002) A&A, 391, 1069, Charnley (1998) ApJ, 509, L121
- Master equation

Biham et al. (2001) ApJ, 553, 595, Green et al. (2001) A&A, 375, 1111

Microscopic Monte Carlo simulations
 Chang, Cuppen & Herbst (2005) A&A,434, 599

Rate equations

1 .

Rate equations

$$\begin{aligned} \frac{\mathrm{d}n_{s}(A)}{\mathrm{d}t} &= \sum_{i} \sum_{j} k_{\mathrm{react},i,j} \left(k_{\mathrm{hop},i} + k_{\mathrm{hop},j} \right) n_{s}(i) n_{s}(j) \\ &- n_{s}(A) \sum_{j} k_{\mathrm{react},A,j} \left(k_{\mathrm{hop},j} + k_{\mathrm{hop},A} \right) n_{s}(j) \\ &+ k_{\mathrm{acc}} n(A) - \left[k_{\mathrm{evap},A} + k_{\mathrm{nonthermal},A} \right] n_{s}(A) \end{aligned}$$

- Second order reactions
- First order desorptions
- Mean field method
- Deterministic

Rate equations

ISM

Modelling surfac chemistry Rate equations Master equations

Monte Carlo technique

Applications

Advantages:

- Fast
- Easy to couple with gas phase rate equations
- Disadvantages:
 - No layering or positional information (intrinsic of mean field)
 - \blacksquare Problem in accretion limit \rightarrow could be circumvented with modified rate method

Rate equations Example: H₂ formation

ISM


Modelling surfac chemistry Rate equations Master equations

Monte Carl technique

Applications

$$\frac{\mathrm{d}n_{s}(H)}{\mathrm{d}t} = -\frac{2 \cdot 2}{2} k_{\mathrm{hop},j} n_{s}(H)^{2} + k_{\mathrm{acc}} n(H) - [k_{\mathrm{evap}} + k_{\mathrm{nonthermal}}] n_{s}(H) \frac{\mathrm{d}n(H_{2})}{\mathrm{d}t} = \frac{2}{2} k_{\mathrm{hop},j} n_{s}(H)^{2}$$

Rate equations

Chang, Cuppen & Herbst (2005) A&A,434, 599

Rate equations break down when

 $< n(X)n(Y) > \neq < n(X) > < n(Y) >$

Master equations

ISM

Modelling surfac chemistry Rate equations Master equations

technique

Applications

 $\frac{\mathrm{d} P_{m,n}}{\mathrm{d} t}$

- $= k_{\text{react},A,B} (k_{\text{hop},A} + k_{\text{hop},B}) [(m+1)(n+1)P_{m+1,n+1} mnP_{m,n}]$ $+ k_{\text{acc},A} n(A)[P_{m-1,n} - P_{m,n}]$ $+ k_{\text{acc},B} n(B)[P_{m,n-1} - P_{m,n}]$ $- [k_{\text{evap},A} + k_{\text{nonthermal},A}][(m+1)P_{m+1,n} - mP_{m,n}]$ $- [k_{\text{evap},B} + k_{\text{nonthermal},A}][(n+1)P_{m,n+1} - nP_{m,n}]$
- Second order reactions
- First order desorptions
- Mean field method
- Stochasitic

How to solve the master equation?

ISM

Modelling surfac chemistry Rate equations Master equations

Monte Carlo technique

Applications

Write down equations for all combinations necessary (P_{0,0}, P_{1,0}, P_{0,1}, P_{1,1}, etc.)
 Integrate all equations numerically
 For two species system: P_{n,m}
 For three species system: P_{n,m,o}
 For four species system: P_{n,m,o,p}

How to solve the master equation? Integrate all equations numerically

ISM

Modelling surface chemistry Rate equations Master equations

Monte Carlo technique

Applications

Advantages:

■ Treats low surface densities correctly (uses < n(X)n(Y) > instead of < n(X) >< n(Y) >)

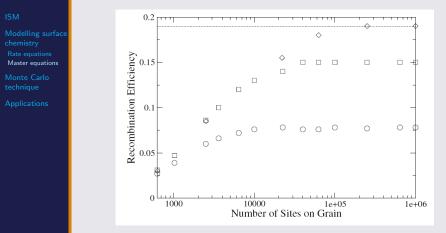
Relatively easy to couple with gas phase rate equations
 Disadvantages:

- Number of equations increases rapidly with abundance → smart cut-off, moment equations (Lipshtat & Biham (2003) A&A 400, 585)
- Large changes in density are not straightforward

Master equations Example: H₂ formation

ISM

Modelling surface chemistry Rate equations Master equations


Monte Carl technique

Applications

$$\frac{\mathrm{d}P_{0}}{\mathrm{d}t} = 2k_{\mathrm{hop}}P_{2} - k_{\mathrm{acc}}n(H)P_{0}
- [k_{\mathrm{evap}} + k_{\mathrm{nonthermal}}]P_{1}
\frac{\mathrm{d}P_{1}}{\mathrm{d}t} = 6k_{\mathrm{hop}}P_{3} + k_{\mathrm{acc}}n(H)[P_{0} - P_{1}]
+ [k_{\mathrm{evap}} + k_{\mathrm{nonthermal}}][2P_{2} - P_{1}]
\frac{\mathrm{d}P_{2}}{\mathrm{d}t} = 2k_{\mathrm{hop}}[12P_{4} - P_{2}] + k_{\mathrm{acc}}n(H)[P_{1} - P_{2}]
+ [k_{\mathrm{evap}} + k_{\mathrm{nonthermal}}][3P_{3} - 2P_{2}]$$
(1)

$$\frac{\mathrm{d}H_2}{\mathrm{d}t} = 2k_{\mathrm{hop}}[P_2 + 12P_4 + \dots]$$

Rate equations

Chang, Cuppen & Herbst (2005) A&A,434, 599

Rate equations break down when

 $< n(X)n(Y) > \neq < n(X) > < n(Y) >$

Summary

ISM

Modelling surfac chemistry Rate equations Master equations

Monte Carlo technique

Applications

Interstellar chemistry

- Very extreme conditions (temperature, pressure, timescales)
- Gas phase: mostly unsaturated molecules
- Solid phase: mostly saturated molecules

Modelling techniques

- Rate equations: deterministic, easy
- Master equations: stochastic, requires many equations for simple systems

How to solve the master equation? Integration by Monte Carlo

ISM

Modelling surfac chemistry

Monte Carlo technique

Equilibrium statistical mechanics Kinetic regime Transition probabilities

Applications

Monte Carlo started and is mostly seen as a numerical way to calculate integrals

If we draw pairs of random numbers (x_i, y_i) where the x_i and the y_i are uniformly distributed in [0, 1] the probability for the point to lie within the circle is equal to $\pi/4$.

How to solve the master equation? Integration by Monte Carlo

ISM

Modelling surfa chemistry

Monte Carlo technique

Equilibrium statistical mechanic Kinetic regime Transition probabilities

Applications

- We would like to know average distribution of species at t
 - **1** Start with initial grain abundance (no species, same as for master equation)
 - Propagate in time by using transition probabilities and random numbers (same probabilities as in master equation)
 - **3** Repeat for many different initial seeds and average

Follow one grain's populations instead of integrating **all** possibilities

Macroscopic Monte Carlo Sampling

ISM

Modelling surfac

Monte Carlo technique

Equilibrium statistical mechanics Kinetic regime Transition probabilities

Applications

Two ways of sampling:

- At each time interval, evaluate if/which process will happen (slow if probablities changes significantly over time)
- 2 Propagate time with $\Delta t = 1/\sum(R)$ and evaluate which process will happen $(P_i = R_i / \sum(R))$
- 3 Propagate time with $\Delta t = \ln(X) / \sum(R)$ and evaluate which process will happen $(P_i = R_i / \sum(R))$

Macroscopic Monte Carlo Compared to numerical integration

ISM

Modelling surface chemistry

Monte Carlo technique

Equilibrium statistical mechanics Kinetic regime Transition probabilities

Applications

Advantages:

Works for both low and high surface coverage

Disadvantages:

- Hard to couple to gas phase rate equations (gas phase MC)
- Hard to get enough resolution (sample over many trajectories)

Let's return to our integral problem Random sampling

ISM

Modelling surfac chemistry

Monte Carlo technique

Equilibrium statistical mechanics Kinetic regime Transition probabilities

Applications

$$I=\int_{x_1}^{x_2}f(x)\mathrm{d}x$$

Random sampling

1 Randomly choose x on interval $[x_1, x_2]$

2 Evaluate f(x)

3 Average over many iterations (M)

Is correct for $M \to \infty$

Let's return to our integral problem Random sampling

ISM

Modelling surfac chemistry

Monte Carlo technique

Equilibrium statistical mechanics Kinetic regime Transition probabilities

Applications

$$I=\int_{x_1}^{x_2}f(x)\mathrm{d}x$$

Random sampling

1 Randomly choose x on interval $[x_1, x_2]$

2 Evaluate f(x)

3 Average over many iterations (M)

Is correct for $M \to \infty$

•	•	•	•	٠	•	•	•	٠	•	•
•		٠		٠	•		•		٠	•
•		٠							٠	٠
•	٠	٠	٠	٩	٦	9	٠	۶	•	٠
•	٠	٠	٠	٠	٠	۲		٠	÷	٠
•									٠	
									٠	
•									٠	
•									٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠

Many samples 'wasted' on parameter space that does not contributed to *I*. Becomes worse with increasing dimensions.

Importance sampling

ISM

Modelling surfac chemistry

Monte Carlo technique

Equilibrium statistical mechanics Kinetic regime Transition probabilities

Applications

$$I = \int_0^1 w(x) \frac{f(x)}{w(x)} dx$$
$$\frac{du(x)}{dx} \equiv w(x)$$
$$I = \int_0^1 \frac{f(x(u))}{w(x(u))} du$$

Importance sampling

1 Randomly choose u on interval [0, 1]

2 Find matching x

3 Evaluate
$$\frac{f(x)}{w(x)}$$

4 Average over many iterations (M)

What do we gain by this?

ISM

Modelling surfac chemistry

Monte Carlo technique

Equilibrium statistical mechanics Kinetic regime Transition probabilities

Applications

$${}^{2} = \frac{1}{M^{2}} \sum_{i=1}^{M} \sum_{j=1}^{M} \left\langle \left(\frac{f(x(u_{i}))}{w(x(u_{i}))} - \langle f/w \rangle \right) \right. \\ \left. \left(\frac{f(x(u_{j}))}{w(x(u_{j}))} - \langle f/w \rangle \right) \right\rangle$$

if i and j are independent

 σ

$$\sigma^{2} = \frac{1}{M^{2}} \sum_{i=1}^{M} \left\langle \left(\frac{f(x(u_{i}))}{w(x(u_{i}))} - \langle f/w \rangle \right)^{2} \right\rangle$$
$$\sigma^{2} = \frac{1}{M} \left[\langle (f/w)^{2} \rangle - \langle f/w \rangle^{2} \right]$$

What do we gain by this? Metropolis importance sampling

ISM

Modelling surfac chemistry

Monte Carlo technique

Equilibrium statistical mechanics Kinetic regime Transition probabilities

Applications

In statistical physics often

$$< A >= rac{\int A(\mathbf{r}^N) \exp(-U(\mathbf{r}^N)/kT) \mathrm{d}\mathbf{r}^N}{Q}$$

Let's choose

$$u(\mathbf{r}^N) = rac{\exp(-U(\mathbf{r}^N)/kT)}{Q}$$

then

$$< A > \approx rac{1}{M} \sum_{i}^{M} A(\mathbf{r}_{i})$$

Metropolis algorithm

ISM

Modelling surfa chemistry

Monte Carlo technique

Equilibrium statistical mechanics Kinetic regime Transition probabilities

Applications

Metropolis algorithm (JCP 21 (1953) 1087)

- 1 Choose initial condition
- 2 Make small displacement to obtain new configuration
- **3** Evaluate E for new configuration
- 4 If $\Delta E < 0$, accept new configuration, else accept with $exp(-\Delta E/kT)$ probability
- **5** Repeat from step 2

This algorithm only works if the system is **ergodic**, i. e. there is a finite probability to reach any point in configuration space

Markov Chain

ISM

Modelling surfac chemistry

Monte Carlo technique Equilibrium

statistical mechanics Kinetic regime Transition probabilities

Applications

$$P_{n}(x_{n}, t_{n}; x_{n-1}, t_{n-1}; ...; x_{1}, t_{1}) = P_{1|n-1}(x_{n}, t_{n}; ..., x_{n-1}, t_{n-1}; ...; x_{1}, t_{1})$$

$$P_{n-1}(x_{n-1}, t_{n-1}; ...; x_{1}, t_{1})$$

Let us assume a Markov Chain, which means that given the present state, future states are independent of the past states.

$$P_n(x_n, t_n; x_{n-1}, t_{n-1}; ...; x_1, t_1) = P_{1|1}(x_n, t_n; x_{n-1}, t_{n-1})$$

$$P_{n-1}(x_{n-1}, t_{n-1}; ...; x_1, t_1)$$

ISM

Modelling surfac chemistry

Monte Carlo technique

Equilibrium statistical mechanics Kinetic regime Transition probabilities

Applications

$$P_{1|1}(x_3, t_3|x_1, t_1) = \sum_{x_2} P_{1|1}(x_3, t_3|x_2, t_2) P_{1|1}(x_2, t_2|x_1, t_1)$$

For a stationary Markov process, we can write

$$P_{1|1}(x_2, t_2|x_1, t_1) = P_t(x_2, x_1), t = t_2 - t_1,$$

where we want P_t to denote a transition probability within the time interval t from state x_1 to state x_2 .

ISM

Modelling surface chemistry

Monte Carlo technique

Equilibrium statistical mechanics Kinetic regime Transition probabilities

Applications

$$P_{t+t'}(x_3|x_1) = \sum_{x_2} P_t(x_3|x_2) P_{t'}(x_2|x_1)$$

$$P_{t+t'}(x_3|x_1) - P_t(x_3|x_1) = \sum_{x_2} P_{t'}(x_3|x_2) P_t(x_2|x_1) - \sum_{x_2} P_{t'}(x_2|x_3) P_t(x_3|x_1)$$

$$P_{t+t'}(x_3|x_1) - P_t(x_3|x_1) = \sum_{x_2} \omega(x_3|x_2) t' P_t(x_2|x_1) \\ - \sum_{x_2} \omega(x_2|x_3) t' P_t(x_3|x_1)$$

Master equation

ISM

Modelling surface chemistry

Monte Carlo technique

Equilibrium statistical mechanics Kinetic regime Transition probabilities

Applications

Here we are at the general master equation

$$\frac{P_{t+\Delta t}(\alpha) - P_t(\alpha)}{\Delta t} = \sum_i P_t(i)\omega_{i\to\alpha}\Delta t - \sum_j P_t(\alpha)\omega_{\alpha\to j}\Delta t$$
$$\frac{\mathrm{d}P(\alpha)}{\mathrm{d}t} = \sum_i P(i)\omega_{i\to\alpha} - \sum_j P(\alpha)\omega_{\alpha\to j}$$

 ω is independent of history of events In the case of a **continuous-time Markov Chain** times can be described by a **Poisson Process**

$$P(t_k - t_{k-1} < t) = \exp(-\omega t)$$
⁽²⁾

Equilibrium conditions

ISM

Modelling surfac chemistry

Monte Carlo technique

Equilibrium statistical mechanics Kinetic regime Transition probabilities

Applications

In equilibrium, detailed balance or microscopic reversibility

$$P_i^{\rm eq}\omega_{i\to j}=P_j^{\rm eq}\omega_{j\to i}$$

and the states are distributed according to

$${\cal P}^{
m eq}_{lpha} = rac{\exp(-U(lpha)/kT)}{Q}$$

which leads to

$$\frac{\omega_{i \to j}}{\omega_{j \to i}} = \frac{P_j^{\text{eq}}}{P_i^{\text{eq}}} = \exp(-(U(j) - U(i))/kT)$$

Freedom to choose transition scheme

ISM

Modelling surfac

Monte Carlo technique

Equilibrium statistical mechanics Kinetic regime Transition probabilities

Applications

$$\frac{\omega_{i \to j}}{\omega_{j \to i}} = \frac{P_j^{\text{eq}}}{P_i^{\text{eq}}} = \exp(-(U(j) - U(i))/kT)$$

Metropolis: $\omega_{i \to j} = \omega_0 \min(1, \exp[-(U(j) - U(i))/kI])$ Glauber: $\omega_{i \to j} = \omega_0 \frac{1}{2} (1 - \tanh[-(U(j) - U(i))/kT])$

ISM

Modelling surfac chemistry

Monte Carlo technique Equilibrium statistical mechanics Kinetic regime Transition

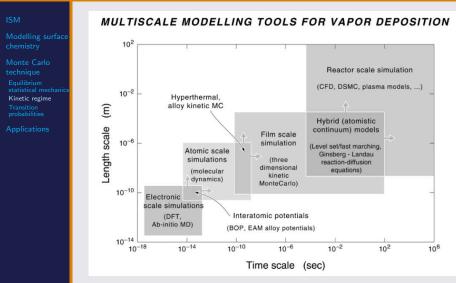
Applications

In **equilibrium** is the end result independent of the choice of the transition scheme.

Monte Carlo method is used to obtain < A >.

Outside equilibrium the result depends on the transition scheme \rightarrow **kinetic regime** Monte Carlo method is mostly used to obtain **evolution of the system**

Kinetic/Dynamic Monte Carlo use rates that describe this regime


Outside equilibrium still Markov Chain

Outside equilibrium still Markov Chain

1	1	

Vibrations help losing the history of the trajectory between states.

Monte Carlo simulations vs. Molecular Dynamics

Wadley et al. Prog. Mater. Sci. 46 (2001) 329

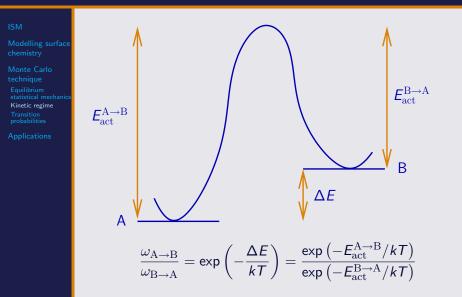
How to obtain the transition probabilities?

ISM

Modelling surfac chemistry

Monte Carlo technique Equilibrium statistical mecha

Kinetic regime Transition probabilities


Applications

Lattice-gas assumption

Often (Q)TST is used.

Approximation using Harmonic TST: $\omega_{i \to j} = \frac{\prod_{i}^{3N} \nu_{R,i}}{\prod_{i}^{3N-1} \nu_{\dagger,i}} \exp(-(E_{\rm SP} - E_{\rm min})/kT)$

Kinetic Monte Carlo

How to determine transition probabilities?

Ideal case: Use very accurate PES to determine rates using QTST or Kinetic regime TST. Unfortunately, interstellar surfaces not well defined (material) amorphous/mixed ice layers

high degree of roughness

we have to use different methods.

Laboratory experiments

ISM

Modelling surfac chemistry

Monte Carlo technique Equilibrium statistical mechanic Kinetic regime Transition probabilities

Applications

Temperature Programmed Desorption

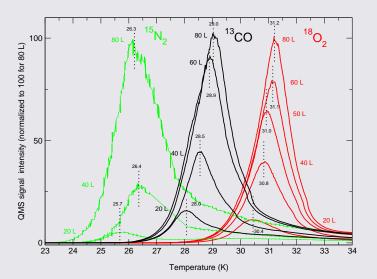
Standard technique for desorption temperature determination

Phase 1

Deposition of interesting species at constant low temperature on the substrate of interest

Phase 2

Linear increase of the temperature as a function of time. Measuring desorption using QMS.


TPD experiments

ISM

Modelling surf chemistry

Monte Carlo technique Equilibrium statistical mechar Kinetic regime Transition probabilities

Applications

Analysis of TPD experiments

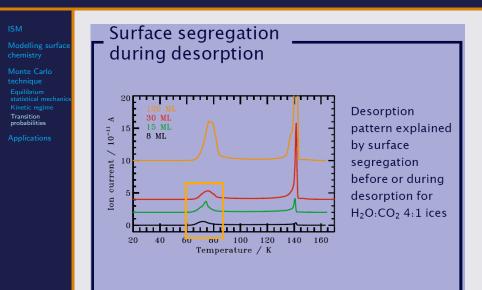
ISM

Modelling surface chemistry

Monte Carlo technique Equilibrium statistical mechani Kinetic regime Transition probabilities

Applications

Fitted to Polanyi-Wigner equation:


$$r = \frac{\mathrm{d}\theta}{\mathrm{d}t} = v\theta^n \exp(-E/RT) \tag{3}$$

- Fit to rate equation model
- Fit using MC program

Points to consider:

- The influence of lateral interactions
- The order of the process
- Use of the model: what do you put in?

TPD experiments

Analysis of TPD experiments How to handle time dependent rates?

ISM

Modelling surfac chemistry

Monte Carlo technique Equilibrium statistical mechani Kinetic regime Transition probabilities

Applications

Remember for time-independent rates:

$$P(t_k - t_{k-1} < t) = \exp(-\omega t)$$
(4)

$$\Delta t = -\ln(X)/\omega \tag{5}$$

Rate is generally of the form:

$$\omega = \nu \exp(-E/kT) \tag{6}$$

For TPD, T changes in known manner $\rightarrow \omega$ becomes temperature dependent. Way to handle this suggested by A. P. J. Jansen, Comp. Phys. Comm. 86 (1995) 1

How to handle time dependent rates?

ISM

Modelling surface chemistry

Monte Carlo technique statistical mechani Kinetic regime Transition probabilities

Applications

$$P(t_k - t_{k-1} < t) = \exp(-\int_0^t \omega(t') \mathrm{d}t') \tag{7}$$

Assume a constant ramp of $T = T_0 + Bt$

$$-\ln(X) = \int_0^t \nu \exp\left(-\frac{E}{k(T_0 + Bt')}\right) dt' = \Omega(t) - \Omega(0)$$
(8)

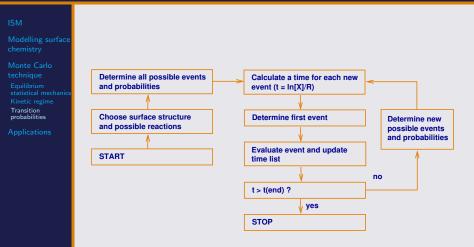
with

$$\Omega(t) = \frac{\nu}{B} (T_0 + Bt') E_2 \left[\frac{E}{k(T_0 + Bt')} \right]$$
(9)

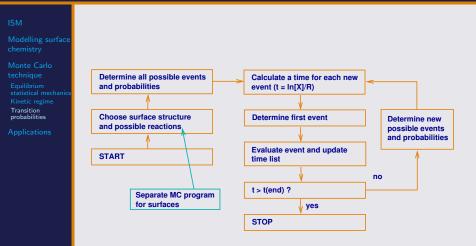
A. P. J. Jansen, Comp. Phys. Comm. 86 (1995) 1

How to handle time dependent rates?

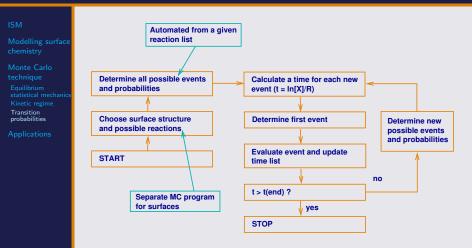
ISM

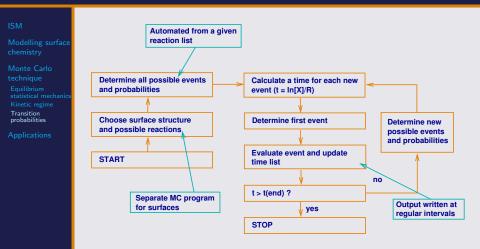

Modelling surfa chemistry

Monte Carlo technique Equilibrium statistical mechani Kinetic regime Transition probabilities


Applications

Different T(t) function possible as well. Numerical effort depends on the integration of $\int_0^t \nu \exp\left(-\frac{E}{kT(t)}\right) dt'$ Example:


- thermalization of species on the surface
- different temperature ramps for TPD (thermal conductance)


Ranks atoms by event time

Ranks atoms by event time

Ranks atoms by event time

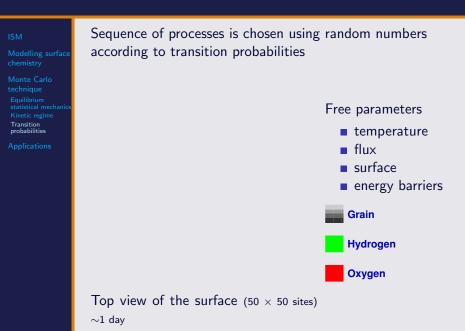
Ranks atoms by event time

ISM

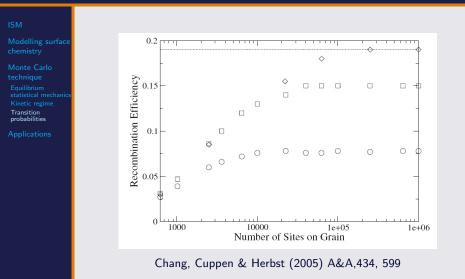
Modelling surfac chemistry

Monte Carlo technique Equilibrium statistical mechan Kinetic regime Transition probabilities

Applications


Advantages:

- Treats low surface densities correctly
- Correct treatment of backdiffusion
- Can handle both low and high densities
- Can include surface specific processes
- Layering


Disadvantages:

- Hard to couple to gas phase rate equations
- Computationally expensive
- Not easy to use for large reaction network

Monte Carlo simulations

Comparison with other techniques

Difference due to backdiffusion

n-fold way

ISM

Modelling surface chemistry

Monte Carlo technique Equilibrium statistical mechani Kinetic regime Transition probabilities

Applications

Bortz, Kalos & Lebowitz, J. Comp. Phys. 17 (1975) 10

1 Construct list with all possible events that can occur

2 Choose event according to relative occurance

3 Propagate time with $\ln(X)/R_{tot}$

4 Update list

Advantage: Very fast Disadvantage: Need to know all possible events (lattice-gas)

Summary

ISM

Modelling surfac chemistry

Monte Carlo technique Equilibrium statistical mecha Kinetic regime

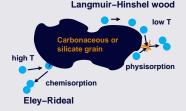
Transition probabilities

Applications

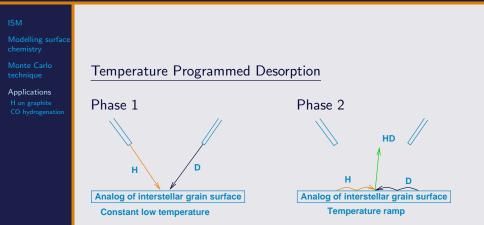
Monte Carlo technique

- Detailed balance for transition probabilities
- Transition probabilities very important in kinetic regime
- Different sampling techniques can reduce the error and increase the running speed

H_2 formation in diffuse clouds


ISM

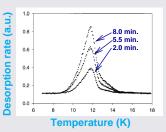
Modelling surfac chemistry

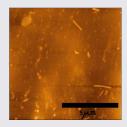

Monte Carlo technique

Applications H on graphite

- atomic H abundance ($\approx 100 \text{ cm}^{-3} \approx 3 \times 10^{6} \text{ cm}^{-2} \text{ s}^{-1}$)
- gas temperature (60-100 K)
- grain temperature (≈ 20 K)
- energies of evaporation
- hopping barriers

Laboratory experiments


TPD experiments



Modelling surfa chemistry

Monte Carlo technique

Applications H on graphite CO hydrogenatio

Pirronello et al., ApJ. 483 (1997) L131

Desorption under laboratory conditions

 $\mathsf{H} + \mathsf{D} \to \mathsf{H}\mathsf{D}$

Analysis of TPD experiments

Applications

Analysis of TPD experiments

э	VI	

Modelling surfac chemistry

Monte Carlo technique

Applications H on graphite

- Fitted with simple rate equations
- Translated to interstellar conditions (very low fluxes)
- \rightarrow Only efficient for 6-10 K

Analysis of TPD experiments

ISM

Modelling surfact chemistry

Monte Carlo technique

Applications H on graphite

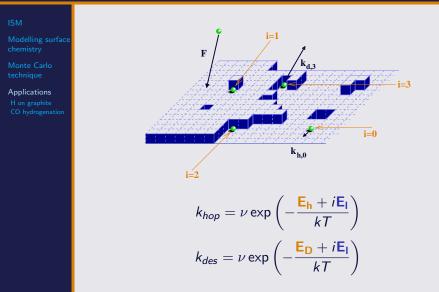
- Fitted with simple rate equations
- Translated to interstellar conditions (very low fluxes)
- \rightarrow Only efficient for 6-10 K
- \rightarrow Not a possible formation route

Interstellar grains

ISM

Modelling surfact chemistry

Monte Carlo technique


Applications H on graphite CO hydrogenatic

have a "fluffy" shapeare bare in these conditions

silicates & carbonaceous material

10-500 nm

Surfaces

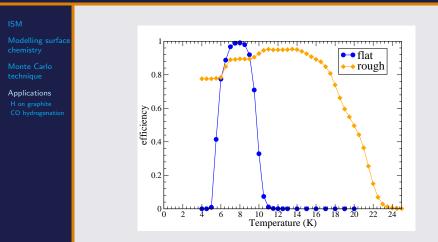
Surfaces

ISM

Modelling surfact chemistry

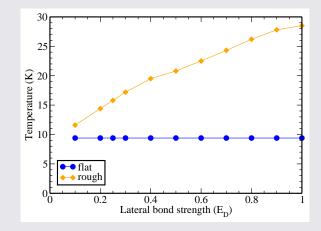
Monte Carlo technique

Applications H on graphite CO hydrogenatio


flat

$$k_{hop} = \nu \exp\left(-\frac{\mathbf{E}_{\mathbf{h}} + i\mathbf{E}_{\mathbf{l}}}{kT}\right)$$
$$k_{des} = \nu \exp\left(-\frac{\mathbf{E}_{\mathbf{D}} + i\mathbf{E}_{\mathbf{l}}}{kT}\right)$$

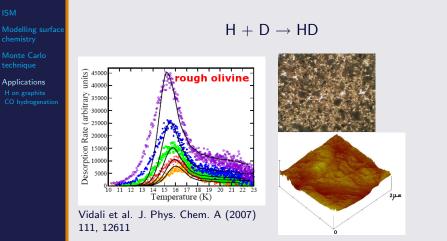
Results at constant temperature



Efficient H₂ formation for rough surface

Cuppen & Herbst, MNRAS (2005), 361, 565-576

Influence of the lateral bond

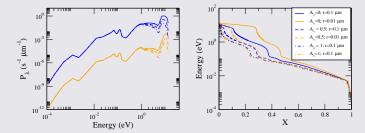


Strong dependence of temperature range on lateral bondFor small lateral bond still increase in temperature range

Cuppen & Herbst, MNRAS (2005), 361, 565-576

TPD experiments

Experimental confirmation of simulation results at higher temperatures


Stochastic heating in diffuse clouds

ISM

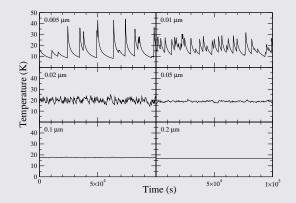
Modelling surface chemistry

Monte Carlo technique

Applications H on graphite CO hydrogenation Interstellar grains are pulse heated by photons from stars in a stochastic manner

 $P_{\lambda} = \pi r^2 I_{\lambda} Q_{abs}(\lambda) D_{\lambda}$

Stochastic heating in diffuse clouds

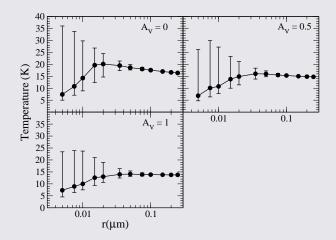

ISM

Modelling surface chemistry

Monte Carlo technique

Applications H on graphite

Interstellar grains are pulse heated by photons from stars (Draine, ARAA, 41 (2003) 241)



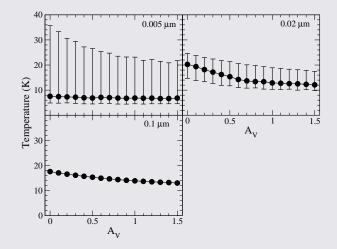
Grain temperature

Modelling surfac chemistry

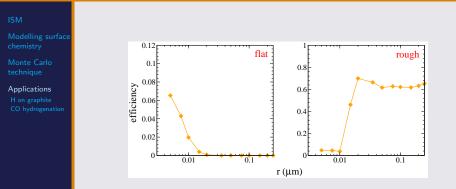
Monte Carlo technique

Applications H on graphite CO hydrogenation

Small grains have a lower temperature most of the time.Small grains have a stronger temperature fluctuations.


Grain temperature

Modelling surfac chemistry


Monte Carlo technique

Applications H on graphite CO hydrogenation

Small grains have a lower temperature most of the time.Small grains have a stronger temperature fluctuations.

Results for stochastic heating

Efficiency is highly grain size dependent

Cuppen, Morata and Herbst, MNRAS (2006), 367, 1757

Results for α

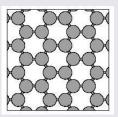
ISM

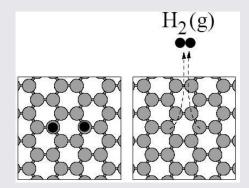
Modelling surfac chemistry

Monte Carlo technique

Applications H on graphite CO hydrogenatio $\begin{array}{c|ccccc} A_V = 0.5 & A_V = 0.5 & A_V = 0.5 \\ \hline \text{flat} & 6.50 \times 10^{-19} & 1.99 \times 10^{-18} & 2.91 \times 10^{-18} \\ \hline \text{rough} & 3.12 \times 10^{-17} & 4.75 \times 10^{-17} & 5.62 \times 10^{-17} \\ \hline \alpha \text{ should be } 2 \times 10^{-17} \text{ cm}^3 \text{ s}^{-1} \end{array}$

Rate is high enough for the rough surface to explain observations


Hydrogen chemistry on carbonaceous surfaces


ISM

Modelling surface chemistry

Monte Carlo technique

Applications H on graphite CO hydrogenatio

- Hydrogen storage
- Plasma-wall interaction in fusion reactors
- H₂ formation in interstellar medium

Goal

ISM

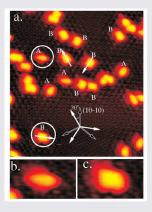
Modelling surfac chemistry

Monte Carlo technique

Applications H on graphite CO hydrogenatior

To obtain an accurate description of the H-graphite system using Monte Carlo simulations in order get more insight in the H₂ formation mechanisms by using experimental constraints in order to simulate H₂ formation in warm interstellar regions


STM on graphite

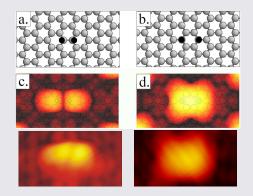

ISM

Modelling surfac chemistry

Monte Carlo technique

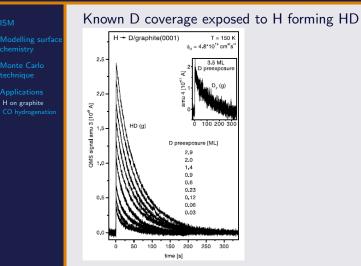
Applications H on graphite CO hydrogenatio

Hornekær et al. PRL 96, 156104 (2006)


Hydrogen dimers

Modelling surfa chemistry

Monte Carlo technique


Applications H on graphite CO hydrogenatio

 ${\sim}85$ % of atoms in multimer conf. at 0.01 ML

Hornekær et al. PRL 96, 156104 (2006)

Hydrogen abstraction

HD formation rate as a function of time

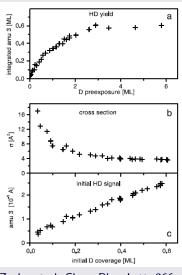
Zecho et al, Chem Phys Lett, 366 (2002) 188

Hydrogen abstraction

Known D coverage exposed to H forming HD H-+ D/graphite(0001) T = 150 K $\phi_{..} = 4.8^{10} \text{ cm}^2 \text{ s}$ D preexposure [ML] HD (g) 2.9 2.0 $\frac{\mathrm{d}[\mathrm{HD}]}{\mathrm{d}t} = \sigma \Phi[\mathrm{D}]_0 \exp\left(-\sigma \Phi t\right)$ H on graphite 1.4 og QMS signal amu 3 [A] 0.9 0.6 $\frac{d[HD]}{dt}$:HD formation rate 0.23 0.12 0.06 :cross section σ 0.03 Φ :flux $[D]_0$: initial D coverage 10 0 50 100 150 time [s]

HD formation rate as a function of time

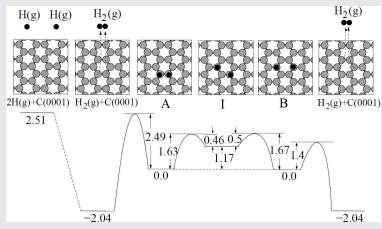
Zecho et al, Chem Phys Lett, 366 (2002) 188


Hydrogen abstraction

Modelling surf chemistry

Monte Carlo technique

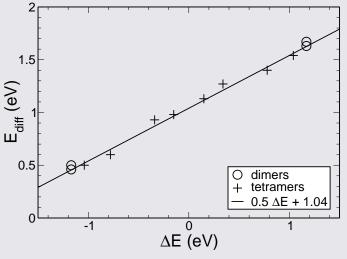
Applications H on graphite CO hydrogenatic


Zecho et al, Chem Phys Lett, 366 (2002) 188

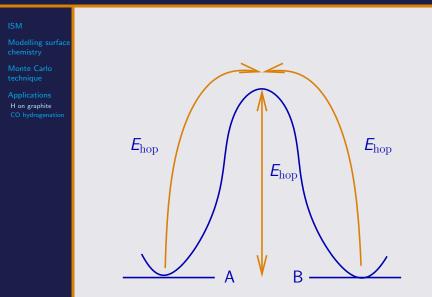
Abstraction cross section depends on coverage

Hopping rates

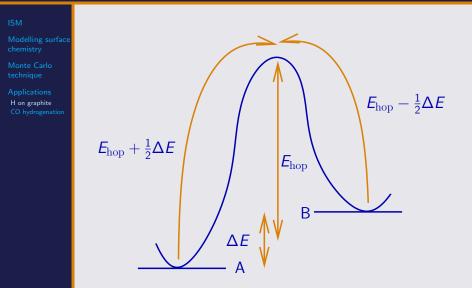
Hornekær et al. PRL 96, 156104 (2006)


Hopping rates

Modelling surfac chemistry

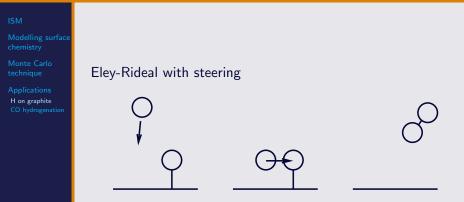

Monte Carlo technique

Applications H on graphite CO hydrogenatio



Cuppen & Hornekær, JCP (2008) 128, 174707

How to determine transition probabilities? Hopping rates

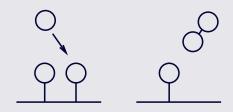

How to determine transition probabilities? Hopping rates

Five mechanisms Mechanism I

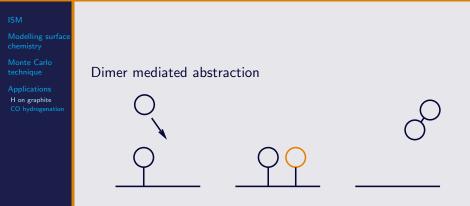
ISM		
Modelling surface chemistry		
Monte Carlo technique Applications	Direct Eley-Rideal	
H on graphite CO hydrogenation	\sim	0
	<u> </u>	

Five mechanisms Mechanism II

Sha & Jackson, Surf. Sci., 496 (2002) 318


Five mechanisms Mechanism III

Modelling surfa chemistry


Monte Carlo technique

Applications H on graphite CO hydrogenation Dimer Eley-Rideal

Bachellerie et al., Chem. Phys. Lett. (2007) 448, 223

Five mechanisms Mechanism IV

Cuppen & Hornekær, JCP (2008) 128, 174707

Five mechanisms Mechanism V

ISM

Modelling surface chemistry

Monte Carlo technique

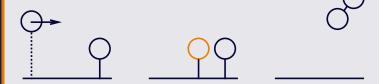
Applications H on graphite CO hydrogenation

Fast diffusion of physisorbed atoms

Bonfanti et al., JPC C (2007) 111, 5825

Monte Carlo simulations

ISM	
Modelling surface chemistry	
Monte Carlo	All mechanisi
technique Applications H on graphite CO hydrogenation	 Combinations mechanisms (to three)
	 Different inpup parameters (unknown or uncertain)
	movie surface: 50×60 typical sizes: 800×920
	colour coding: multime
	Can reproduce experiments only for specific combinations

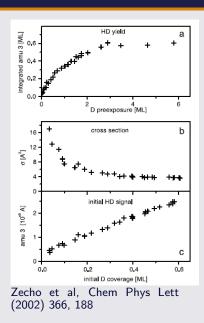

$\begin{array}{l} Combination \ mechanism \\ {\sf Mechanism \ IV \ + \ V} \end{array}$

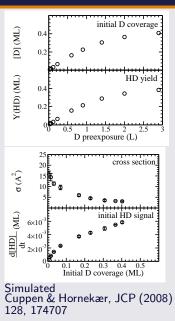
ISM

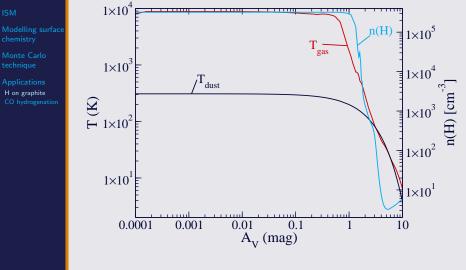
Modelling surfac chemistry

Monte Carlo technique

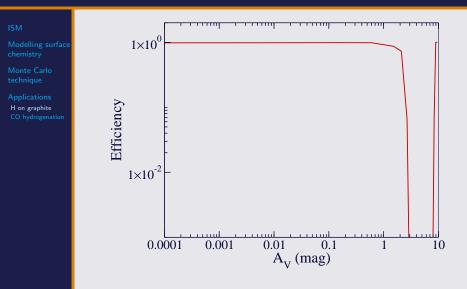
Applications H on graphite CO hydrogenatio Dimer mediated abstraction \rightarrow cross section Fast diffusion of physisorbed atoms \rightarrow dimer ratio


Cuppen & Hornekær, JCP (2008) 128, 174707


Cross section


Modelling surf chemistry

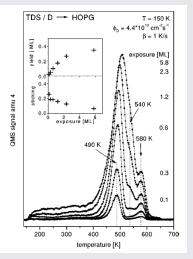
Monte Carlo technique



PDR physical conditions

Leiden model from Röllig et al, A. & A. 467 (2007) 187 V4 conditions; $n_{\rm H} = 10^{5.5} \text{ cm}^{-3}$; $\chi = 10^5$;

Efficiency

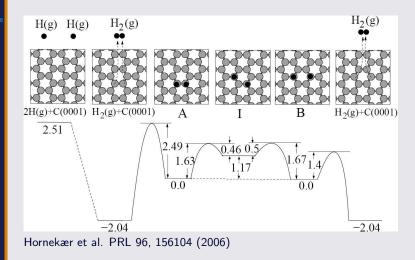

V4 conditions; $n_{
m H}=10^{5.5}~{
m cm}^{-3}$; $\chi=10^5$;

TPD experiment

ISM

Modelling surface chemistry

Monte Carlo technique


Zecho et al., JCP 117 (2002) 8486

Mechanism?

Modelling surfac chemistry

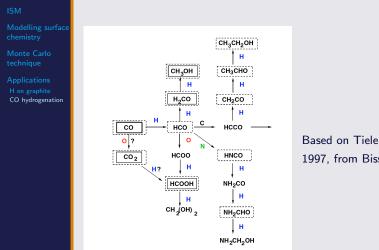
Monte Carlo technique

Conclusions

ISM

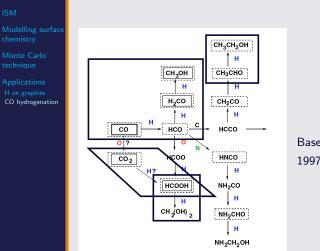
Modelling surfac chemistry

Monte Carlo technique

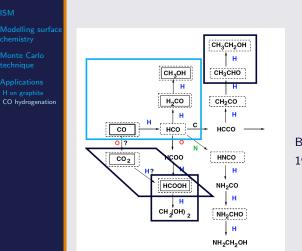

Applications H on graphite CO hydrogenation

H₂ abstraction via two mechanisms

- Dimer mediated Eley-Rideal
- Fast diffusion of physisorbed atom
- = Efficient H₂ formation for high temperature ($T_{\rm gas}$ > 200 K, $T_{\rm dust}$ > 100 K)


■ Surface structure can introduce a large amount of complexity → how far do we want to go?

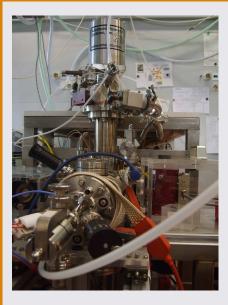
Grain surface chemistry


Based on Tielens and Charnley 1997, from Bisschop et al. 2007

Grain surface chemistry

Based on Tielens and Charnley 1997, from Bisschop et al. 2007

Grain surface chemistry

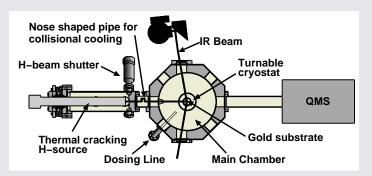


Based on Tielens and Charnley 1997, from Bisschop et al. 2007

SURFRESIDE II

ISM

- Modelling surface chemistry
- Monte Carlo technique
- Applications H on graphite CO hydrogenation


- UHV system: $P < 3 \times 10^{-10}$ mbar.
- $T_{\rm surf} = 10 300$ K.
- H-fluxes: 10¹² - 10¹⁴ cm⁻² s⁻¹
- H-atoms cooled to *T*_{room} via surface collisions.

SURFRESIDE II

Modelling surface chemistry

Monte Carlo technique

CO hydrogenation

ISM

Modelling surfac chemistry

Monte Carlo technique

Applications H on graphite CO hydrogenation $\mathsf{CO} \xrightarrow{\mathrm{2H}} \mathsf{H}_2\mathsf{CO} \xrightarrow{\mathrm{2H}} \mathsf{CH}_3\mathsf{OH}$

• Hiraoka et al. (1994, 2002) \rightarrow efficient formaldehyde formation, no methanol

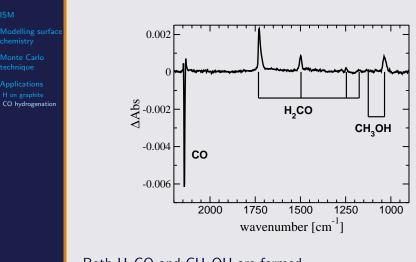
■ Watanabe et al. (2002, 2003, 2004) → efficient formaldehyde and methanol formation

CO hydrogenation

ISM

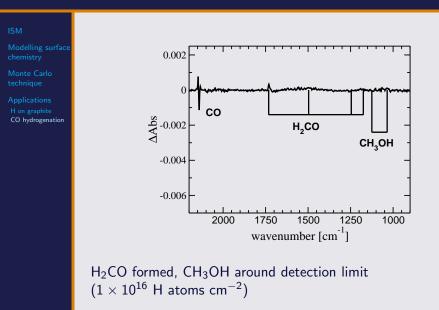
Modelling surfac chemistry

Monte Carlo technique

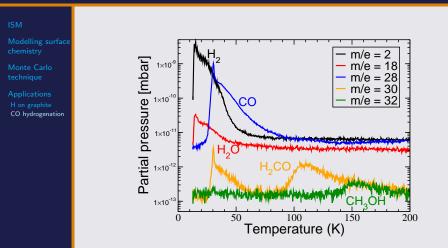

Applications H on graphite CO hydrogenation $\mathsf{CO} \xrightarrow{\mathrm{2H}} \mathsf{H}_2\mathsf{CO} \xrightarrow{\mathrm{2H}} \mathsf{CH}_3\mathsf{OH}$

• Hiraoka et al. (1994, 2002) \rightarrow efficient formaldehyde formation, no methanol

 \rightarrow low flux (10^{12}~cm^{-2}s^{-1}))


 Watanabe et al. (2002, 2003, 2004) → efficient formaldehyde and methanol formation → high flux (10¹³ - 10¹⁴ cm⁻²s⁻¹))

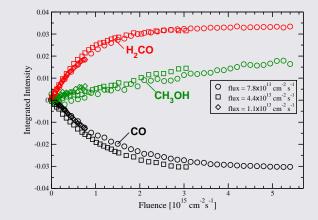
CH₃OH formation for high flux



Both H₂CO and CH₃OH are formed $(5 \times 10^{17} \text{ H atoms cm}^{-2})$

CH₃OH formation for low flux

CH₃OH formation for low flux

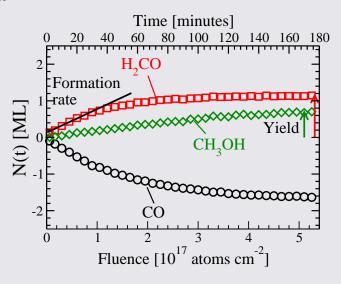

Both H₂CO and CH₃OH are formed $(1 \times 10^{16} \text{ H atoms cm}^{-2})$

CH₃OH formation

Monte Carlo technique

Applications H on graphite CO hydrogenation

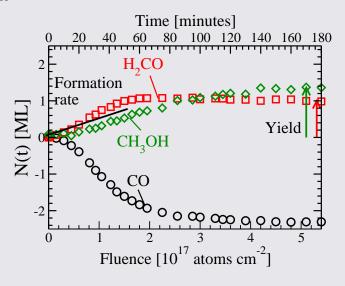
Methanol is formed for entire flux range. For very low fluxes it is formed around the detection limit.


This suggests that there is not a change in reaction mechanism going to lower fluxes.

 $T_{\rm ice} = 12.0 \ {\rm K}$

Modelling surfac chemistry

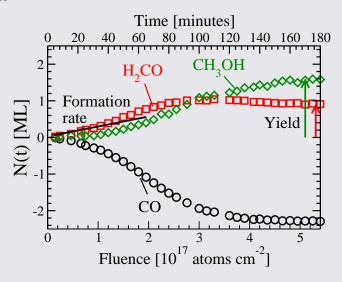
Monte Carlo technique



 $T_{\rm ice} = 13.5 \ {\rm K}$

Modelling surfac chemistry

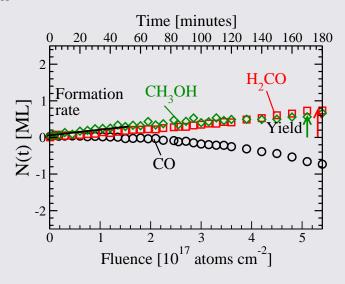
Monte Carlo technique

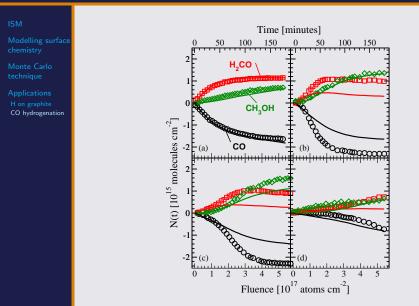


 $T_{\rm ice} = 15.0 \ {\rm K}$

Modelling surfac chemistry

Monte Carlo technique




 $T_{\rm ice} = 16.5 \ {\rm K}$

Modelling surface chemistry

Monte Carlo technique

Monte Carlo results

Desorption Input parameters

ISM

Modelling surfac chemistry

Monte Carlo technique

Applications H on graphite CO hydrogenation

$$k_{
m desorption}^{i} = \nu \exp\left(-rac{{\sf E}_{
m bind}^{i}}{kT}
ight)$$

type of site	$E_{\rm bind}$ (meV)	(meV)*
H on flat CO (110)	27	28
H in kink site	33	
H in vacancy	38	38
CO on flat CO (110)	53	
CO in kink site	64	
CO in vacancy	75	74

* Energy minimization with accurate potential (Stefan Andersson)

Diffusion Input parameters

ISM

Modelling surfac chemistry

Monte Carlo technique

Applications H on graphite CO hydrogenation

$$k_{\text{diffusion}}^{i,j} = \nu \exp\left(-\frac{E_{\text{diff}}^{i,j}}{kT}\right)$$
$$E_{\text{diff}}^{i,j} = \mathbf{E}_{\text{hop}} + \frac{\mathbf{\Delta}\mathbf{E}_{\text{bind}}^{i,j}}{2}$$

For E^{flat,flat}_{diff} = E_{hop} = 5 meV
 However, diffusion is limited due to presence of H₂
 Diffusion only limited effect

Flux Input parameters

ISM

Modelling surfact chemistry

Monte Carlo technique

Applications H on graphite CO hydrogenation

Laboratory or interstellar fluxes $(10^{12-15} \text{ cm}^{-2}\text{s}^{-1} \text{ vs. } 10^{7-9} \text{ cm}^{-2}\text{s}^{-1})$

Different reaction channels dominate depending on H surface abundance

Reaction barriers Fitting parameters

Applications H on graphite CO hydrogenation

Varied to fit the experiments

$$k_{
m react} = \nu \exp\left(-rac{{\sf E}_{
m react}}{kT}
ight)$$

Penetration mechanism Input parameters

ISM

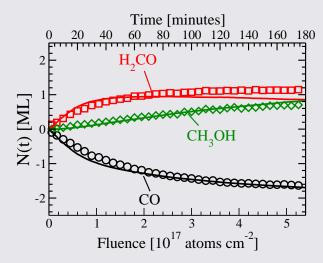
Modelling surface chemistry

Monte Carlo technique

Applications H on graphite CO hydrogenation

Minimum energy path for penetration (no thermal effects)

Temperature dependence Monte Carlo simulations


ISM

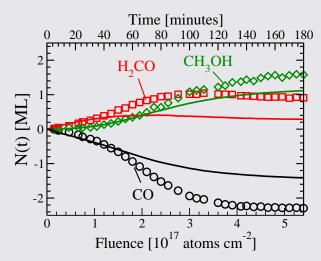
 $T_{\rm ice} = 12$ K

Modelling surfac

Monte Carlo technique

Applications H on graphite CO hydrogenation

Temperature dependence Monte Carlo simulations


ISM

 $T_{\rm ice} = 15$ K

Modelling surfa

Monte Carlo technique

Applications H on graphite CO hydrogenation

Reaction barriers Fitting parameters

ISM

Modelling surfac

Monte Carlo technique

Applications H on graphite CO hydrogenation Varied to fit the experiments

$$k_{
m react} =
u \exp\left(-rac{{\sf E}_{
m react}}{kT}
ight)$$

T (K)	H + CO(K)	$H + H_2CO(K)$
12	390 ± 20	415 ± 20
13.5	445 ± 20	445 ± 20
15	495 ± 20	490 ± 20

Tunneling important at these temperatures

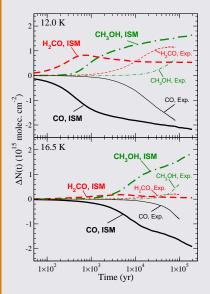
CO hydrogenation conclusions

ISM

Modelling surfac chemistry

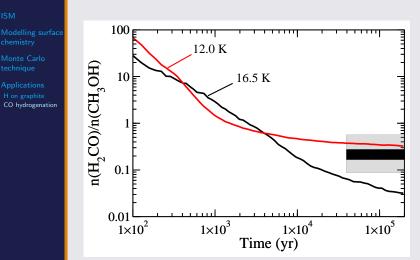
Monte Carlo technique

Applications H on graphite CO hydrogenation


- Reaction rates have very little temperature dependence
- Decreasing production rate with temperature due to increasing hopping and desorption
- Larger penetration depth for higher surface temperatures

Translation to interstellar fluxes Hydrogenation of CO ice

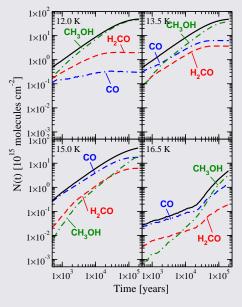
Monte Carlo technique


Applications H on graphite CO hydrogenation

 $n_{
m H} = 10^5 \text{ cm}^{-3}$ $n({
m H}) = 10^{-4} n_{
m H}$ $T_{
m gas} = 20 K$

- Fluence dependence different
- Different sticking
- CO hydrogenation becomes dominant channel (H₂ in laboratory)

H_2CO/CH_3OH ratio

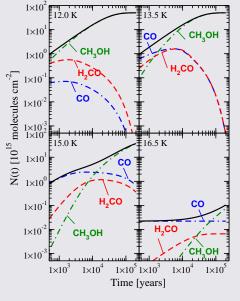


Ratio agrees with observations

Interstellar ices Codeposition of CO and H

- Modelling surfac chemistry
- Monte Carlo technique
- Applications H on graphite CO hydrogenation

- Monte Carlo simulations $n_{\rm H} = 10^5 \text{ cm}^{-3}$ $n({\rm H}) = 10^{-4} n_{\rm H}$ $n({\rm CO}) = 10^{-4} n_{\rm H}$ initial $T_{\rm gas} = 20 K$
 - Sticking limited at 16.5 K
 - Efficient methanol conversion for CO depletion

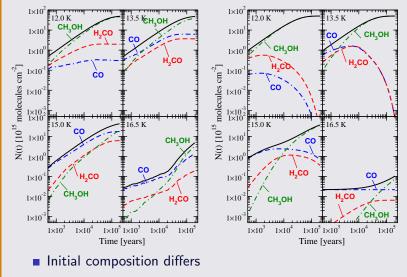

Interstellar ices Comparison with rate equations

Modelling surfac chemistry

Monte Carlo technique

Applications H on graphite CO hydrogenation

- Rate equations $n_{\rm H} = 10^5 \text{ cm}^{-3}$ $n({\rm H}) = 10^{-4} n_{\rm H}$ $n({\rm CO}) = 10^{-4} n_{\rm H}$ initial $T_{\rm gas} = 20 K$
 - CH₃OH/H₂CO ratio lower
 - Large drop for CO depletion


Interstellar ices Comparison with rate equations

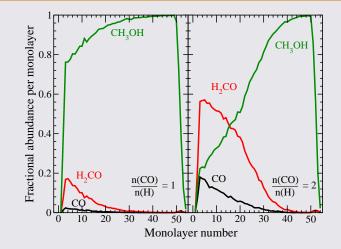
ISM

Modelling surfa chemistry

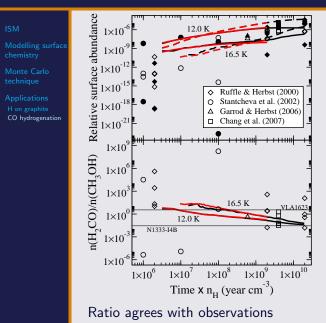
Monte Carlo technique

Applications H on graphite CO hydrogenation

Large drop for CO depletion


Interstellar ices Layer composition

Modelling surface themistry


Monte Carlo technique

Applications H on graphite CO hydrogenation

H₂CO and CO locked up in lower layers
 n(CO)/n(H) ratio determines CH₃OH and H₂CO formation

$\underset{\text{co-deposition}}{\text{H}_2\text{CO}/\text{CH}_3\text{OH ratio}}$

Conclusions

ISM

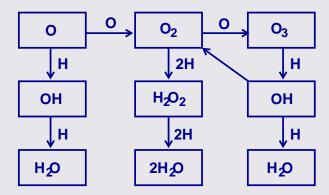
Modelling surfac chemistry

Monte Carlo technique

Applications H on graphite CO hydrogenation

• CH_3OH and H_2CO both efficiently formed

- Laboratory results can be explained by MC simulations.
- Layering due to changing gas phase abundance


Water reactions

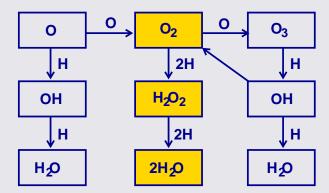
ISM

Modelling surface chemistry

Monte Carlo technique

Applications H on graphite CO hydrogenation Three different formation routes have been proposed:

Tielens & Hagen, A. & A. 114 (1982) 245


Water reactions

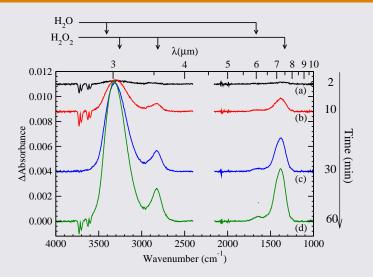
ISM

Modelling surface chemistry

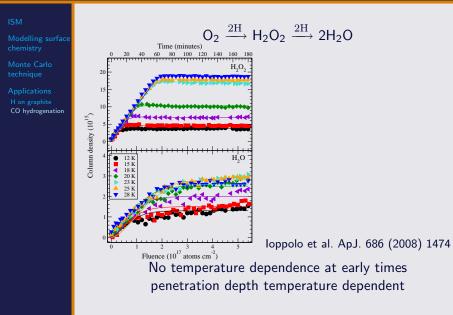
Monte Carlo technique

Applications H on graphite CO hydrogenation Three different formation routes have been proposed:

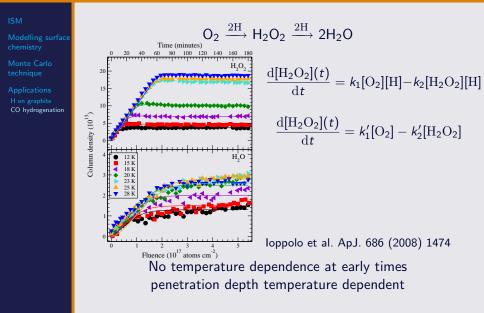
Only separate reaction channel Tielens & Hagen, A. & A. 114 (1982) 245


Water formation IR identification

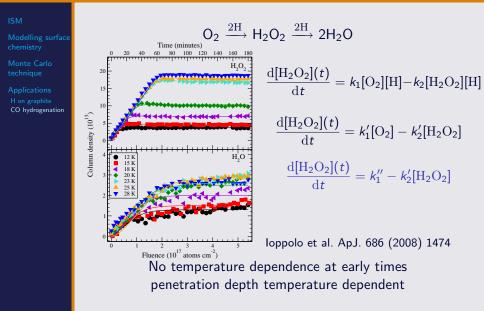
Modelling surfact chemistry


Monte Carlo technique

Applications H on graphite CO hydrogenation



loppolo et al. ApJ. 686 (2008) 1474


Water formation

Water formation

Water formation

Hypothesis

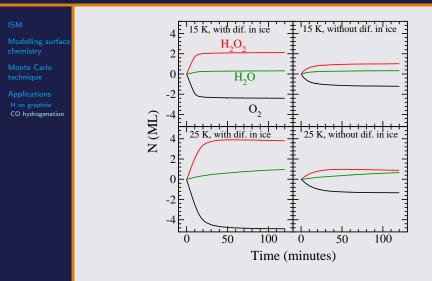
ISM

Modelling surface chemistry

Monte Carlo technique

Applications H on graphite CO hydrogenation

Why zeroth order behaviour?


- Hydrogen trapped in ice matrix
- Trapping depends on incoming beam (no temperature dependence)
- Penetration depth depends on temperature

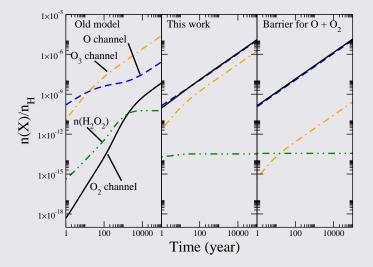
O_2 (001) surface

Water formation Difference in ice structure

ISM
Modelling surface chemistry
Monte Carlo technique
Applications H on graphite
CO hydrogenation

Monte Carlo simulations

Diffusion into ice is needed for zeroth order and penetration depth.


Monte Carlo simulations

ISM

Modelling surface chemistry

Monte Carlo technique

Applications H on graphite CO hydrogenation

 O_2 channel more important than previously thought

Conclusions

ISM

Modelling surfac chemistry

Monte Carlo technique

Applications H on graphite CO hydrogenation

- H₂O₂ and H₂O more efficiently formed than previously expected.
- O_2 could be a major route for H_2O formation
- Diffusion into O₂ very important process
- More data needed to fully understand how structure determines reactions (CO vs. O₂)