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Equation of state (Van der Waals) of non-ideal gas
(

p +
a

V 2

)(

V − b
)

= kT

repulsion ⇒ b (eigenvolume)

attraction ⇒ a (reduced pressure)

Han-sur-Lesse, December 2003 – p.2



Virial expansion (density ρ = 1/V )

p = kT
[

ρ + B2(T )ρ2 + B3(T )ρ3 + . . .
]

with

B2(T ) = −
1

2

∫ ∞

0

[

exp

(

−
∆E(R)

kT

)

− 1

]

4πR2 dR
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Intermolecular forces

1909 / 1912
Reinganum, Debye: dipole-dipole, attractive when
orientations are averaged over thermal motion

1920 / 1921
Debye, Keesom: dipole (quadrupole) - induced dipole
(attractive)

1927
Heitler & London: Quantum mechanics (QM)
⇒ covalent bonding for singlet H2 (S = 0)
⇒ exchange repulsion for triplet H2 (S = 1)

1927 / 1930
Wang, London: QM ⇒ dispersion forces (attractive)
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QM derivation of intermolecular forces

correspondence with classical electrostatics

Intermezzo:

(Time-independent) perturbation theory
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Schrödinger equation HΦ = EΦ not exactly solvable.

Perturbation theory ⇒ Approximate solutions Ek and Φk

Find simpler Hamiltonian H(0) for which H(0)Φ(0) = E(0)Φ(0)

is solvable, with solutions E
(0)
k and Φ

(0)
k

“Perturbation” H(1) = H − H(0)

Write H(λ) = H(0) + λH(1) (switch parameter λ)

0
λ

−→ 1

H(0) H(λ)
−→ H

E
(0)
k

Ek(λ)
−→ Ek

Φ
(0)
k

Φk(λ)
−→ Φk
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Expand

Ek(λ) = E
(0)
k + λE

(1)
k + λ2E

(2)
k + . . .

Φk(λ) = Φ
(0)
k + λΦ

(1)
k + λ2Φ

(2)
k + . . .

Substitution into H(λ)Φk(λ) = Ek(λ)Φk(λ) and equating
each power of λ yields, after some manipulations

E
(1)
k = 〈 Φ

(0)
k | H(1) | Φ

(0)
k 〉

E
(2)
k =

∑

i6=k

〈 Φ
(0)
k | H(1) | Φ

(0)
i 〉〈 Φ

(0)
i | H(1) | Φ

(0)
k 〉

E
(0)
k − E

(0)
i

Used to calculate perturbation corrections of E
(0)
k
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First perturbation correction of Φ
(0)
k

Φ
(1)
k =

∑

i6=k

〈 Φ
(0)
i | H(1) | Φ

(0)
k 〉

E
(0)
k − E

(0)
i

Φ
(0)
i

The second order energy may also be written as

E
(2)
k = 〈 Φ

(0)
k | H(1) | Φ

(1)
k 〉
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Molecule in electric field

External potential V (r) = V (x, y, z)

Particles i with charge qi (nuclei qi = Zie, electrons qi = −e)

Hamiltonian H = H(0) + H(1)

with free molecule Hamiltonian H(0)

and perturbation

H(1) =
n
∑

i=1

qiV (ri) =
n
∑

i=1

qiV (xi, yi, zi)
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Multipole (Taylor) expansion

V (x, y, z) = V0 + x

(

∂V

∂x

)

0

+ y

(

∂V

∂y

)

0

+ z

(

∂V

∂z

)

0

+ . . .

with electric field F = (Fx, Fy, Fz) = −grad V

V (r) = V (x, y, z) = V0 − r · F0 + . . .

Perturbation operator

H(1) = qV0 − µ · F0 + . . .

with total charge q =

n
∑

i=1

qi and dipole operator µ =

n
∑

i=1

qiri
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First order perturbation energy (for ground state k = 0)

E
(1)
0 = 〈 Φ

(0)
0 | H(1) | Φ

(0)
0 〉

= 〈 Φ
(0)
0 | − µ · F0 + . . . | Φ

(0)
0 〉

= −〈 Φ
(0)
0 | µ | Φ

(0)
0 〉 · F0 + . . .

= −〈 µ 〉 · F0 + . . .

Energy of permanent dipole 〈 µ 〉 in field F0.
Same as classical electrostatics, with dipole 〈 µ 〉.
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Second order perturbation energy

for neutral molecule (q = 0) and field in z-direction

i.e., F0 = (0, 0, F0) and H(1) = −µzF0

E
(2)
0 =

∑

i6=0

〈 Φ
(0)
0 | H(1) | Φ

(0)
i 〉〈 Φ

(0)
i | H(1) | Φ

(0)
0 〉

E
(0)
0 − E

(0)
i

=





∑

i6=0

〈 Φ
(0)
0 | µz | Φ

(0)
i 〉〈 Φ

(0)
i | µz | Φ

(0)
0 〉

E
(0)
0 − E

(0)
i



F 2
0

Same as classical electrostatics: Epol = −1
2αF 2

0 ,
with polarizability
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αzz = 2
∑

i6=0

〈 Φ
(0)
0 | µz | Φ

(0)
i 〉〈 Φ

(0)
i | µz | Φ

(0)
0 〉

E
(0)
i − E

(0)
0

The polarizability αzz can also be obtained from the
induced dipole moment. The total dipole moment is

〈 Φ
(0)
0 + Φ

(1)
0 | µz | Φ

(0)
0 + Φ

(1)
0 〉 =

〈 Φ
(0)
0 | µz | Φ

(0)
0 〉 + 2〈 Φ

(0)
0 | µz | Φ

(1)
0 〉 + 〈 Φ

(1)
0 | µz | Φ

(1)
0 〉

The (first order) induced dipole moment µind is the second
term. With the first order wave function

Φ
(1)
0 =

∑

i6=0

〈 Φ
(0)
i | H(1) | Φ

(0)
0 〉

E
(0)
0 − E

(0)
i

Φ
(0)
i
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and H(1) = −µzF0 this yields

µind = 2〈 Φ
(0)
0 | µz | Φ

(1)
0 〉

=



2
∑

i6=0

〈 Φ
(0)
0 | µz | Φ

(0)
i 〉〈 Φ

(0)
i | µz | Φ

(0)
0 〉

E
(0)
i − E

(0)
0



F0

As in classical electrostatics: µind = αF0, with the same
formula for the polarizability αzz as above.

For arbitrary molecules the direction of the induced dipole
moment µind is not parallel to F0. The polarizability α is a
second rank tensor with non-zero elements αxy, etc.

For isotropic systems (atoms, freely rotating molecules)
α is diagonal and αxx = αyy = αzz = α.
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Long range interactions between two molecules
Molecules A and B at distance R with no overlap of their
wave functions. Particles i ∈ A and j ∈ B.

Hamiltonian H = H(0) + H(1) with free molecule Hamiltonian
H(0) = HA + HB and interaction operator

H(1) =
∑

i∈A

∑

j∈B

qiqj

rij

Same as H(1) =
n
∑

i=1

qiV (ri) in previous section with

molecule A in electric potential V (ri) =
∑

j∈B

qj

rij

of molecule B.
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Multipole expansion of the interaction operator

ri = (xi, yi, zi), rj = (xj , yj , zj), R = (0, 0, R)

rij = rj − ri + R and rij = |rij |
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A double Taylor expansion in (xi, yi, zi) and (xj , yj , zj) of

1

rij
=
[

(xj − xi)
2 + (yj − yi)

2 + (zj − zi + R)2
]−1/2

at (xi, yi, zi) = (0, 0, 0) and (xj , yj , zj) = (0, 0, 0) yields

1

rij
=

1

R
+

zi

R2
−

zj

R2
+

xixj + yiyj − 2zizj

R3
+ . . .

This expansion converges when |ri| + |rj | < R.
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Substitution into H(1) gives, after some rearrangement

H(1) =
qAqB

R
+

µA
z qB

R2
−

qAµB
z

R2
+

µA
x µB

x + µA
y µB

y − 2µA
z µB

z

R3

with the total charges qA =
∑

i∈A

qi qB =
∑

j∈B

qj

and the dipole operators µA =
∑

i∈A

qiri µB =
∑

j∈B

qjrj

This operator H(1) includes the electrostatic interactions
between the charges and dipole moments of the molecules
A and B. Higher (quadrupole) interactions are neglected.
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Alternative forms of the dipole-dipole interaction operator
are

µA
x µB

x + µA
y µB

y − 2µA
z µB

z

R3
=

µA · µB − 3µA
z µB

z

R3
=

µA · T · µB

R3

with the interaction tensor

T =







Txx Txy Txz

Tyz Tyy Tyz

Tzx Tzy Tzz






=







1 0 0

0 1 0

0 0 −2







This tensor can also be expressed in more general
coordinates.
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The solutions of the Schrödinger equations of the free
molecules A and B are

HAΦA
k1

= EA
k1

ΦA
k1

HBΦA
k2

= EB
k2

ΦB
k2

and of the unperturbed problem

H(0)Φ
(0)
K = E

(0)
K Φ

(0)
K

with Φ
(0)
K = ΦA

k1
ΦB

k2
and eigenvalues E

(0)
K = EA

k1
+ EB

k2
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Proof

H(0)Φ
(0)
K =

(

HA + HB
)

ΦA
k1

ΦA
k2

=
(

HAΦA
k1

)

ΦB
k2

+ ΦA
k1

(

HBΦB
k2

)

=
(

EA
k1

+ EB
k2

)

ΦA
k1

ΦB
k2

Perturbation operator (repeated)

H(1) =
qAqB

R
+

µA
z qB

R2
−

qAµB
z

R2
+

µA · T · µB

R3

Each term factorizes in A and B operators !
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The first order energy is

E
(1)
0 = 〈 Φ

(0)
0 | H(1) | Φ

(0)
0 〉 = 〈 ΦA

0 ΦB
0 | H(1) | ΦA

0 ΦB
0 〉

With the multipole expansion of H(1) one can separate
integration over the coordinates (xi, yi, zi) and (xj , yj , zj)

of the particles i ∈ A and j ∈ B and obtain

E
(1)
0 =

qAqB

R
+

〈 µA
z 〉qB

R2
−

qA〈 µB
z 〉

R2
+

〈 µA 〉 · T · 〈 µB 〉

R3

the same as in classical electrostatics, with the
permanent multipole moments 〈 µA 〉 = 〈 ΦA

0 | µA | ΦA
0 〉 and

〈 µB 〉 = 〈 ΦB
0 | µB | ΦB

0 〉
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The second order energy is

E
(2)
0 =

∑

K 6=0

〈 Φ
(0)
0 | H(1) | Φ

(0)
K 〉〈 Φ

(0)
K | H(1) | Φ

(0)
0 〉

E
(0)
0 − E

(0)
K

The index K that labels the excited states of the system is a
composite index K = (k1, k2). The summation over K 6= 0
can be split into three sums, with

k1 6= 0, k2 = 0 Molecule A excited
k1 = 0, k2 6= 0 Molecule B excited
k1 6= 0, k2 6= 0 Both molecules excited

Han-sur-Lesse, December 2003 – p.23



The first term of E
(2)
0 is

∑

k1 6=0

〈 ΦA
0 ΦB

0 | H(1) | ΦA
k1

ΦB
0 〉〈 ΦA

k1
ΦB

0 | H(1) | ΦA
0 ΦB

0 〉

EA
0 − EA

k1

The operator H(1) is term-by-term factorizable and the
integrals in this expression can be separated. For example

〈 ΦA
0 ΦB

0 |
µA

z µB
z

R3
| ΦA

k1
ΦB

0 〉 =
〈 ΦA

0 | µA
z | ΦA

k1
〉〈 ΦB

0 | µB
z | ΦB

0 〉

R3

=
〈 ΦA

0 | µA
z | ΦA

k1
〉〈 µB

z 〉

R3

Furthermore, one may use the orthogonality relation
〈 ΦA

0 | ΦA
k1

〉 = 0.
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0 |
µA
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R3
| ΦA

k1
ΦB
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〈 ΦA

0 | µA
z | ΦA

k1
〉〈 ΦB

0 | µB
z | ΦB

0 〉
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The transition dipole moments 〈 ΦA
0 | µA

z | ΦA
k1

〉, with the
summation over k1 6= 0, occur in the formula for the
polarizability αA

zz.

If one assumes that the polarizability is isotropic,
αA

xx = αA
yy = αA

zz = αA, one finds for the first term

E
(2)
0 (pol. A) = −

αA(qB)2

2R4
+

2αAqB〈 µB
z 〉

R5

−
αA(〈 µB

x 〉2 + 〈 µB
y 〉2 + 4〈 µB

z 〉2)

2R6
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Also this results agree with classical electrostatics. The
electric field of the point charge qB at the center of molecule
A is

F = (Fx, Fy, Fz) =

(

0, 0,−
qB

R2

)

and the electric field of the permanent dipole moment
〈 µB 〉 is

F =

(

−
〈 µB

x 〉

R3
,−

〈 µB
y 〉

R3
,
2〈 µB

z 〉

R3

)

The second order interaction energy E
(2)
0 (pol. A) is simply

the polarization energy −1
2αAF 2 of molecule A in the

electric field of the charge and dipole of molecule B.
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Analogously, we find for the second term, which includes
a summation over the excited states k2 of molecule B

E
(2)
0 (pol. B) = −

(qA)2αB

2R4
−

2qA〈 µA
z 〉αB

R5

−
(〈 µA

x 〉2 + 〈 µA
y 〉2 + 4〈 µA

z 〉2)αB

2R6

This is the classical energy of polarization of molecule B
in the field of A.

Han-sur-Lesse, December 2003 – p.27



The third term contains the summation over the excited
states of both molecules. All interaction terms with the
charges qA and qB cancel, because of the orthogonality
relation 〈 ΦA

0 | ΦA
k1

〉 = 0. Only the dipole-dipole term of H(1)

is left and we obtain

E
(2)
0 (disp)

=
∑

k1 6=0

∑

k2 6=0

〈 ΦA
0 ΦB

0 | H(1) | ΦA
k1

ΦB
k2

〉〈 ΦA
k1

ΦB
k2

| H(1) | ΦA
0 ΦB

0 〉

(EA
0 − EA

k1

) + (EB
0 − EB

k2

)

= −R−6
∑

k1 6=0

∑

k2 6=0

∣

∣〈 ΦA
0 | µA | ΦA

k1
〉 · T · 〈 ΦB

0 | µB | ΦB
k2

〉
∣

∣

2

(EA
k1

− EA
0 ) + (EB

k2

− EB
0 )
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This term, the dispersion energy, has no classical
equivalent; it is purely quantum mechanical.
It is proportional to R−6.

It can be easily proved that each of the three second order
terms is negative. Therefore, the induction and dispersion
energies are always attractive.

For neutral, non-polar molecules the charges qA, qB and
permanent dipole moments 〈 µA 〉, 〈 µB 〉 are zero, and the
dispersion energy is the only second order interaction.
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Terms with higher powers of R−1 occur as well. They
originate from the quadrupole and higher multipole
moments that we neglected.

An approximate formula, due to London, that is often used
to estimate the dispersion energy is

E
(2)
0 (disp) ≈ −

3αAαB

2R6

IAIB

IA + IB

This formula is found if one assumes that all the excitation
energies EA

k1
− EA

0 and EB
k2

− EB
0 are the same, and are

equal to the ionization energies IA and IB.
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Summary of long range interactions

The interactions between two molecules A and B can be
derived by means of QM perturbation theory.

The first order energy equals the classical electrostatic
(Coulomb) interaction energy between the charges and
dipole moments of the molecules. It may be attractive or
repulsive, depending on the (positive or negative) charges
and on the orientations of the dipole moments. The dipolar
terms average out when the dipoles are freely rotating.
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The second order energy consists of three contributions.
The first two terms correspond to the classical polarization
energies of the molecules in each other’s electric fields.
The third term is purely QM. All the three contributions are
attractive. They start with R−4 terms when the molecules
have charges and with R−6 terms when they are neutral.
The dispersion energy, with the leading term proportional
to R−6, occurs also for neutral molecules with no
permanent dipole moments.

All of these terms can be calculated when the wave
functions ΦA

k1
,ΦB

k2
and energies EA

k1
, EB

k2
of the free

molecules A and B are known, but one should somehow
approximate the infinite summations over excited states
k1 and k2 that occur in the second order expressions.
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Interactions in the overlap region

Heitler and London (Valence Bond) wave functions for H2

1sA(r1)1sB(r2) ± 1sB(r1)1sA(r2)

with the plus sign for the singlet spin (S = 0) function

α(1)β(2) − β(1)α(2)

and the minus sign for the triplet spin (S = 1) functions

α(1)α(2)

α(1)β(2) + β(1)α(2)

β(1)β(2)

The total electronic wave function is antisymmetric (Pauli)
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Interaction energy ∆E(R) = EH2
− 2EH

 R

∆ 
E

Singlet (S = 0 )

Triplet (S = 1)

Q + J_____

1 + S2

Q − J_____

1 − S2

Q(R) = “Coulomb integral”

J(R) = “exchange integral”

S(R) = 〈 1sA | 1sB 〉

= overlap integral
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Interaction is dominated by the exchange integral J(R),
which is negative, so that the exchange interaction is
attractive (covalent bonding) in the singlet state and
repulsive in the triplet state.

For He2 there is only one (singlet) state and the interaction
energy ∆E(R) is purely repulsive: exchange (or Pauli)
repulsion or steric hindrance.
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Molecular orbital picture

Covalent
bonding

Exchange
repulsion

Exchange
repulsion

H–H interaction

He–He interaction
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Most stable molecules are closed-shell systems and the
exchange energy between them is always repulsive. It
depends on the overlap between the wave functions of A
and B and decays exponentially with the distance R.

In combination with attractive long range interactions
(proportional to R−n) this gives rise to a minimum in ∆E(R).
This, so-called, non-covalent bonding is much weaker than
covalent bonding, except when A and B are (atomic or
molecular) ions with opposite charges (cf. Na+Cl−).

Binding (merely by the attractive dispersion energy) is
weakest when both molecules are neutral and non-polar:
pure Van der Waals interactions.
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A special type of interactions between polar molecules is
hydrogen bonding

X–H· · ·Y

The binding mainly originates from electrostatic (dipolar
and quadrupolar) interactions and the corresponding
induction terms and is strongly directional.

No special (HOMO-LUMO, charge-transfer, or weak
covalent bonding) interactions are needed !
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Exercise:

Compute the equilibrium angles of HF–HF at R = 2.75 Å
and H2O–H2O at R = 2.95 Å from the dipolar and
quadrupolar interactions only.
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Non-covalent interactions and hydrogen bonding, in
particular, are very important in biology. Alpha helices and
beta sheets in proteins are stabilized by intra- and
inter-molecular hydrogen bonds, and the double stranded
structure of DNA is held together by hydrogen bonds
between the base pairs.

It is essential that a hierarchy of interactions exists with
binding energies varying over several orders of magnitude.
Interactions in biological systems must be sufficiently strong
to maintain stable structures, but not so strong that they
prevent rearrangement processes (DNA replication, for
instance).
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Intermolecular potentials (or force fields)

Concept based on Born-Oppenheimer approximation
(separation of electronic and nuclear motion)

Step 1: Solve electronic Schrödinger equation

Hel(rel;R)Ψ(rel;R) = E(R)Ψ(rel;R)

for clamped nuclei at positions R. Yields energy E(R).

Step 2: Use E(R) as potential energy in solving Schrödinger
equation for nuclear motion. Yields bound levels of Van der
Waals complexes and scattering states (cross sections).
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Intermolecular potential of a many-body system

V =
∑

A<B

VAB +
∑

A<B<C

VABC + . . .

pair three-body

Pair potential, in space-fixed (SF) coordinates

VAB = V (RAB ,ΩA,ΩB , qA, qB)

Euler angles ΩX = (αX , βX , γX)

internal coordinates qX

}

for X = A,B
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Three angles, the two polar angles of RAB and one of the
Euler angles αX (say αA), can be chosen as overall rotation
angles of the complex A–B.

The pair potential in body-fixed (BF) coordinates is

VAB = V (RAB , αB − αA, βA, βB , γA, γB , qA, qB)

The internal coordinates qA, qB are often frozen (rigid
molecules). This is justified by a Born-Oppenheimer-like
separation between the fast intramolecular vibrations
(coordinates qA, qB) and the much slower VRT motions
(vibrations, hindered rotations, tunneling) of the whole
molecules A and B in the complex.
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Ab initio calculation of intermolecular potentials

Supermolecule calculations

Symmetry-adapted perturbation theory (SAPT)
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Supermolecule calculations

∆E = EAB − EA − EB

Requirements:

1. Include electron correlation, intra- and inter-molecular
(dispersion energy = intermolecular correlation)

2. Choose good basis, with diffuse orbitals (and “bond
functions”) especially to converge the dispersion energy

3. Size consistency. Currently best method: CCSD(T)

4. Correct for basis set superposition error (BSSE) by
computing EA and EB in dimer basis
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Symmetry-adapted perturbation theory (SAPT)

Combine perturbation theory with antisymmetrization A
(Pauli) to include short-range exchange effects.

Advantages:

1. ∆E calculated directly.

2. Contributions (electrostatic, induction, dispersion,
exchange) computed individually. Useful in analytic fits
of potential surface.

Advantage of supermolecule method:

Easy, use any black-box molecular electronic structure
program
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Problems in SAPT:

1. Pauli: AH = HA.
Antisymmetrizer commutes with total Hamiltonian
H = H(0) + H(1), but not with H(0) and H(1) separately.
Has led to different definitions of second (and higher)
order energies.

2. Free monomer wavefunctions ΦA
k1

and ΦB
k2

not exactly
known. Use Hartree-Fock wave functions and apply
double perturbation theory to include intra-molecular
correlation, or use CCSD wave functions of monomers.

Program packages:

- SAPT2 for pair potentials

- SAPT3 for 3-body interactions
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