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Preface

These are the lecture notes of the five hour course on quantum electrodynamics given during the
“Graduate course on Theory and Spectroscopy” in Han-sur-Lesse, Belgium, December 12-16,
2005. This part only treats the vacuum. An updated version that includes the part on the
interaction between molecules and fields will be put on the website www.theochem.ru.nl/han

These lecture notes were made while studying the book “Molecular quantum electrodynamics,

An Introduction to Radiation-Molecule Interactions” by D. P. Craig and T. Thirunamachandran
(Academic, London, 1984).

I also made use of the discussion of units in the appendix of the book “Classical Electrody-

namics”, by John David Jackson (Wiley, New York, 1999).

1 Mathematical background: vector algebra

1.1 Scalar and vector fields

A scalar field is a real or complex valued function defined on R3; φ(r) ≡ φ(x, y, z). We will also
encounter time-dependent scalar fields φ(r, t).

A vector field has three components in each point of space:

A(r) ≡




Ax(r)
Ay(r)
Az(r)


 . (1)

The gradient of a scalar field is a vector field defined by

∇φ(r) ≡




∂
∂xφ(x, y, z)
∂
∂y φ(x, y, z)
∂
∂z φ(x, y, z)


 . (2)

The divergence of a vector field is a scalar field given by

∇ ·A(r) ≡ ∂

∂x
Ax(r) +

∂

∂y
Ay(r) +

∂

∂z
Az(r). (3)

The curl of a vector field is a vector field given by

∇×A ≡




∂
∂x
∂
∂y
∂
∂z


×




Ax

Ay

Az


 =




∂Az

∂y − ∂Ay

∂z
∂Ax

∂z − ∂Az

∂x
∂Ay

∂x − ∂Ax

∂y


 . (4)

1.2 Gauss and Stokes theorems

The total flux jS of a vector field A through a surface S is defined by

jS =

∫∫

S

A · dS. (5)

The vector dS is perpendicular to the surface and its length is proportional to the area of a
surface element.
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The outward flux through a surface S enclosing a volume V is related by Gauss theorem to
a volume integral over the divergence of the field:

∫∫

S

A · dS =

∫∫∫

V

∇ ·AdV. (6)

Stokes theorem relates a line integral to a surface integral:

∮
A · dr =

∫∫

S

(∇×A) · dS. (7)

A vector field is singly connected if each closed line can be contracted continuously to a point.
Stokes theorem can be applied to each closed line in such a field.

A vector field is doubly connected if each closed surface can be contracted continuously to a
point. Gauss theorem can be applied to any such field.

1.3 Solenoidal and irrotational fields

A solenoidal or divergence free vector field V⊥ is defined by

∇ ·V⊥ ≡ 0. (8)

An irrotational or curl-free vector field is defined by

∇×V‖ ≡ 0. (9)

A force field described by an irrotational field is called conservative.
The gradient of a scalar field can easily be verified to be irrotational:

∇× (∇φ) = 0. (10)

The reverse is also true, any irrotational vector field V‖ can be written as the gradient of
some scalar field φ. To show this define

φ(r) =

∫
r

r0

V‖(r′) · dr′. (11)

Stokes theorem can be used to show that this definition of φ is independent of the path. This
requires that the field is singly connected. Taking the gradient of both sides of Eq. 11 gives

∇φ = V‖. (12)

The divergence of the curl of a vector field can easily be verified to be zero

∇ · (∇×A) = 0. (13)

Again the reverse is also true, any solenoidal (divergence-free) field can be written as the curl of
some vector field

V⊥ = ∇×W. (14)

The field W is not unique. If the flux through any closed surface is zero the field is called source

free. If the domain of the field is doubly connected than Gauss theorem can be used to show
that a solenoidal field is source free.
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A field V can be both divergence free and curl free. In this case it can be written as V = ∇φ,
where φ is a harmonic function, i.e., it satisfies the Laplace equation

∇ · ∇φ = ∇2φ = 0. (15)

According to the Helmholz theorem any singly and doubly connected field can be written as
the sum of an irrotational field and a solenoidal field

V = ∇φ + ∇×A. (16)

This decomposition is not unique: a solution of the Laplace equation (χ) may be added to scalar
field φ. In this case ∇χ is solenoidal and a vector field B may be found such that ∇χ = ∇×A

and we have an alternative decomposition

V = ∇(φ + χ) + ∇× (A −B). (17)

The vector field A in 16 can be chosen to be solenoidal, i.e., ∇·A = 0. Suppose ∇·A 6= 0, take

A′ = A −∇φ, (18)

where φ is the solution of the Poisson equation

∇2φ = ∇ · A (19)

then ∇ · A′ = 0 and V = ∇φ + ∇×A′. A useful relation to compute the curl of V is

∇× (∇×A) = ∇(∇ · A) −∇2A, (20)

where in the last term ∇2 acts on the x, y, and z components of A.

1.4 Continuity equation

The total outward flux jtot through a surface S enclosing a volume V is equal to the decrease of
the number of particles per time −ṅ(t) in that volume.

∫∫

S

j · dS = −ṅ(t). (21)

The number of particles can be written as an integral over the density

n(t) =

∫∫∫

V

ρ(r, t)d3r (22)

Using Gauss theorem the surface integral in Eq. (21) can be written as a volume integral of the
divergence of j and we can derive

∫∫∫

V

[∇ · j + ρ̇(r, t)]d3r = 0. (23)

Since this equation must hold for each volume we must have the continuity equation

∇ · j + ρ̇(r, t) = 0. (24)

If the flux is written as j = j‖ + j⊥ then we may replace ∇ · j = ∇ · j‖.

4



1.5 The Fourier transform of a field

The Fourier transform of a scalar field is defined by

φ̃(k) = (2π)−3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
φ(r)eikrd3r (25)

and the inverse is

φ(r) = (2π)−3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
φ̃(k)e−ikrd3k. (26)

The Fourier transform of a vector field is defined by the Fourier transforms of its components

Ã(k) =




Ãx(k)

Ãy(k)

Ãz(k)


 . (27)

The Fourier transform of the gradient of a scalar field is

∇̃φ(k) = −ikφ̃(k). (28)

The Fourier transform of the divergence of a vector field is

∇̃ · A(k) = −ik · Ã(k). (29)

The Fourier transform of the curl of a vector field is

˜∇×A(k) = −ik × Ã(k). (30)

For a solenoidal (divergence free) field A⊥ we find from Eq. (29) that k · Ã⊥(k) = 0, i.e.,

k ⊥ Ã⊥(k), (31)

hence a solenoidal field is transverse in k-space. Similarly, an irrotational field A‖ is longitudinal

in k-space
k ‖ Ã‖(k). (32)

In k-space a field can be decomposed in a longitudinal and a transverse part (with k = kk̂ and
k = |k|)

Ã = Ã‖ + Ã⊥ (33)

Ã‖ = k̂(k̂ · Ã) (34)

Ã⊥ = Ã − Ã‖ (35)

This decomposition seems to be unique, whereas before we found that the gradient of an har-
monic function could be added and subtracted from the solenoidal and irrotational parts. The
reason is that the Fourier transform only exists if the contribution of the harmonic functions is
zero.
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1.6 Levi-Civita tensor

Many vector formulas are most easily derived using the Levi-Civita or permutation tensor εijk .
The indices can be 1, 2, or 3. Furthermore, ε1,2,3 = 1 and it changes sign when two indices are
permuted. Using the Einstein summation convention (summation over any repeated indices) we
have three very useful relations for the summation over one, two, or all three indices

εijkεij′k′ = δjj′δkk′ − δjk′δkj′ (36)

εijkεijk′ = 2δkk′ (37)

εijkεijk = 6. (38)

It can be used to define the cross product of two vectors

(x × y)i ≡ εijkxjyk (39)

and the determinant of a 3 × 3 matrix

det([xy z]) = εijkxiyjzk = x · (y × z) (40)

Use these relations to derive the vector formulas:

∇×∇φ = 0 (41)

∇ · (∇× x) = 0 (42)

∇× (∇× x) = ∇(∇ · x) −∇2x (43)

∇ · (x × y) = y · (∇× x) − x · (∇× y) (44)

a × (∇× x) = ∇(a · x) − (a · ∇)x, where a is a constant vector. (45)

(∇× x) · (∇× a) = (∇iaj)
2 − (∇iaj)(∇jai) (46)

(a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c). (47)

2 Classical electromagnetism

2.1 Units

We take as basis dimensions length (l), mass (m), and time (t). Two common unit systems are
m.k.s. (meter, kilogram, second), which is used in the S.I. system, and c.g.s. (centimeter, gram,
second), which is used in the Gaussian unit system.

The atomic units system has the Bohr radius (a0) for length and the electron mass (me) as
unit of mass. The third basic unit is the unit of angular momentum (h̄). Since [h̄] is l2m/s the
atomic unit of time is a2

0me/h̄. The atomic unit of energy is Eh = h̄2/(a2
0me).

For the electromagnetic units and dimensions there are various conventions. We will write
the equations in a form independent of the unit system. We follow the book of Jackson and
introduce several constants that take different values in different unit systems.

2.2 Electrostatics

Coulomb’s law gives the force F between two charges q and q′ at a distance r

F = k1
qq′

r2
. (48)
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The value and the unit of k1 can be chosen depending on the convention, which determines the
unit of charge. The electric field E is defined as the force per charge

F = Eq′; E = k1
q

r2
. (49)

The rate of change of charge in a certain volume is equal to the current into that volume
(I = ∂q/∂t). Two infinitely long parallel wires separated by a distance d and carrying currents
I and I ′ attract each other with a force per unit length given by Ampère’s law

dF

dl
= 2k2

II ′

d
. (50)

Combining Coulomb’s law and Ampère’s law one finds [k1/k2] = l2/t2. In free space the ratio is
related to the speed of light

k1

k2
= c2. (51)

Just as the electric field is derived from Coulomb’s law we may introduce the magnetic induction
B generated by the current

dF

dl
=

1

α
BI ′; B = 2k2α

I

d
, (52)

where the constant α may be chosen for convenience.
If the magnetic flux through a surface S enclosed by a contour C changes in time an electric

field is induced along the contour. It is given by the integral form of Faraday’s law

∮

C

E · dr + k3
d

dt

∫∫

S

B · dS = 0. (53)

The constant k3 turns out to be equal to α−1.
The force on a particle moving in an electric and magnetic field is given by Lorentz law.

According to Ampère’s law the force on a piece of the parallel wire of length l if F = BIl/α. If
in a wire of length l a charge q is moving with a velocity v than the current I = qv/l, so Il = qv
and

F = q(E +
1

α
v ×B). (54)

2.3 Static electric fields

Consider a particle with charge q and polar coordinates (r, φ) moving in the electric field pro-
duced by a particle of charge q′ in the origin as shown in Fig. 1. Since the Coulomb force is a
central force no energy can be gained by moving through a closed loop: in segments where φ
changes the force is perpendicular to the path so there is no contribution to

∫
F · dr and the

energy gained for r → r + ∆r is lost in the reverse path. Hence the electric field produced by
the charge must be irrotational (see Stokes theorem) and it can be written as the gradient of a
scalar potential

E‖ = −∇φ(r). (55)

By considering a particle on the z-axis the potential is found to be

φ(r) = k1
q

r
. (56)

7



The divergence of E can be found be direct differentiation, using

∇ · r = 3 (57)

∇r = r−1r (58)

∇rn = nrn−2r (59)

∇ · ∇r−1 = 0 (r 6= 0) (60)

∇ · E‖ = 0 (r 6= 0) (61)

For the electric field itself we have
E‖ = k1qr

−3r. (62)

Using Gauss theorem one finds for a sphere V with radius r that

∫∫∫

V

∇ ·E‖dV =

∫∫

S

E‖ · dS = 4πk1q. (63)

Since ∇ · E‖ = 0 in regions where there is no charge this relation holds for any volume V that
contains the charge q. If there is more then one point charge the electric field is the sum of the
fields generated by the individual charges. Hence q may be replaced by the sum of all point
charges within the volume V or by the integral of the charge density ρ(r) over the volume

∫∫∫

V

∇ ·EdV = 4πk1

∫∫∫

V

ρ(r)d3r. (64)

This hold for any volume V , so we arrive at the differential form of Gauss’ law for electric fields

∇ · E‖ = 4πk1ρ(r). (65)

With E‖ = −∇φ(r) this gives the Poisson equation

∇2φ(r) = −4πk1ρ(r) (66)

For a single point particle in the origin the charge density is a delta function ρ(r) = δ(x)δ(y)δ(z) ≡
δ(r) and we find

∇2 1

r
= −4πδ(r). (67)

2.4 Static magnetic fields

The magnetic flux through a closed surface is zero. This can be readily verified for the magnetic
field produced by an infinite long wire carrying a current I , but it holds for any magnetic field.
Using Gauss theorem we thus find

∇ · B = 0. (68)

This law is sometimes referred to as the “no magnetic monopoles” law. Because of this law we
always have

B = B⊥. (69)

Let C be a circle with radius r around a wire that carries a current I . From Ampère’s law
one can compute the contour integral

∮

C

B · dl = 4πk2αI. (70)
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For any contour that does not go around the current on can find that the contour integral is
zero (see Fig. 2), hence Eq. (70) holds for any contour. If the contour encloses several wires the
currents may be added, so we can replace the current I by a surface integral over the current
density j. Using Stokes theorem we can replace the contour integral by a surface integral so we
find ∫∫

S

∇×BdS =

∫∫

S

4πk2αj · dS (71)

Since this result must hold for any surface S we have

∇×B⊥ = 4πk2αj. (72)

Hence for static fields we have j = j⊥.

2.5 Time dependent fields, Maxwell’s equations

For a capacitor consisting of two plates with an area A with charges +Q and −Q we find from
Gauss’ law for electric fields ∫∫

S

E · dS = AE = 4πk1Q. (73)

If a capacitor is placed in a wire that carries a constant current I then between the plates there
is no current, but instead an electric field that increases linearly in time. With A =

∫∫
S dS and

Eq. 73 we find that
∫∫

S

j · dS = I =
∂Q

∂t
=

A

4πk1

∂E

∂t
=

∫∫

S

1

4πk1

∂E

∂t
· dS (74)

The integrand of the right hand side is called the displacement current. It must be added to the
current density in Ampere’s law [Eq. (72)] to make the law independent whether the surface S is
chosen between the capacitor plates of crossing the wire. So we arrive at Ampere’s law modified
for time dependent fields

∇×B⊥ = 4πk2αj +
k2α

k1

∂E

∂t
. (75)

Faraday’s law already deals with time dependent magnetic fields. Using stokes theorem for
the first term in Eq. (53) we may write it in differential form

∇×E⊥ + k3
∂B

∂t
= 0, Faraday (76)

These two laws together with Gauss’ law for electric and magnetic fields,

∇ ·E‖ = 4πk1ρ Gauss (77)

∇ ·B = 0, (78)

are Maxwell’s equations.
Ampère’s law may also be split in a transverse and longitudinal components

E = E‖ + E⊥ (79)

j = j‖ + j⊥ (80)

0 = j‖ +
1

4πk1

∂E‖

∂t
Ampère (81)

∇×B⊥ = 4πk2αj⊥ +
k2α

k1

∂E⊥

∂t
. (82)
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Table 1: Magnitudes and dimensions of the electromagnetic constants in several unit systems.
The constant α = 1/k3. In SI the dimension of k1 is ml3t−4I−2, and the dimension of k2 is
mlt−2I−2.

System k1 k2 k3

SI 1
4πε0

= 10−7c2 µ0

4π = 10−7 1

Electrostatic (esu) 1 c−2 1
Atomic units 1 c−2 1
Electromagnetic (emu) c2 1 1
Gaussian 1 c−2 c−1

Heaviside-Lorentz 1
4π

1
4πc2 c−1

Taking the divergence of Amper̀e’s law, which is the same as taking the divergence of the
irrotational part, combining it with Gauss’ law electric fields gives the continuity equation [Eq.
(24)]

∇ · j + ρ̇(r, t) = 0. (83)

2.6 Plane waves

In a source free region, i.e., a region with no charges ρ or currents j we can combine Ampère’s
law and Faraday’s law by taking the time derivate of either and using the vector identity

∇× (∇× a) = ∇(∇ · a) −∇2a (84)

to find the wave equations for electric (and magnetic) fields

∇2E− k2k3α

k1

∂2E

∂t2
= 0. (85)

The solutions are plane waves
E = E0e

i(k·r−ωt). (86)

Experimentally it is found that electromagnetic waves travel with the speed of light c. That
means that for r = r0 + ck̂ the exponent is constant, i.e., kc = ω. Substituting the plane waves
in the wave equation gives

k1

k2k3α
= c2 (87)

Since we already have from comparing Coulomb’s law and Ampères law that

k1

k2
= c2 (88)

we find
k3α = 1. (89)

The choices for the constants in several unit systems are shown in table 1. This derivation
suggest that two observations are needed to find the two restrictions on the constants k1, k2, k3,
and α. However, according to Jackson the last equation can also be derived from the Galilean
invariance of the equations. Similarly, for the magnetic field we find

B = B0e
i(k·r−ωt). (90)
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and by substituting both B and E into Faraday’s law we find

B0 =
1

k3c
k̂×E0, (91)

which also implies

k̂ ×B0 = − 1

k3c
E0. (92)

From Gauss’ law we actually already knew E ⊥ k and B ⊥ k.

2.7 The energy density of an electric field

The energy required to put a charge Q on a capacitor can be considered to be stored in the
electric field E between the plates. We already found the relation

E =
4πk1Q

A
(93)

The energy dUE required to increase the charge separation dQ is

dUE = E l dQ, (94)

where l is the distance between the plates. From Eq. (93) we have

dQ =
A

4πk1
dE (95)

hence

dUE =
E l A

4πk1
EdE (96)

Integrating this equation gives the energy density UE/V , where the volume V = l A,

uE ≡ UE

V
=

1

4πk1

1

2
E2. (97)

2.8 The energy density of a magnetic field

Consider a coil with diameter d, with N turns over a distance l carrying a current I . Neglecting
the field outside the coil gives

B l = 4πk2αNI. (98)

From the integral form of Faraday’s law we find for the voltage ∆V = −
∮

C
E · dr

∆V = Nk3A
∂B

∂t
(99)

For the energy per time loaded into the coil we find, combining the last two equations,

∂UB

∂t
= ∆V I = Nk3A

∂B

∂t

B l

4πk2αN
. (100)

Integrating this equation, using V = A l, gives

uB ≡ UB

V
=

k3

4πk2α

1

2
B2 =

c2

4πk1α2

1

2
B2 (101)
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2.9 Energy flux

We compute the time derivative of the energy density u = uE + uB in a free field. We have

∂

∂t
E2 =

∂

∂t
(E2

x + E2
y + E2

z ) = 2ExĖx + 2EyĖy + 2EzĖz = 2E · Ė (102)

and similarly for B2. For the free field we use Ampère’s law and Faraday’s law to rewrite Ė and
Ḃ and we obtain

u̇ =
1

4πk2α
(E · ∇ ×B−B · ∇ ×E) =

1

4πk2α
∇ · (B ×E) (103)

Defining the Pointing vector

G =
1

4πk2α
E×B (104)

we obtain the continuity equation for energy

∇ ·G +
∂u

∂t
= 0. (105)

This shows the G is an energy flux density. For complex fields we may derive

G =
1

4πk2α

1

2
(E∗ ×B + E ×B∗). (106)

For a plane wave we have

G =
1

4πk1
cE2

0 k̂. (107)

The energy density of a plane wave is

u =
1

4πk1
E2

0 (108)

Together the last two equations give G = uck̂, i.e., the energy is moving with the speed of light
in the direction k̂.

2.10 The vector and scalar potentials A and φ

Since by Gauss’ law the magnetic field is solenoidal (transverse) it may be written, according to
Helmholz theorem as

B = ∇×A ≡ ∇×A⊥ (109)

This relation puts no restriction on A‖. Substituting it into Faraday’s law gives

∇×
(
E⊥ + k3

∂A⊥

∂t

)
= 0, (110)

so the sum is both divergence free (⊥) and irrotational and we may define the scalar potential
φ′ such that

E⊥ + k3
∂A⊥

∂t
= −∇φ′. (111)
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Since E‖ and A‖ can be written as gradients by definition we may also define a scalar potential
φ and a irrotational component A‖ such that

E + k3
∂A

∂t
= −∇φ. (112)

The fields B and E are invariant if A and φ are replaced by

Ã = A + ∇χ (113)

φ̃ = φ − ∂χ

∂t
, (114)

where χ may be any function. This is called the gauge invariance of the fundamental vector
fields. We may choose χ such that ∇ ·A = 0 which is called the Coulomb gauge. An alternative
is the Lorentz gauge which we will not discuss here. In Coulomb’s gauge we may choose φ such
that

E‖ = −∇φ (115)

E⊥ = −k3
∂A⊥

∂t
(116)

Substituting B⊥ and E expressed A⊥ and φ into Maxwell’s equations gives

∇2φ = −4πk1ρ (117)(
∇2 − 1

c2

∂2

∂t2

)
A⊥ = −4πk2αj +

k2α

k1
∇φ̇. (118)

In free space we find φ = 0, ρ = 0, j = 0, and

(
∇2 − 1

c2

∂2

∂t2

)
A⊥ = 0. (119)

The solutions are transverse (A0 ⊥ k) plane waves (ω = kc)

A⊥ = A0e
i(k·r−ωt) (120)

from which we find

E⊥ = −∂A⊥

∂t
= iωA⊥ (121)

B⊥ = ∇×A⊥ = ik ×A⊥. (122)

2.11 Mode expansion of electromagnetic waves in a box

Quantization of electromagnetic fields is done most easily for fields defined in a cube of dimension
L×L×L, with periodic boundary conditions. The boundary conditions restrict the plane wave
solutions to modes for which

k =
2π

L
n (123)

where the vector n has only integer components. An arbitrary vector potential A⊥(r, t) can
be expanded as a Fourier series in those modes. Since the Lorentz force must be real, both E

and B must be real, which means the A must be real. Since A⊥ is a transverse field we define

13



two polarization directions {ek,λ, λ = x, y}, for each mode k. The polarization vectors have

orthonormal and perpendicular to k, and ek,x, ek,y, and k̂ form a right-handed triad,

ek,λ · e∗
k,λ′ = δλ,λ′ (124)

k · ek,λ = 0 (125)

(126)

Here use a dot product defined without complex conjugation. The polarization vectors are
actually real, but the above relations also hold if for the complex polarization vectors associated
with left (λ = +1) and right (λ = −1) circularly polarized modes

ek,± =
1√
2
(ek,1 ± iek,2). (127)

The expansion reads

A⊥(r, t) =
∑

k,λ

{ak,λ(r, t) + a∗
k,λ(r, t)}, (128)

with
ak,λ(r, t) = ak,λ(t)ek,λeik·r. (129)

For the free field we have ak,λ(t) is proportional to e−iωt and

ȧk,λ(t) = −iωak,λ(t). (130)

3 Quantization of a system of point charges

Before we will quantize the electromagnetic fields we briefly review the quantization of a single
particle system. Classically the system is described by the time-dependent position of the particle
q(t) and the mass µ. Newton’s equations of motion for the particle moving in a potential V (r)
are

q̈(t) = − 1

µ
∇V (q) = − 1

µ

∂V (q)

∂q
(131)

3.1 The Lagrangian

The first step is to find the Lagrangian L(q, q̇, t) of the system. For any physical or unphysical
path q(t), for t1 ≤ t ≤ t2 the action integral S[q(t)] is defined by

S([q(t)] =

∫ t2

t1

L(q, q̇, t)dt. (132)

According to Hamilton’s principle the path taken by the system is the one for which the action
integral is minimized. It is assumed that the Lagrangian is a convex function of q̇, which
guarantees that any stationary point is actually a minimum (see below). Consider a variation
of q(t) for which q(t1) and q(t2) are fixed

q(t) → q(t) + δq(t) (133)

δq(t1) = δq(t2) = 0 (134)
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Figure 1: Legendre transform of a function

This results in a variation of the action integral

δS =

∫ t2

t1

L(q + δq, q̇ + δq̇, t)dt =

∫ t2

t1

[
∂L

∂q
· δq +

∂L

∂q̇
· δq̇

]
dt. (135)

Using

δq̇ =
∂

∂t
δq (136)

and integration by parts

∫ t2

t1

∂L

∂q̇
·
(

∂

∂t
δq

)
dt =

∂L

∂q̇
δq

∣∣∣∣
t2

t1

−
∫ t2

t1

(
d

dt

∂L

∂q̇

)
· δq dt (137)

and dropping the surface term because of Eq. (134) we find

δS =

∫ t2

t1

(
∂L

∂q
− d

dt

∂L

∂q̇

)
· δq dt. (138)

The Lagrangian equations of motion are obtained for δS = 0:

d

dt

∂L(q, q̇, t)

∂q̇
=

∂L(q, q̇, t)

∂q
. (139)

For our one-particle system it is readily verified that the Lagrangian

L(q, q̇, t) =
1

2
µq̇ · q̇ − V (q) (140)

reproduces Newton’s equation of motion.

3.2 Legendre transform

Let f(x) be a strictly convex function on the open interval (x1, x2), i.e.,

λf(x1) + (1 − λ)f(x2) < f (λx1 + (1 − λ)x2) , for 0 < λ < 1. (141)

For each slope p there is exactly one x(p) for which p = f ′(x) (see Fig. 1). The Legendre
transform g(p) is defined by

g(p) = x(p)p − f(x(p)) (142)

For the first derivative g′(p) we find

dg(p)

dp
=

dx(p)

dp
p + x(p) − dx(p)

dp
f ′ (x(p)) = x(p). (143)

Hence, when taking the derivative dg(p)
dp the terms containing x′(p) cancel and we can treat x

and p as independent variables.
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3.3 Classical Hamiltonian

The Lagrangian equations of motion are second order. To convert them to first order equations
we define the conjugate momenta

p =
∂L(q, q̇, t)

∂q̇
(144)

so we have

ṗ =
∂L(q, q̇, t)

∂q
. (145)

In order to eliminate q̇ from the equations we define the Legendre transform of the Lagrangian
with respect to q̇

H(q,p, t) = p · q̇ − L(q, q̇, t) (146)

Strictly, ˙bfq is a function of (q,p). However, because the Hamiltonian is a Legendre transform
of the Lagrangian we can treat q̇ and p as independent variables and we find the (first order)
Hamiltonian equations of motion

q̇ =
∂H(q,p, t)

∂p
(147)

ṗ = −∂H(q,p, t)

∂q
(148)

The total time derivative of any function A(q,p, t) is given by

d

dt
A(q,p, t) = q̇ · ∂A

∂q
+ ṗ · ∂A

∂p
+

∂A

∂t
=

∂H

∂p
· ∂A

∂q
− ∂H

∂p
· ∂A

∂q
+

∂A

∂t
≡ {H, A} +

∂A

∂t
. (149)

The Poisson bracket {H, H} is zero, so if the Hamiltonian has no explicit time dependence then
it is a constant of the motion. For the one particle system we have

p =
∂L

∂q̇
= µq̇, q̇ = 1

µp (150)

and

H = p · q̇ − 1

2
µq̇ · q + V (q) =

1

2µ
p2 + V (q), (151)

i.e., H is the total energy of the system.

3.4 Quantization of Harmonic oscillator

To quantize the one particle system the time dependent variables qi(t) and it’s conjugate mo-
menta pi(t) are replaced by operators with the commutation relations

[q̂i, q̂j ] = 0, [p̂i, p̂j ] = 0, [q̂i, p̂j ] = ih̄δi,j . (152)

i.e., p̂i = h̄
i

∂
∂qi

.
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Commutator algebra

[â, b̂] ≡ âb̂ − b̂â (153)

[â, b̂ĉ] = [â, b̂]ĉ + b̂[â, ĉ] (154)

[âb̂, ĉ] = â[b̂, ĉ] + [â, b̂]ĉ (155)

[âb̂, ĉd̂] = âĉ[b̂, d̂] + â[b̂, ĉ]d̂ + ĉ[â, d̂]b̂ + [â, ĉ]d̂b̂ (156)

If [â, [â, b̂]] = [b̂, [â, b̂]] = 0 then

[â, b̂n] = nb̂n−1[â, b̂] and [â, eb̂] = [â, b̂]eb̂ (157)

One dimensional harmonic oscillator (In atomic units, mass and force constant unity, q̂
and p̂ are Hermitian)

[q̂, p̂] = i (158)

Ĥ ≡ 1

2
(p̂2 + q̂2) (159)

[Ĥ, p̂] = iq̂, [Ĥ, q̂] = −ip̂ (160)

â ≡ 1√
2
(q̂ + ip̂), â† =

1√
2
(q̂ − ip̂) (161)

[â, â†] = 1 (162)

N̂ ≡ â†â =
1

2
(q̂2 + p̂2) − 1

2
(163)

Ĥ = N̂ +
1

2
(164)

[Ĥ, â] = [N̂ , â] = −â, [Ĥ, â†] = [N̂ , â†] = â† (165)

Ĥ|n〉 ≡ εn|n〉, N̂ |n〉 = (εn − 1

2
)|n〉 (166)

Ĥâ†|n〉 = (εn + 1)â†|n〉, Ĥâ|n〉 = (εn − 1)â|n〉 (167)

â|n〉 ≡ cn|n − 1〉, (168)

To show that there must be a lowest eigenvalue ε0 we note that the norm of the vector â|n〉 can
not be negative

〈n|â†â|n〉 = 〈n|N̂ |n〉 = (εn − 1

2
)〈n|n〉 ≥ 0 (169)

so ε0 = 1
2 and because of Eq. 167

εn = n +
1

2
, n = 0, 1, . . . (170)

and for the number operator we have

N̂ |n〉 = n|n〉 (171)

The eigenfunction |n〉 can be found recursively from

|n〉 = cnâ†|n − 1〉. (172)

Using the relation
ââ† = [â, â†] + â†â = 1 + N̂ (173)
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we find
〈n|n〉 = |cn|2〈n − 1|ââ†|n − 1〉 = |cn|2n = 1 (174)

The phase is a matter of convention and we take cn = 1√
n

and we find

|n〉 =
(â†)n

√
n!

|0〉. (175)

It is left as an exercise for the reader to show:

â†|n〉 =
√

n + 1|n + 1〉 (176)

â|n〉 =
√

n|n − 1〉. (177)

For a general harmonic oscillator we have

Ĥ ′ =
1

2µ
P̂ 2 +

1

2
kQ̂2, with, [Q̂, P̂ ] = ih̄ (178)

The following transformation

q̂ = βQ̂, β =
√

µω/h̄, ω =
√

k/µ (179)

p̂ =
1

βh̄
P̂ (180)

gives [q̂, p̂] = 1 and

Ĥ ′ = h̄ω(N̂ +
1

2
) (181)

and the eigenvalues are

ε′n = h̄ω(n +
1

2
). (182)

3.5 A system of uncoupled harmonic oscillators

The hamiltonian is given by

Ĥ =
∑

i

1

2
h̄ωi(p̂

2
i + q̂2

i ) =
∑

i

h̄ωi(N̂i +
1

2
) (183)

where

N̂i = â†
i âi (184)

âi =
1√
2
(q̂i + ip̂i) (185)

[âi, âj ] = 0 (186)

[â†
i , â

†
j ] = 0 (187)

[âi, â
†
j ] = δij . (188)

The eigenvalues are the sum of the individual oscillator energies

Ĥ |n1, n2, . . .〉 =
∑

i

h̄ωi(εi +
1

2
) |n1, n2, . . .〉 (189)
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and the eigenfunctions are direct products

|n1, n2, . . .〉 = Πi
(α†

i )
ni

√
ni!

|0, 0, . . .〉. (190)

For the ground state
âi|0, 0, . . .〉 = 0 for all i. (191)

3.6 Lagrangian and classical Hamiltonian of a particle in a field

The Lagrangian for a particle with mass m, charge q, position q, velocity q̇, in an external field
described by a vector potential A(q, t) and a scalar potential φ(q, t) is

L(q, q̇, t) =
1

2
mq̇ · q̇ + qk3A(q, t) · q̇ − qφ(q, t). (192)

This Lagrangian correctly reproduces the Lorentz force: The Euler-Lagrange equations of motion
are

d

dt

∂L

∂q̇
=

∂L

∂q
. (193)

This gives

∂L

∂q
= qk3∇ (A(q, t) · q̇) − q∇φ(q) (194)

∂L

∂q̇
= mq̇ + qk3A(q, t) (195)

d

dt

∂L

∂q̇
= mq̈ + qk3

∂ri

∂t

∂A(q, t)

∂ri
+ qk3

∂A(q, t)

∂t
(196)

= mq̈ + qk3(q̇ · ∇)A + qk3Ȧ. (197)

Hence

mq̈ = qk3[∇(A · q̇) − (q̇ · ∇)A] − qk3Ȧ − q∇φ (198)

Using Eq. (45) the term in the brackets can be rewritten as q̇× (∇×A) and together with Eqs.
(109) and (112), and Newtons F = mq̈ this gives Lorentz Eq. (54)

F = q[E + k3q̇ ×B]. (199)

To obtain the Hamiltonian we define the conjugate momentum

p ≡ ∂L

∂q
(200)

It is left as an exercise to work out the Hamiltonian

H(q,p, t) = p · q̇ − L(q, q̇, t) =
1

2m
(p − qk3A(q, t))2 + qφ(q, t). (201)
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4 Field quantization

4.1 Lagrangian of a field

The Lagrangian of a field described by a vector potential a(r, t) is the integral of Langrangian
density

L =

∫
L(a,∇a, ȧ)d3r. (202)

The action integral is

S =

∫ t2

t1

L dt. (203)

The equations of motion for the field are found using Hamilton’s principle δS = 0. We have

δS =

∫ t2

t1

∫
L(a + δa,∇a + ∇δa, ȧ + δȧ)d3r dt − S (204)

=

∫ t2

t1

∫ [
∂L
∂ai

δai +
∂L

∂( ∂ai

∂xj
)

∂δai

∂xj
+

∂L
∂ȧi

δȧi

]
d3r dt = 0. (205)

The second term can be integrated by parts, assuming δa → 0 for r → ∞ we find

∫
∂L

∂( ∂ai

∂xj
)

∂

∂xj
δaid

3r = −
∫ (

∂

∂xj

∂L
∂( ∂ai

∂xj
)

)
δaid

3r. (206)

For the third term we use integration by parts with respect to t and we use δa(t1) = δa(t2) = 0
and δȧi = ∂

∂tδai, ∫ t2

t1

∂L
∂ȧi

δȧidt = −
∫ t2

t1

(
d

dt

∂L
∂ȧi

)
δaidt. (207)

Hence we arrive at the Euler-Lagrange equations of motion of the vector potential a(r, t)

d

dt

∂L
∂ȧi

=
∂L
∂ai

− ∂

∂xj

∂L
∂( ∂ai

∂xj
)
. (208)

4.2 The Lagrangian density for a field in free space

The Langrangian density for an electromagnetic field in free space is given by

L =
1

2
C
{
ȧ2 − c2(∇× a)2

}
, (209)

with

C =
k2
3

4πk1
=





ε0 SI
1

4πc2 Gaussian

1
4π atomic units

(210)

We derive the corresponding Euler-Langrange equations:

d

dt

∂L
∂ȧi

=
d

dt
Cȧi = Cäi (211)

∂L
∂ai

= 0. (212)

20



With the notation ∇l = ∂
∂xl

we have from Eq. (46)

(∇× a) · (∇× a) = (∇lam)2 − (∇lam)(∇mal) (213)

and for the last term in the Euler Langrange equation we need

∂

∂∇jai
(∇lam)2 = 2∇jai (214)

∂

∂∇jai
(∇lam)(∇mal) = 2∇iaj , (215)

so we find

∂

∂xj

∂

∂( ∂ai

∂xj
)
(∇× a) · (∇× a) = 2∇j∇jaj − 2∇j∇iaj = 2[∇2ai −∇i(∇ · a)] (216)

Combining all the terms we find

äi − c2ai + c2∇i(∇ · a) = 0 (217)

or, in the Coulomb gauge (∇ · a = 0, a = a⊥)

(
∂2

∂t2
− c2∇2

)
a⊥ = 0. (218)

4.3 The classical Hamiltonian for a field in free space

The conjugate momentum density for the Lagrangian density of Eq. (209) is

Π(r) =
∂L
∂ȧ

= Cȧ (219)

so ȧ = C−1Π and the Hamiltonian density is

H = Π · ȧ −L =
1

2C
Π2 +

1

2
Cc2(∇× a)2. (220)

Using the free-field relations

ȧ = − 1

k3
e, Π(r) = − C

k3
e (221)

∇× a = b (222)

we can express the Hamiltonian density in electric and magnetic fields

H =
1

4πk1

1

2
(e2 + c2k2

3b
2), (223)

which is in agreement with Eqs. (97) and (101) (use k3 = 1/α).
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The mode expansion of the free field Hamiltonian. In order to quantize we will first
work out the mode expansion of the fields and the Hamiltonian density. The mode expansion
of a(r, t) is given in Eqs. (128) and (129). Using Eq. (130) and ω = kc we find

Π = Cȧ = −icC
∑

k,λ

k
{
ak,λ(r, t) − a∗

k,λ(r, t)
}

(224)

The Hamiltonian is the integral of the Hamiltonian density

Ĥ =

∫
Hd3r. (225)

To work out the integral we use
∫

ei(k+k
′)d3r =

{
V if k = −k′

0 otherwise
(226)

and
(a + a∗)(b + b∗) = ab + ab∗ + c.c. (227)

where c.c. means complex conjugate. Furthermore, we use Eq. (47) to simplify

(k̂ × ek,λ) · (k̂ × e−k,λ′) = ek,λ · e−k,λ (228)

(k̂ × ek,λ) · (k̂ × e∗k,λ′) = ek,λ · e∗k,λ = δλλ′ (229)

and we obtain after quite some work

Ĥ = 2c2CV
∑

k,λ

k2ak,λa∗
k,λ =

∑

k,λ

h̄ω
2ωV C

h̄
ak,λa∗

k,λ (230)

so with the normalization

αk,λ =

√
2ωV C

h̄
ak,λ (231)

we obtain, using a symmetrized expression to prepare for quantization,

Ĥ =
∑

k,λ

h̄ω
αk,λα∗

k,λ + α∗
k,λαk,λ

2
(232)

4.4 Quantization of the free field

The expansion coefficients αk,λ are replaced by operators with the commutation relations

[α̂k,λ, α̂k′,λ′ ] = 0 (233)

[α̂†
k,λ, α̂†

k′,λ′ ] = 0 (234)

[α̂k,λ, α̂†
k′,λ′ ] = δk,k′δλ,λ′ (235)

so with
α̂k,λα̂†

k,λ = α̂†
k,λα̂k,λ + 1 (236)

we have find the quantum Hamiltonian of the free field

Ĥ =
∑

k,λ

h̄ω(α̂†
k,λα̂k,λ +

1

2
). (237)
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The eigenstates are direct products

|n1(k1, λ1), n2(k2, λ2), . . .〉 =
(α̂†

k1,λ1
)n1

√
n1!

(α̂†
k2,λ2

)n2

√
n2!

· · · |0, 0, . . .〉, (238)

where |0〉 ≡ |0, 0, . . .〉 is the vacuum state for which

ak,λ|0〉 = 0, for all k and λ. (239)

With the convention to specify only non-zero quantum numbers

|n(k, λ〉 ≡ | . . . , 0, 0, n(k, λ), 0, 0, . . .〉 (240)

we have

α̂k,λ|k, λ〉 =
√

n|(n − 1)(k, λ)〉 (241)

α̂†
k,λ|k, λ〉 =

√
n + 1|(n + 1)(k, λ)〉 (242)

α̂†
k,λα̂k,λ|k, λ〉 = n|n(k, λ)〉. (243)

The expansion of the (Hermitian) field operators â(r), Π(r), ê(r), and b̂(r) is given by

â(r) =
∑

k,λ

√
h̄

2ωV C

{
α̂k,λek,λeik·r + α̂†

k,λe
∗
k,λe−ik·r

}
(244)

Π̂(r) = −i
∑

k,λ

√
h̄ωC

2V

{
α̂k,λek,λeik·r − α̂†

k,λe
∗
k,λe−ik·r

}
(245)

ê(r) = i
∑

k,λ

√
4πk1h̄ω

2V

{
α̂k,λek,λeik·r − α̂†

k,λe
∗
k,λe−ik·r

}
(246)

b̂(r) = i
∑

k,λ

√
h̄ω

2V c2C

{
α̂k,λbk,λeik·r − α̂†

k,λb
∗
k,λe−ik·r

}
, (247)

where
bk,λ ≡ k̂ × ek,λ. (248)
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