Non-covalent force fields computed ab initio

• Supermolecule calculations

• Symmetry-adapted perturbation theory (SAPT)

Supermolecule calculations

$$\Delta E = E_{AB} - E_A - E_B$$

Requirements:

- 1. Include electron correlation, intra- and inter-molecular (dispersion energy = intermolecular correlation)
- 2. Choose good basis, with diffuse orbitals (and "bond functions") especially to converge the dispersion energy
- 3. Size consistency. Currently best method: CCSD(T)
- 4. Correct for basis set superposition error (BSSE) by computing E_A and E_B in dimer basis

Symmetry-adapted perturbation theory (SAPT)

Combine perturbation theory with antisymmetrization \mathcal{A} (Pauli) to include short-range exchange effects.

Advantages:

- 1. ΔE calculated directly.
- Contributions (electrostatic, induction, dispersion, exchange) computed individually. Useful in analytic fits of potential surface.

Advantage of supermolecule method:

Easy, use any black-box molecular electronic structure program

Problems in SAPT:

1. Pauli: AH = HA.

Antisymmetrizer commutes with total Hamiltonian $H = H^{(0)} + H^{(1)}$, but not with $H^{(0)}$ and $H^{(1)}$ separately. Has led to different definitions of second (and higher) order energies.

2. Free monomer wavefunctions $\Phi_{k_1}^A$ and $\Phi_{k_2}^B$ not exactly known. Use Hartree-Fock wave functions and apply double perturbation theory to include intra-molecular correlation, or use CCSD wave functions of monomers \Rightarrow Many-body SAPT.

Program packages:

- SAPT2 for pair potentials
- SAPT3 for 3-body interactions

Most difficult: dispersion interactions

First *ab initio* calculation of He–He binding curve:

Phys. Rev. Letters, **25** (1970)

- H.F. Schaefer, D.R. McLaughlin, F.E. Harris, and B.J. Alder page 988: $D_e = 12.0$ K
- P. Bertoncini and A. C. Wahl page 991: $D_e = 11.4$ K

Present value:

$$D_e = 11.01 \text{ K} = 7.65 \text{ cm}^{-1}$$

 $\approx 0.1 \text{ kJ/mol} \approx 10^{-3} \text{ eV} \approx 3.5 \times 10^{-5} \text{ Hartree}$

Can one use DFT methods?

Reviews by Johnson & DiLabio, Zhao & Truhlar

Many different functionals tested with different basis sets

type	dimer	mean error in D_e
Van der Waals	Rg_{2} , (CH ₄) ₂ , (C ₂ H ₂) ₂ , (benzene) ₂	40 - 200 %
dipole-induced dipole	CH ₄ –HF, H ₂ O–benzene, etc.	15 - 100 %
dipole-dipole	$(H_2CO)_2$, etc.	10 - 40 %
hydrogen bonded	(NH ₃) ₂ , (H ₂ O) ₂ , (HCOOH) ₂ , etc.	3 - 20%

- Some VdW dimers, (benzene)₂ for example, not bound
- B971 best, B3LYP worst
- Often best results without BSSE correction, or smaller basis sets
 ⇒ Right for wrong reason

Basic problems with DFT

- **1.** Exchange repulsion
- Incorrect asymptotic behavior of one-electron potential: $v(r) \rightarrow \exp(-\alpha r)$ instead of -1/r
- In intermolecular Coulomb energy no self-term present self-exchange ⇒ spurious attraction

- **2.** Dispersion
- Intrinsically non-local: cannot be described by local LDA or semi-local GGA methods

DFT with dispersion explicitly included

vdW-DF: M. Dion, H. Rydberg, E. Schroder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. **92** (2004) 246401

0 -20-40 -60 $E_{\rm int}~({\rm cm}^{-1})$ -80 -100 -120 SAPT(DFT)/PBE SAPT(DFT)/B97 -140 CCSD(T)/CBS Benchmark vdW-DF -160 3.5 4.0 4.5 5.0 5.5 6.0 6.5 R (Å)

Ar–Ar interaction

From: R. Podeszwa and K. Szalewicz, Chem. Phys. Lett. 412 (2005) 488

DFT with dispersion included semi-empirically

Becke, Johnson, and others:

- Include atom-atom $-C_6 R^{-6} - C_8 R^{-8} - C_{10} R^{-10}$ term

in addition to the semi-local correlation energy

- Approximate C_6, C_8, C_{10} from atomic squared multipole moment expectation values and (empirical) static polarizabilities
- Empirically optimized damping parameters

Alternative: SAPT-DFT

Implemented by G. Jansen *et al.* (Essen) and K. Szalewicz *et al.* (Delaware)

- First order SAPT energy (electrostatic + exchange) computed with monomer densities and density matrices from Kohn-Sham DFT
- Second-order SAPT energy (induction, dispersion + exchange) from (time-dependent) coupled perturbed Kohn-Sham response functions

Only Hartree-Fock like expressions from Many-Body SAPT needed \Rightarrow better scaling

Caution !

- SAPT-DFT requires XC potential that is good in inner region and has correct -1/r behavior for $r \to \infty$
- Coupled time-dependent DFT must be used for (frequency-dependent) density-density polarizabilities $\alpha(\mathbf{r}, \mathbf{r}', \omega)$

Both groups, K. Szalewicz (Delaware) and G. Jansen (Essen), further improved efficiency by implementation of density fitting.

Ar–Ar interaction

A. Heßelmann, G. Jansen, M. Schütz, J. Chem. Phys. 122 (2005) 014103

 $(benzene)_2$

1512 GTOs (aug-cc-pVQZ), extrapolation to basis set limit

Adenine-Thymine (G. Jansen et al.)

DF-SAPT-DFT up to aug-cc-pVQZ level

Many-body interactions (per hydrogen bond)

Illustration:

New water potential

- Tested by spectroscopy on dimer and trimer
- Used in MD simulations for liquid water
- R. Bukowski, K. Szalewicz, G.C. Groenenboom, and A. van der Avoird, Science, **315**, 1249 (2007)

New polarizable water pair potential: CC-pol

- From CCSD(T) calculations in aug-cc-pVTZ + bond function basis
- Extrapolated to complete basis set (CBS) limit at MP2 level
- 2510 carefully selected water dimer geometries
- Estimated uncertainty < 0.07 kcal/mol (same as best single-point calculations published)

CC-pol: Analytic representation

- Site-site model with 8 sites (5 symmetry distinct) per molecule
 - Coulomb interaction,
 - dispersion interaction,
 - exponential 'overlap' terms: first-order exchange repulsion, second-order exchange induction + dispersion
- Extra polarizability site for induction interaction
- Long range R^{-n} contributions computed by perturbation theory, subtracted before fit of short range terms
- Good compromise between accuracy of reproducing computed points (rmsd of 0.09 kcal/mol for $\Delta E < 0$) and simplicity needed for molecular simulations

How to test non-covalent force fields?

Molecular beam spectroscopy of Van der Waals molecules

Experimental Set-Up

W.L. Meerts, Molecular and Laser Physics, Nijmegen

Intermolecular potential

Van der Waals spectra

Nuclear motion Hamiltonian H = T + V for "normal" (= semi-rigid) molecules

- single equilibrium structure
- small amplitude vibrations

Use rigid rotor/harmonic oscillator model

For (harmonic) vibrations

• Wilson *GF*-matrix method \Rightarrow frequencies, normal coordinates

Rigid rotor model \Rightarrow fine structure (high resolution spectra)

Nuclear motion Hamiltonian H = T + V for weakly bound complexes (Van der Waals or hydrogen bonded)

- multiple equivalent equilibrium structures
 (= global minima in the potential surface V)
- small barriers \Rightarrow tunneling between minima
- large amplitude (VRT) motions:
 vibrations, internal rotations, tunneling (more or less rigid monomers)
- curvilinear coordinates \Rightarrow complicated kinetic energy operator T

Method for molecule-molecule dimers

 H_2O-H_2O , NH_3-NH_3 , etc.

Hamiltonian

$$H = T_A + T_B - \frac{\hbar^2}{2\mu R} \frac{\partial^2}{\partial R^2} R + \frac{(J - j_A - j_B)^2}{2\mu R^2} + V(R, \omega_A, \omega_B)$$

Monomer Hamiltonians (X = A, B):

$$T_X = A_X (j_X)_a^2 + B_X (j_X)_b^2 + C_X (j_X)_c^2$$

Basis for bound level calculations

$$\chi_n(R) \ D_{MK}^{(J)}(\alpha,\beta,0)^* \sum_{m_A,m_B} D_{m_Ak_A}^{(j_A)}(\boldsymbol{\omega}_A)^* D_{m_Bk_B}^{(j_B)}(\boldsymbol{\omega}_B)^* \langle j_A, m_A; j_B, m_B \mid j_{AB}, K \rangle$$

The permutation-inversion (PI) symmetry group

For semi-rigid molecules

Use *Point Group of Equilibrium Geometry* to describe the (normal coordinate) vibrations

N.B. This point group is isomorphic to the PI group, which contains all "feasible" permutations of identical nuclei, combined with inversion E^* .

Molecule	Point group	PI group
$ \begin{array}{c} O\\ H_1\\ H_2 \end{array} $	C_{2v}	$\{E, E^*, (12), (12)^*\}$
F H_1 C H_2 H_3	C_{3v}	$\{E, (123), (132), (12)^*, (13)^*, (23)^*\}$

PI operation	frame rotation	point group operation
(12)	$R_z(\pi) = C_{2z}$	C_{2z}
E^*	$R_y(\pi) = C_{2y}$	σ_{xz} reflection
$(12)^{*}$	$R_x(\pi) = C_{2x}$	σ_{yz} reflection

permutation \Rightarrow frame rotation + point group rotation

permutation-inversion \Rightarrow frame rotation + reflection

Hence: PI-group \simeq point group

For "floppy" molecules/complexes

- $\bullet\,$ multiple equivalent minima in V
- low barriers: tunneling between these minima is "feasible".
- \Rightarrow additional "feasible" *PI*-operations

Example NH₃

Additional feasible *PI*-operations

observable tunneling splittings in spectrum

For H_2O-H_2O

PI group $G_{16} = \{E, P_{12}\} \otimes \{E, P_{34}\} \otimes \{E, P_{AB}\} \otimes \{E, E^*\}$

Equilibrium geometry has C_s symmetry

 \Rightarrow 8-fold tunneling splitting of rovib levels

Water cluster spectra (far-infrared, high-resolution) from Saykally group (UC Berkeley)

Used for test of potential:

Water dimer tunneling pathways

Donor-Acceptor Interchange Tunneling

Donor (Bifurcation) Tunneling

Acceptor tunneling a(K=0) a(K=1) a(K=2) 0.034 0.027 B⁺,A 2.41 0.79 1.71 (ab initio) 1.77 0.62 1.31 (experiment) a(K=2) Rotational constants В₂ $A = \Delta - (B+C)/2 = 4.17$ E⁻,E⁺ A₂,B₂ 4.17 0.032 D_2O dimer 0.027 B+C =0.380 0.362

tunneling levels

from CC-pol (red)

experiment (black)

J=K=0

Water trimer tunneling pathways

flipping (G_6) + bifurcation tunneling (G_{48})

MD simulations of liquid water, T = 298 K

Atom-atom radial distribution functions

Conclusions

- CC-pol pure *ab initio*
- Predicts dimer spectra better than semi-empirical potentials fitted to these spectra
- Second virial coefficients in excellent agreement with experiment
- CC-pol + 3-body potential gives good trimer spectrum
- Simulations of liquid water with CC-pol + N-body forces predict the neutron and X-ray diffraction data equally well as the best empirical potentials fitted to these data
- Important role of many-body forces in liquid water
 Nearly tetrahedral coordination:
 3.8 hydrogen bonds, only 2.8 with pure pair potential

General conclusion

CC-pol, with the accompanying many-body interaction model, provides the first water force field that recovers the dimer, trimer, and liquid properties well

Latest development

Water pair potential with flexible monomers: 12-dimensional

X. Huang, B. J. Braams, and J. M. Bowman, J. Phys. Chem. A **110** (2006) 445 Improved version (J. Chem. Phys., accepted)

- From CCSD(T) calculations in aug-cc-pVTZ basis.
- $20\,000 \Rightarrow 30\,000$ water dimer geometries.
- Accurate fit in terms of symmetry-adapted polynomials of scaled atom-atom distances.
- Produces even more accurate VRT levels of $(H_2O)_2$ and $(D_2O)_2$. Also acceptor splitting $a_0 + a_1$ accurate in 12d calculations.
- Good VRT levels of (H₂O)₃ and (D₂O)₃ when 3-body interactions added.