Resonant collisional shielding of reactive molecules using electric fields

Kyle Matsuda1, a, Luigi De Marco1, Jun-Ru Li1, William G. Tobias1, Giacomo Valtolina1, Goulven Quéméner2, Jun Ye1*

Full control of molecular interactions, including reactive losses, would open new frontiers in quantum science. We demonstrate extreme tunability of ultracold chemical reaction rates by inducing resonant dipolar interactions by means of an external electric field. We prepared fermionic potassium-rubidium molecules in their first excited rotational state and observed a modulation of the chemical reaction rate by three orders of magnitude as we tuned the electric field strength by a few percent across resonance. In a quasi-two-dimensional geometry, we accurately determined the contributions from the three dominant angular momentum projections of the collisions. Using the resonant features, we shielded the molecules from loss and suppressed the reaction rate by an order of magnitude below the background value, thereby realizing a long-lived sample of polar molecules in large electric fields.

Controlling chemical reactions and collisions has been a central focus of work on cold and ultracold molecules (1–6). Progress in cooling and trapping molecules has led to exciting advances in this area, including the precise characterization of scattering resonances (7–9), the observation of atom-molecule (10) and molecule-molecule (11–13) cold collisions, and the synthesis of new chemical species (14). In particular, ultracold polar molecules, for which both internal and external degrees of freedom are controlled, present distinctive opportunities (15–26). At ultralow temperatures, small perturbations to the long-range intermolecular potential, although negligible relative to chemical bonding energy scales, can vastly exceed the kinetic energy of the colliding molecules and thus strongly alter the rate of chemical reactions at close range (3). This sensitivity, combined with the rich structure of polar molecules and their tunability using external electromagnetic fields, suggests the exciting possibility of precisely controlling reactions (1, 4–6). In addition to providing insights about fundamental chemical processes (27, 28), such control would aid in the production of quantum-degenerate molecular gases (29–31) and could facilitate precision measurements (32) or studies of many-body physics (33) in these systems.

Applying an electric field \(E \) strongly modifies the reaction rates of ultracold polar molecules via dipolar interactions (34, 35). In the ultracold regime, molecules collide predominantly in the lowest partial wave \(L \) allowed by quantum statistics \((L = 1) \) for identical fermions. Owing to the anisotropy of the dipolar interaction, the likelihood of two molecules meeting at short range depends on how they approach each other relative to the direction of the induced dipole, or more formally, on the projection \(m_L \) of \(L \) onto the axis of \(E \). For fermionic molecules in three dimensions (3D), attractive head-to-tail \((m_L = 0) \) collisions lead to rapid losses (34), which scale as \(d^3 \) in the induced dipole moment \(d \) (36). If the molecules are instead trapped in a quasi-two-dimensional (quasi-2D) geometry with \(E \) along the strongly confined direction, only repulsive side-to-side \((m_L = \pm 1) \) collisions are allowed, suppressing losses and enhancing the elastic collision rate (37, 38). For ground-state potassium-rubidium (KRb) molecules, we recently used this approach to achieve a ratio of elastic collisions to reactive collisions exceeding 100 (37).

Here, we experimentally demonstrate a striking effect of the electric field on molecular collisions: Chemical reaction rates in an ultracold gas of molecules are sharply varied by three orders of magnitude near particular values of the field strength \(|E| \). These values occur where higher rotationally excited states become degenerate with the initial collision channel, inducing resonant dipolar interactions that profoundly alter the long-range potential and hence the reaction rate (38). Although losses can also be resonantly enhanced, the most important effect is the substantial suppression of loss for an appropriate choice of \(|E| \). This shielding mechanism was first proposed by Avdeenkov et al. (40), and related theory was subsequently extended to a wide variety of bosonic and fermionic species of experimental interest (39, 41, 42). Alternatively, the use of microwave (43–47) or optical (48) dressing to suppress molecular loss has been proposed. However, microwave dressing has so far only led to an enhanced loss rate in experiments (49, 50).

We prepared ultracold fermionic \(^{40\text{K}}\text{K}^{87}\text{Rb} \) molecules in the \(|N, m_N| = |1,0\rangle \) state, where \(N \) is the rotational angular momentum and \(m_N \) is its projection onto the axis of \(E \). Throughout, \(|N, m_N|N', m'_N\rangle \) denotes the combined molecular state of a pair of molecules with one molecule in \(|N, m_N\rangle \) and the other in \(|N', m'_N\rangle \). We observed a dramatic change in the two-body reactive loss rate near two field strengths, \(|E|_L = 11.72 \text{kV/cm} \) and \(|E|_R = 12.51 \text{kV/cm} \), where the energies of \(|0,0\rangle|2,\pm 1\rangle \) and \(|0,0\rangle|2,0\rangle \) (respectively) cross the energy of \(|1,0\rangle|1,0\rangle \) (Fig. 1A). Near these crossings (Fig. 1B), the nearly degenerate states are resonantly coupled by dipolar interactions, becoming strongly mixed as the molecules approach to separations \(r \sim r_0 \) during a collision event, where \(r_0 = 270\alpha_0 \) is the radius of the \(p \)-wave centrifugal barrier (51) and \(\alpha_0 \) is the Bohr radius.

The consequence of this \(r \)-dependent state mixing is apparent in the adiabatic energy curves near \(|E|_L \) (Fig. 1C) (52). For \(|E| > |E|_L \) (orange line), the energy of \(|1,0\rangle|1,0\rangle \) is higher than that of \(|0,0\rangle|2,0\rangle \). Hence, coupling between the states causes an increasing energy of \(|1,0\rangle \) molecules as they approach, creating a repulsive barrier (with height \(\sim 300 \mu \text{K} \)) that is three orders of magnitude larger than the typical collision energy set by the temperature of the gas (250 nK). In this case, molecules are shielded from reactive losses, because they cannot meet at short range except by tunneling through the barrier (which occurs with a low probability). Conversely, for \(|E| < |E|_L \) (green line), the energy of \(|1,0\rangle|1,0\rangle \) is lower than that of \(|0,0\rangle|2,0\rangle \), resulting in an attractive interaction and an enhanced loss rate. For comparison, the diabatic energy curve (black line) shows the behavior in the absence of resonant dipolar interactions. Although lossy collisions are suppressed for \(|E| \) just above resonance, elastic dipolar collisions for KRb are predicted to be nearly unaffected by the shielding (39). In general, the shielding is predicted to increase the ratio of elastic collisions to reactive collisions, potentially allowing for efficient evaporative cooling of molecules in 3D (42) and complementing the recently demonstrated evaporation in 2D (31).

This effect is akin to a Förster resonance—for example, between Rydberg atoms (53–55), in which \(|E| \) is tuned to create degeneracies between pairs of dipole-coupled states, resulting in resonant energy transfer. A key difference is the much smaller dipole moment of molecules relative to that of Rydberg atoms. Consequently, colliding molecules experience an adiabatic increase in the dipolar interaction energy as they approach. We stress that this is not a conventional scattering resonance arising from the presence of a molecule-molecule interaction.
bound state, but rather a resonance between two free scattering states enabled by the internal structure of the molecules (39).

The experimental setup has been described in detail previously (32). In brief, a degenerate mixture of 40K and 87Rb was prepared in six layers of a 1D optical lattice, with final trap frequencies (ωx, ωy, ωz) = 2π × (34, 17.7 × 10^3, 34) Hz for KRb in each layer (gravity points along −y). Weakly bound molecules were created with a magnetic field ramp through an interspecies Feshbach resonance at 546.62 G and were transferred to the ro-vibronic ground state by stimulated Raman adiabatic passage (STIRAP) at |E|STIRAP = 4.5 kV/cm and then used several avoided crossings at |E| < 1 kV/cm that arise from the hyperfine structure (27). Typical starting conditions were 2 × 10^5 molecules in the (0,0) state at a temperature T = 250 nK, corresponding to about 1.8 times the Fermi temperature. With nearly perfect occupancy of the lowest band (k_BT/ℏω_x ≈ 0.3, where k_B is the Boltzmann constant and ℏ is the reduced Planck constant) and negligible tunneling between lattice sites, our system realized a stack of quasi-2D molecular gases.

To measure the reactive loss of the (1,0) state, we used the following protocol. Starting at |E|STIRAP, we first applied a microwave π-pulse to transfer the molecules from (0,0) to (1,0) with a Rabi frequency of 2π × 200 kHz and a typical efficiency above 95%. Any remaining (0,0) population was quickly lost in a few milliseconds via s-wave reactive collisions with (1,0). Next, E was ramped to its target configuration in 60 ms. After a variable hold time t, E was ramped back to |E|STIRAP in 60 ms. To image (1,0) molecules, we applied another microwave pulse to transfer the molecules back to the (0,0) state, then used STIRAP to transfer to the Feshbach state before imaging the molecules in time-of-flight expansion. A constant magnetic field of 545.5 G was present during the measurements. We fitted the measured average density n as a function of t to the solution of the two-body loss rate equation dn/dt = −βn^2, where β is the two-body chemical reaction rate coefficient. In 2D, there is no temperature increase associated with the two-body loss (31, 56), hence this rate equation is simplified in comparison to 3D (29).

To fully characterize the shielding effect, we first show how to tune the angular momentum character of the collisions by changing the orientation of E relative to the quasi-2D planes. Previous measurements in quasi-2D with E oriented along the tightly confined direction (ŷ) showed a suppression of β at moderately large values of d owing to repulsive mL = ±1 dipolar collisions (31, 37). Here, we studied the dipolar anisotropy by tilting E away from the y axis by an angle θ, which enabled controlled mixing of the attractive mL = 0 collisions into the scattering (Fig. 2A). Although the dipolar interaction in general mixes higher partial waves into the scattering, contributions from |mL| > 1 are negligible for the relatively small values of d explored here (52).

Although the collisions always occurred along the x and z directions because of the strong confinement along ŷ, the angular momentum...
character of the collisions with respect to \(\mathbf{E} \) changed with \(\theta \). For \(\theta = 0^\circ \), the collisions decomposed equally into the \(m_L = \pm 1 \) channels, which give equal contributions to the collision cross section as a result of the azimuthal symmetry of the dipolar interaction. For \(\theta = 90^\circ \), collisions along \(\hat{z} \) corresponded to \(m_L = 0 \) scattering, and those along \(\hat{x} \) were still an equal superposition of the \(m_L = \pm 1 \) channels. Hence, by measuring \(\beta \) at \(\theta = 0^\circ \) and \(90^\circ \), it was possible to extract the loss rate coefficients \(\beta_{\pm 1} \) and \(\beta_0 \) associated with the \(m_L = \pm 1 \) and 0 channels, respectively. The full dependence on \(\theta \) (Fig. 2B) was calculated by considering the mixing of the \(m_L \) states under rotations (52).

Figure 2C shows the measured \(\beta \) for \((1,0) \) molecules at \(|\mathbf{E}| = 7.09 \text{ kV/cm} \) as \(\theta \) was varied over \(180^\circ \). As expected, \(\beta \) increased with \(|\mathbf{E}| \) and reached a maximum at \(\theta = \pm 90^\circ \), where attractive \(m_L = 0 \) collisions dominated the loss rate. At 7.09 kV/cm, the relatively small value of \(d = -0.12 \) D limited the maximum increase of \(\beta \) to only an order of magnitude, in contrast to the much larger effect expected for larger \(|d| \) (57). Our electrode geometry permitted excellent control of the curvature of \(\mathbf{E} \) along \(\hat{x} \), except near \(\theta = \pm 90^\circ \) (Fig. S1), where we applied a small correction to the measured \(\beta \) to account for compression of the cloud attributable to the increased curvature in this configuration (52).

Having controlled the angular momentum channels participating in the collisions, we proceeded to explore the dependence of the \((1,0) \) reaction rate on \(\mathbf{E} \). We measured \(\beta \) at both \(\theta = 0^\circ \) and \(90^\circ \) to extract \(\beta_{\pm 1} \) and \(\beta_0 \) as a function of \(|\mathbf{E}| \) (52), as summarized in Fig. 3A and B, respectively. For both values of \(\theta \), we calibrated \(|\mathbf{E}| \) to a few parts in \(10^4 \) using spectroscopy on the \(|0,0\rangle \) to \(|1,0\rangle \) transition.

In the background region (\(|\mathbf{E}| = 1 \) to \(11 \text{ kV/cm} \)) away from resonance, we observed a slight decrease in \(\beta_{\pm 1} \) and a corresponding increase in \(\beta_0 \). \(\beta_{\pm 1} \) reached a minimum and \(\beta_0 \) reached a maximum near \(|\mathbf{E}| = 7 \text{ kV/cm} \), in agreement with theoretical predictions (Fig. 3, A and B, solid lines) (52). To understand the trends of \(\beta_{\pm 1} \) and \(\beta_0 \), we note that \(|d| \) is nonmonotonic in the investigated range of \(|\mathbf{E}| \) and reaches a maximum of \(0.12 \) D at \(7 \text{ kV/cm} \). Thus, the trends of \(\beta_{\pm 1} \) and \(\beta_0 \) are consistent with the semiclassical picture of repulsive side-to-side (\(m_L = \pm 1 \)) or attractive head-to-tail (\(m_L = 0 \)) dipolar collisions modifying the loss rate, as previously measured for the \(N = 0 \) state (31, 37, 38). Away from resonance, our results illustrate the universal nature of this semiclassical effect, depending only on the value of \(|d| \) and not on the rotational state of the molecule, when resonant dipolar effects are not important.

In addition, the absence of any field-dependent Fano-Feshbach resonances is consistent with universal (unit probability) loss at short range for the \(|1,0\rangle \) state (57), as previously measured with \(N = 0 \) molecules (34, 33).

In the region near \(|\mathbf{E}_i| \) and \(|\mathbf{E}_f| \), resonant off-diagonal dipolar couplings to \(|0,0\rangle |2,\pm 1\rangle \) and \(|0,0\rangle |2,0\rangle \) become the dominant contribution, instead of the diagonal dipolar interactions that determine \(\beta \) in the background region. Here, inelastic collisions, which result in transitions to the nearby combined molecular state, are possible owing to the long-range dipolar mixing of the states. Because only \(|1,0\rangle \) molecules were detected in the experiment, the measured loss rate consisted of the sum of the inelastic and reactive rates, with the inelastic rate predicted to be negligible except for within a small range of \(|\mathbf{E}| \) near resonance (39). The optimal shielding condition, where the overall loss is minimized, arises from a competition between the changes in the height of the repulsive barrier and the inelastic loss rate, with the inelastic rate falling off faster away from resonance (39).

We observed sharp features at \(|\mathbf{E}_i| \) and \(|\mathbf{E}_f| \) in both the \(m_L = \pm 1 \) and \(m_L = 0 \) channels, in excellent quantitative agreement with the scattering theory predictions with no free parameters (Fig. 3, A and B, solid lines) (52). We measured a maximum variation of \(\beta_{\pm 1} \) by a factor of \(300 \pm 20 \), and a reduction in \(\beta_{\pm 1} \) by a factor of \(8 \pm 3 \) at the optimal shielding condition (12.77 kV/cm) relative to the value away from the features (10.13 kV/cm). In the \(m_L = 0 \) channel, we observed a variation of \(\beta_0 \) by a factor of \(1000 \pm 400 \) near the features. Comparing the measurements at the optimal shielding point (11.84 kV/cm) and away from the features (11.32 kV/cm), we observed a maximum suppression of \(\beta_0 \) by a factor of \(23 \pm 10 \) below its background value. (We excluded the point at 12.72 kV/cm from this analysis, because the extracted \(\beta_0 \) was consistent with zero within our measurement precision.)
As opposed to the semiclassical nature of the loss suppression when dipolar molecules are made to collide side-to-side (31, 37), the presence of the resonances in both the 31 kV/cm is roughly enlarged x axis. Solid lines are fits to the two-body rate equation; error bars are 1 SE of independent measurements.

We have demonstrated a method for controlling reactive losses using an external electric field and find excellent agreement with theoretical predictions. Our investigation of the m_f = 0 and m_f = ±1 collision channels strongly suggests that the shielding remains effective in 3D geometry, without the need for an optical lattice to protect the molecules. Indeed, we have made preliminary observations of long-lived molecules in a crossed optical dipole trap at 12.67 kV/cm. The shielding could be used to create a favorable ratio of elastic to reactive collisions for evaporative cooling, which would simplify future efforts to create quantum-degenerate molecular gases for species other than K\textsubscript{Rb} (41, 42). These results provide long-lived quantum gases of polar molecules in strong electric fields that are ready to be used to explore a wide range of exciting many-body phenomena and quantum information applications.

REFERENCES AND NOTES
52. See supplementary materials.

ACKNOWLEDGMENTS
We thank J. L. Bohn for stimulating discussions and careful reading of the manuscript. Funding: Supported by NIST, ARO MURI, DARPA DRNQIS, NSF QCI OMA–2016244, and NSF Phys–1734006; G.Q. received funding from Agence Nationale de la Recherche TENZEMANY-SHIELD Project ANR-17-CE30-0015. Author contributions: The experimental work and data analysis were done by K.M., L.D.M., J.R.L., W.G.T., G.V., and J.Y. Theoretical calculations were done by G.Q. All authors contributed to interpreting the results and writing the manuscript. Competing interests: The authors declare no competing interests. Data and materials availability: All data presented in this work are available through Zenodo at (38).

SUPPLEMENTARY MATERIALS
Science.sciencemag.org/content/370/6522/1324/supp/DC1 Materials and Methods
Fig. S1

11 September 2020; accepted 9 November 2020
10.1126/science.abc7370
Resonant collisional shielding of reactive molecules using electric fields
Kyle Matsuda, Luigi De Marco, Jun-Ru Li, William G. Tobias, Giacomo Valtolina, Goulven Quéméner and Jun Ye

Science 370 (6522), 1324-1327.
DOI: 10.1126/science.abe7370

Electric field shielding of ultracold molecules
Because reactive collisions limit the lifetime of ultracold molecular ensembles, controlling chemical reactivity at ultralow temperatures has been a long-standing goal. Using large electric fields that trigger resonant dipolar interactions between potassium-rubidium molecules trapped in a quasi–two-dimensional geometry, Matsuda et al. report suppression of the reactive loss rate in the vicinity of the dipolar-mediated resonances by up to an order of magnitude below the background value. The proposed shielding mechanism is general and is expected to be effective in three-dimensional geometry. It could also be used for creating long-lived quantum molecular gases of other polar molecules under strong electric fields.

Science, this issue p. 1324