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Equation of state (Van der Waals) of non-ideal gas

o+ i) (v-0) =

repulsion = b (eigenvolume)

attraction = a (reduced pressure)
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Virial expansion (density p=1/V)
p=kT [p+ Ba(T)p” + B3(T)p° + .. ]

with

Bo(T) = —% /O h [exp (— A%R)> - 1] ATrR*dR
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Intermolecular forces
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Intermolecular forces

1909/ 1912
Reinganum, Debye: dipole-dipole, attractive when
orientations are averaged over thermal motion
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Intermolecular forces

1909/ 1912
Reinganum, Debye: dipole-dipole, attractive when
orientations are averaged over thermal motion

1920/ 1921
Debye, Keesom: dipole (quadrupole) - induced dipole
(attractive)
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Intermolecular forces

1909/ 1912
Reinganum, Debye: dipole-dipole, attractive when
orientations are averaged over thermal motion

1920/ 1921
Debye, Keesom: dipole (quadrupole) - induced dipole
(attractive)

1927
Heitler & London: Quantum mechanics (QM)
= covalent bonding for singlet Hy (S = 0)

= exchange repulsion for triplet Hy (S = 1)
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Intermolecular forces

1909/ 1912
Reinganum, Debye: dipole-dipole, attractive when
orientations are averaged over thermal motion

1920/ 1921
Debye, Keesom: dipole (quadrupole) - induced dipole
(attractive)

1927
Heitler & London: Quantum mechanics (QM)
= covalent bonding for singlet Hy (S = 0)

= exchange repulsion for triplet Hy (S = 1)

1927/ 1930
Wang, London: QM = dispersion forces (attractive)
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QM derivation of intermolecular forces

correspondence with classical electrostatics
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QM derivation of intermolecular forces

correspondence with classical electrostatics

Intermezzo:

(Time-independent) perturbation theory
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Schrodinger equation H® = E® not exactly solvable.
Perturbation theory = Approximate solutions £}, and &,
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Schrodinger equation H® = E® not exactly solvable.
Perturbation theory = Approximate solutions £}, and &,

Find simpler Hamiltonian H©) for which H©®©0) = 0)(0)
IS solvable, with solutions E,ff)) and @lio)

“Perturbation” HY = g — H©)

Write H(\) = HO + XH(1)  (switch parameter \)

0 — 1
o TN g
g 20 g
o0 T g,
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Expand

Ey(\) = EV 4 EW £ 2E® 4
dr(N) = o0 40 4 N2 4
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Expand
Ex(N) = E)+AEY + B +
or(\) = o a0l 4 A20%) 4

Substitution into H(A\)®x () = Er(A)®r(N) and equating
each power of ) yields, after some manipulations

Ao o8

(2) (P
E” = Z -
ik TN ) _ g

7

V1 HO |0y (0l

1

HY | o))

(
(0)

Used to calculate perturbation corrections of E,io)
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First perturbation correction of q)g))

B -3 o | 1 | o)
k i#k Elg()) _ g0

(]
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First perturbation correction of q),io)

o) =3

(0
itk Ly —

The second order energy may also be written as

EP = (o0 | HO | o))
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Molecule in electric field

External potential V(r) =V (z,y, 2)
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Molecule in electric field

External potential V(r) =V (z,y, 2)

Particles 7 with charge ¢; (nuclei ¢; = Z,e, electrons ¢; = —¢)
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Molecule in electric field

External potential V(r) =V (z,y, 2)

Particles 7 with charge ¢; (nuclei ¢; = Z,e, electrons ¢; = —¢)

Hamiltonian # = H©) + g1)
with free molecule Hamiltonian H ()
and perturbation

1=1 1=1

Han-sur-Lesse, December 2003 — p.9



Multipole (Taylor) expansion

oV oV oV
Vv =t e () o () o (5), o

with electric field F' = (£}, F,, F,) = —grad V

Vir)=V(x,y,2) =Vo—r-Fy+ ...
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Multipole (Taylor) expansion

oV oV oV
Vv =t e () o () o (5), o

with electric field F' = (£}, F,, F,) = —grad V
Vir)=V(x,y,2) =Vo—r-Fy+ ...
Perturbation operator

H(l):qu—u-Fo—l—...

n n
with total charge ¢ = » ¢; and dipole operator o = » gr;
1=1 1=1
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First order perturbation energy (for ground state k& = 0)

BN = (o | HO | o)
— (D} \_H.Fw...\q)g%

= (o) [p|of’) R+
= —(pu) -Fy+...
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First order perturbation energy (for ground state k& = 0)

g = (o) |5V o))
— (D} \_H.Fw...\q)g%
— (o |0V Fy+...
= —(pu) -Fy+...

Energy of permanent dipole ( i ) in field Fy.
Same as classical electrostatics, with dipole ( u ).
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Second order perturbation energy
for neutral molecule (¢ = 0) and field in z-direction

i.e., Fy = (0,0, Fy) and HV = —, F

L0 Z<¢éo>\ﬂ<1>\q>§”>><<b§ | HY | of )
o (0) (0)
. E E.
170 0 ?

ool e [0 0 e |9 |

7 Ey) - B :
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Second order perturbation energy
for neutral molecule (¢ = 0) and field in z-direction

i.e., Fy = (0,0, Fy) and HV = —, F

(0) (1) | &(0) (0)
2 (®y | HV | @, (@ | HD \‘D )
E(() ) _ E ( 0 (

0 0

170 EO) Ez' ;
ool e [0 0 e |9 |
e By — B ”

Same as classical electrostatics: E,, = —3aF§,
with polarizability
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2y [ 2] 27 (& | e | 2
E?L(O) _ gD

Han-sur
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(
170 Ez - EO

The polarizability «,, can also be obtained from the
Induced dipole moment. The total dipole moment is

(0 + o0 | 1, 09 4ol =

CISAFE ORI TE IO IR ORI SONIE IO
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(
170 Ez - EO

The polarizability «,, can also be obtained from the
Induced dipole moment. The total dipole moment is

(0 + o0 | 1, 09 4ol =
CISAFE ORI TE IO IR ORI SONIE IO

The (first order) induced dipole moment u;,4 IS the second
term. With the first order wave function

(1) (o | HO | o ) (0)
ey = Z 0 0 ;
e

(]
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and HY) = — ., F, this yields

pind = 2( P57 | pz | D57 )
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and HY) = — ., F, this yields

pina = 2000 |y | @)

_ 2Z<<I>é”)mz\q>§0>><<1>§o>mzr<1>é“>>
0
i£0 8" — I

Fo

As In classical electrostatics: ;,qg = aFp, with the same
formula for the polarizablility o, as above.
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and HY) = — ., F, this yields
find = 2 @é“ s \ o5 )

fz 1 (/
0 0

Fo

As In classical electrostatics: ;,qg = aFp, with the same
formula for the polarizablility o, as above.

For arbitrary molecules the direction of the induced dipole

moment u;,q IS Not parallel to Fy. The polarizability « is a
second rank tensor with non-zero elements «,,, etc.

Han-sur-Lesse, December 2003 — p.14



and HY) = — ., F, this yields

pma = 20 | s \ o) )

O s | 90 (&
22 ( Iy

0
i£0 8" — I

As In classical electrostatics: ;,qg = aFp, with the same
formula for the polarizablility o, as above.

For arbitrary molecules the direction of the induced dipole
moment p;,4 IS Not parallel to F,,. The polarizability « Is a
second rank tensor with non-zero elements «,,, etc.

For isotropic systems (atoms, freely rotating molecules)
a Is diagonal and o, = oy = a,, = a.
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Long range interactions between two molecules

Molecules A and B at distance R with no overlap of their
wave functions. Particlesi € A and j € B.
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Long range interactions between two molecules

Molecules A and B at distance R with no overlap of their
wave functions. Particlesi € A and j € B.

Hamiltonian & = H© + () with free molecule Hamiltonian
HO = g4 + HB and interaction operator

H(l) _ Z Z qi4q;

-
icA jeB Y
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Long range interactions between two molecules

Molecules A and B at distance R with no overlap of their
wave functions. Particlesi € A and j € B.

Hamiltonian & = H© + () with free molecule Hamiltonian
HO = g4 + HB and interaction operator

H(l) _ Z Z qi4q;

-
icA jeB Y

n
Same as H(V) = Zqu(ri) in previous section with
1=1
molecule A in electric potential V' (r;) = Z
— T
j1€eB

q

of molecule B.
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Multipole expansion of the interaction operator

B X
Fij
z d Z
R
y

ri = (T3, ¥i, 2:), T =(25,95,%2;), R=1(0,0,R)

Tij =T; —T;+ R and Tij = |7°z'j‘
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A double Taylor expansion in (z;, y;, z;) and (x;,y;, z;) Of
—1/2

— = (mj—z)* + (Y —9)? + (2 — 2 + R)Q}

at (37'&'7 Yi s Zz) = (O, 0, O) and (xj, Yj, Zj) = (O, 0, O) ylelds

i_i ﬁ_ﬁ+xixj+yiyj—22izj+
mj_R R?2 R? R3

This expansion converges when |r;| + |r;| < R.
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Substitution into H) gives, after some rearrangement

A, B A, B A, B
g _ a0 ppa® gt sy = 2
R R? R? R3

with the total charges ¢4 =) ¢ ¢® =) ¢
i€A jeEB

and the dipole operators p* = qu p = ZCI;‘"“J'
icA jEB
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Substitution into H) gives, after some rearrangement

po B + pit B — 20 18

R3

g _ d” pd®  td
- R TR TR

with the total charges ¢4 =) ¢ ¢® =) ¢
i€A jeEB

and the dipole operators p* = qu p = ZCI;‘"“J'
icA jEB

_|_

This operator (") includes the electrostatic interactions
between the charges and dipole moments of the molecules
A and B. Higher (quadrupole) interactions are neglected.
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Alternative forms of the dipole-dipole interaction operator
are

oy + gy = 2uin? ot pP =3t pt T P

R? R3 R3

with the Iinteraction tensor

Tow Ty Tov 10 0
T=\| 7. T,, T,- |=[0 1 o0
Too Toy Teo 0 0 =2

This tensor can also be expressed in more general
coordinates.
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The solutions of the Schrodinger equations of the free

molecules 4 and B are
Ax A  pAzA
H <I>]~Cl = E,€1<I>,~Cl

5% = EPop

and of the unperturbed problem
0 0) x (0
HO9 — gV

with ') — &4 &2 and eigenvalues £\

A B
= b + L

Han-su

r-Lesse,
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Proof
HO0R — (H*+ H7) o, of,
_ (HAcp;;ll ) o8 + ot (HBcb;Z )

A B <A +B
(Ek1 + Ek2> i, Py,
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Proof
HO0R — (H*+ H7) o, of,
Ax A A
_ (H %) o8 + ot (HB<I>kBQ>

A B <A +B
= (Ek1 + Ek2> i, Py,

Perturbation operator (repeated)

g _ ' pdd®  ted T

_|_

R R? R? " R?

Each term factorizes in A and B operators !
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The first order energy Is

M = (o)) | HV | o) = (ofef | HV | ofof )
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The first order energy Is
E(gl):< \H \CI) ) = <<I>A<I>O]H ool )

With the multipole expansion of H(Y) one can separate
Integration over the coordinates (z;, y;, z;) and (x;, y;, ;)
of the particles i € A and 5 € B and obtain

A B

pv - 07 () aMud) | (wt) T ()

R R2 = R? T R3
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The first order energy Is
M = (o)) | HV | o) = (ofef | HV | ofof )

With the multipole expansion of H(Y) one can separate
Integration over the coordinates (z;, y;, z;) and (x;, y;, ;)
of the particles i € A and 5 € B and obtain

po_atd” (e M d) | (pt) T (p”)
0 R R? R? R3
the same as in classical electrostatics, with the permanent
multipole moments ( 4 ) = ( &3 | u | ®¢' ) and
(p?)=(27 | p” |27 )
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The second order energy is

(2) (o) | HD !CI) (P !H o))
L4y :Z 0 0
K#0 Eé)—Eg{)

The index K that labels the excited states of the system is a

composite index K = (k1, ko). The summation over K =# 0
can be split into three sums, with

k1#£0, ks =0 Molecule A excited
k1=0, ko #0 Molecule B excited
k1 #0, ko #£0 Both molecules excited
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The first term of ESQ) IS

3 (gl | HY | ool (ool | HY | ool )
Eg - B,

k140
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The first term of EéQ) IS

s~ Lodef | A | o of (v af | Y | agaf)
By - Ej,

k140

The operator H(1) is term-by-term factorizable and the
Integrals In this expression can be separated. For example

(@ | pst | L W OF | 1P | 9F )
R3
(@ | pit | @5t W pd)
RS

pi il
(ool | L | olaf )

Furthermore, one may use the orthogonality relation
(@ | 12 ) =0.
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The transition dipole moments ( ®{' | ;2" | @ ), with the

summation over k; # 0, occur in the formula for the
polarizability a2 .

Han-sur-Lesse, December 2003 — p.25



The transition dipole moments ( ®{' | ;2" | @ ), with the

summation over k; # 0, occur in the formula for the
polarizability a2 .

If one assumes that the polarizability Is isotropic,

g, = al, = of, = o, one finds for the first term

aA(

g")? N 204¢B (8 )
2R RS
(B )2+ (Wl ) +4(uB)?)

2RY

E(§2) (pol. A) = —
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Also this results agree with classical electrostatics. The
electric field of the point charge ¢ at the center of molecule

Als
qB
F = (anFyan) — (ana_ﬁ)
and the electric field of the permanent dipole moment
(pu)is

RS R} RS

F<<M§> (1 ) 2<u§>>

The second order interaction energy E(()Z)(pol. A) Is simply

the polarization energy —1aF? of molecule A in the
electric field of the charge and dipole of molecule B.
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Analogously, we find for the second term, which includes
a summation over the excited states k-, of molecule B

A\2 B A A B
(2) o (@P)fa” 2¢7° ()
Ey”(pol. B) = SR 75
A A A
((pa Y2+ (pi Y +4( s )*)a”

2RY

This is the classical energy of polarization of molecule B
In the field of A.
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The third term contains the summation over the excited
states of both molecules. All interaction terms with the
charges ¢4 and ¢? cancel, because of the orthogonality
relation ( ®¢' | ®;1 ) = 0. Only the dipole-dipole term of H
IS left and we obtain

E(()2)(disp)
S,S, (ogof | HY | o @B (ot @l | HY | of'df )
AN A A B B
k170 k2#£0 (EO - Ekl) T (EO N Ek2)

2
__poyn g ot iet 1 0h )T 0F |0 0f)
(B4 — EY) + (B2 — EB)

k10 k220
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This term, the dispersion energy, has no classical
equivalent; it is purely guantum mechanical.

It is proportional to R~.
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This term, the dispersion energy, has no classical
equivalent; it is purely guantum mechanical.

It is proportional to R~.
It can be easily proved that each of the three second order

terms is negative. Therefore, the induction and dispersion
energies are always attractive.
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This term, the dispersion energy, has no classical
equivalent; it is purely guantum mechanical.
It is proportional to R~.

It can be easily proved that each of the three second order
terms is negative. Therefore, the induction and dispersion
energies are always attractive.

For neutral, non-polar molecules the charges ¢4, ¢ and

permanent dipole moments ( ), ( u? ) are zero, and the
dispersion energy is the only second order interaction.
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Terms with higher powers of R~! occur as well. They
originate from the quadrupole and higher multipole
moments that we neglected.
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Terms with higher powers of R~! occur as well. They
originate from the quadrupole and higher multipole
moments that we neglected.

An approximate formula, due to London, that is often used
to estimate the dispersion energy is

3adaP JAIB

2 :
By’ (disp) ~ =5y g

This formula i1s found if one assumes that all the excitation
energies E;. — E§' and E;? — E§ are the same, and are

equal to the ionization energies 74 and 5.
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Summary of long range interactions

The interactions between two molecules A and B can be
derived by means of QM perturbation theory.
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Summary of long range interactions

The interactions between two molecules A and B can be
derived by means of QM perturbation theory.

The first order energy equals the classical electrostatic
(Coulomb) interaction energy between the charges and
dipole moments of the molecules. It may be attractive or
repulsive, depending on the (positive or negative) charges
and on the orientations of the dipole moments. The dipolar
terms average out when the dipoles are freely rotating.
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The second order energy consists of three contributions.
The first two terms correspond to the classical polarization
energies of the molecules in each other’s electric fields.
The third term is purely QM. All the three contributions are
attractive. They start with R~* terms when the molecules
have charges and with =% terms when they are neutral.
The dispersion energy, with the leading term proportional
to =%, occurs also for neutral molecules with no
permanent dipole moments.
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The second order energy consists of three contributions.
The first two terms correspond to the classical polarization
energies of the molecules in each other’s electric fields.
The third term is purely QM. All the three contributions are
attractive. They start with R~* terms when the molecules

have charges and with =% terms when they are neutral.
The dispersion energy, with the leading term proportional
to =%, occurs also for neutral molecules with no
permanent dipole moments.

All of these terms can be calculated when the wave
functions @, ®¢ and energies E;}, Ef} of the free

molecules A and B are known, but one should somehow
approximate the infinite summations over excited states
k1 and ks that occur in the second order expressions.
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Interactions in the overlap region
Heitler and London (Valence Bond) wave functions for Hs
1s4(r1)1sg(ry) & 1sg(r1)lsa(rs)
with the plus sign for the singlet spin (S = 0) function
a(1)5(2) - B(1)a(2)

and the minus sign for the triplet spin (S = 1) functions

a(l)a(2)
a(1)8(2) + 6(1)a(2)
6(1)5(2)

The total electronic wave function is antisymmetric (Pauli)
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Interaction energy AE(R) = Ey, — 2Eq

Triplet S =1) -
Q(R) = “Coulomb integral”
w J(R) = “exchange integral”
o, S = (sl lsp)
Singlet (S = 0) L+ o2 = overlap Integral
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Interaction is dominated by the exchange integral J(R),
which is negative, so that the exchange interaction is
attractive (covalent bonding) in the singlet state and
repulsive in the triplet state.
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Interaction is dominated by the exchange integral J(R),
which is negative, so that the exchange interaction is
attractive (covalent bonding) in the singlet state and
repulsive in the triplet state.

For He, there is only one (singlet) state and the interaction
energy AFE(R) Is purely repulsive: exchange (or Pauli)
repulsion or steric hindrance.
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Molecular orbital picture

S — O /—\\ S — 1 //—\\
/ \ / \
/ \ / \
/ | / \
/ \ / \
— - — )
H , /H H' , /H
Ly A
H2 H2
Covalent Exchange
bonding repulsion

H—H interaction
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Molecular orbital picture

S — O /—\\ S — 1 //—\\
/ \ / \
/ \ / \
/ | / \
/ \ / \
— - — )
H , /H H' , /H
Ly A
H2 H2
Covalent Exchange
bonding repulsion

H—H interaction

He,

Exchange
repulsion

He—He interaction
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Most stable molecules are closed-shell systems and the
exchange energy between them is always repulsive. It
depends on the overlap between the wave functions of A
and B and decays exponentially with the distance R.
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Most stable molecules are closed-shell systems and the
exchange energy between them is always repulsive. It
depends on the overlap between the wave functions of A
and B and decays exponentially with the distance R.

In combination with attractive long range interactions
(proportional to R~") this gives rise to a minimum in AE(R).
This, so-called, non-covalent bonding is much weaker than
covalent bonding, except when A and B are (atomic or

molecular) ions with opposite charges (cf. Na™CI™).
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Most stable molecules are closed-shell systems and the
exchange energy between them is always repulsive. It
depends on the overlap between the wave functions of A
and B and decays exponentially with the distance R.

In combination with attractive long range interactions
(proportional to R~") this gives rise to a minimum in AE(R).
This, so-called, non-covalent bonding is much weaker than
covalent bonding, except when A and B are (atomic or
molecular) ions with opposite charges (cf. Na™CI™).

Binding (merely by the attractive dispersion energy) is

weakest when both molecules are neutral and non-polar:
pure Van der Waals interactions.
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A special type of interactions between polar molecules is
hydrogen bonding

X—H---Y

The binding mainly originates from electrostatic (dipolar
and guadrupolar) interactions and the corresponding
Induction terms and is strongly directional.

No special (HOMO-LUMO, charge-transfer, or weak
covalent bonding) interactions are needed !
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Exercise:

H ,
'y
I/ J/ H
’/(H ¥ ___295A '//__58
62° 57° O
7 275 A \ H
———————— — \

Compute the equilibrium angles of HF—HF at R = 2.75 A

and H,O—H,0 at R = 2.95 A from the dipolar and
guadrupolar interactions only.
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Non-covalent interactions and hydrogen bonding, In
particular, are very important in biology. Alpha helices and
beta sheets in proteins are stabilized by intra- and
iInter-molecular hydrogen bonds, and the double stranded
structure of DNA is held together by hydrogen bonds
between the base pairs.
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Non-covalent interactions and hydrogen bonding, In
particular, are very important in biology. Alpha helices and
beta sheets in proteins are stabilized by intra- and
iInter-molecular hydrogen bonds, and the double stranded
structure of DNA is held together by hydrogen bonds
between the base pairs.

It is essential that a hierarchy of interactions exists with
binding energies varying over several orders of magnitude.
Interactions in biological systems must be sufficiently strong
to maintain stable structures, but not so strong that they
prevent rearrangement processes (DNA replication, for
Instance).
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Intermolecular potentials (or force fields)

Concept based on Born-Oppenheimer approximation
(separation of electronic and nuclear motion)

Step 1: Solve electronic Schrodinger equation
Hel("“el? R>\Ij(’rel§ R) — E(R)qj(reﬁ R)

for clamped nuclel at positions R. Yields energy F(R).

Step 2: Use E(R) as potential energy in solving Schrodinger
equation for nuclear motion. Yields bound levels of Van der
Waals complexes and scattering states (cross sections).
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Intermolecular potential of a many-body system

Vo= ZVAB+ Z Vapc + ...
A<B A<B<C

pair three-body
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Intermolecular potential of a many-body system

V :ZVAB—I— Z Vapo + ...
A<B A<B<(C

pair three-body
Pair potential, in space-fixed (SF) coordinates
Vap =V (R4B,24,82B,q94,9B)

Euler angles Qx = (ax, Bx, 7x)

. . for X = A, B
Internal coordinates gx

Han-su
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Three angles, the two polar angles of R 45 and one of the
Euler angles ax (say ay4), can be chosen as overall rotation
angles of the complex A-B.

The pair potential in body-fixed (BF) coordinates is

VAB =V (RABa ap — OéAaBAaﬁBa,YAafYBa da, qB)

The internal coordinates g4, gg are often frozen (rigid
molecules). This is justified by a Born-Oppenheimer-like
separation between the fast intramolecular vibrations
(coordinates g4, gp) and the much slower VRT motions
(vibrations, hindered rotations, tunneling) of the whole
molecules A and B in the complex.
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ADb Initio calculation of intermolecular potentials

#® Supermolecule calculations
# Symmetry-adapted perturbation theory (SAPT)
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Supermolecule calculations

AFE =FEsp— EFq— Ep

Requirements:

1.

Include electron correlation, intra- and inter-molecular
(dispersion energy = intermolecular correlation)

Choose good basis, with diffuse orbitals (and “bond
functions™) especially to converge the dispersion energy

Size consistency. Currently best method: CCSD(T)

Correct for basis set superposition error (BSSE) by
computing £4 and Eg In dimer basis
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Symmetry-adapted perturbation theory (SAPT)

Combine perturbation theory with antisymmetrization A
(Pauli) to include short-range exchange effects.
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Symmetry-adapted perturbation theory (SAPT)

Combine perturbation theory with antisymmetrization A
(Pauli) to include short-range exchange effects.

Advantages:
1. AFE calculated directly.

2. Contributions (electrostatic, induction, dispersion,
exchange) computed individually. Useful in analytic fits
of potential surface.
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Symmetry-adapted perturbation theory (SAPT)

Combine perturbation theory with antisymmetrization A
(Pauli) to include short-range exchange effects.

Advantages:
1. AFE calculated directly.

2. Contributions (electrostatic, induction, dispersion,
exchange) computed individually. Useful in analytic fits
of potential surface.

Advantage of supermolecule method:

Easy, use any black-box molecular electronic structure
program
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Problems in SAPT:

1. Pauli: AH = HA.
Antisymmetrizer commutes with total Hamiltonian
H=HO 4+ g® put not with 7 and H) separately.
Has led to different definitions of second (and higher)
order energies.

2. Free monomer wavefunctions <I>;§1 and <I>],f2 not exactly

known. Use Hartree-Fock wave functions and apply
double perturbation theory to include intra-molecular
correlation, or use CCSD wave functions of monomers.
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Problems in SAPT:

1. Pauli: AH = HA.
Antisymmetrizer commutes with total Hamiltonian
H=HO 4+ g® put not with 7 and H) separately.
Has led to different definitions of second (and higher)
order energies.

2. Free monomer wavefunctions <I>;§1 and <I>],f2 not exactly

known. Use Hartree-Fock wave functions and apply
double perturbation theory to include intra-molecular
correlation, or use CCSD wave functions of monomers.

Program packages:
- SAPT2 for pair potentials
- SAPT3 for 3-body interactions
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