Contents

1 Introduction 4

2 How to read this manual 4

3 Authors 4

4 Citation 5

5 Interfaces 6
  5.1 Cfour ................................. 6
  5.2 Columbus ............................ 7
  5.3 Dirac ................................. 8
  5.4 Molpro ............................... 8
  5.5 Amber ................................ 9

6 Features 9
  6.1 Single-point energy calculations .................. 10
  6.2 Geometry optimizations and first-order properties .... 12
  6.3 Harmonic frequencies and second-order properties ... 15
  6.4 Higher-order properties ........................ 16
  6.5 Diagonal Born-Oppenheimer corrections .............. 16
  6.6 Electronically excited states ..................... 17
  6.7 Relativistic calculations ........................ 19
  6.8 Reduced-scaling and local correlation calculations . 19
  6.9 Optimization of basis sets ....................... 21

7 Installation 24
  7.1 Installation of pre-compiled binaries ............... 24
  7.2 Installation from source code ..................... 25
  7.3 Installation under Windows ....................... 28

8 Testing Mrcc 28

9 Running Mrcc 29
  9.1 Running Mrcc in serial mode ...................... 29
  9.2 Running Mrcc in parallel using OpenMP ............ 29
  9.3 Running Mrcc in parallel using MPI ................ 30

10 The programs of the suite 30

11 Input files 33
12 Keywords

13 Symmetry

14 Interface to molecular visualization software
   14.1 MOLDEN
   14.2 xyz-file

15 Acknowledgments

References
1 Introduction

Mrcc is a suite of *ab initio* and density functional quantum chemistry programs for high-accuracy electronic structure calculations developed and maintained by the quantum chemistry research group at the Department of Physical Chemistry and Materials Science, TU Budapest. Its special feature, the use of automated programming tools enabled the development of tensor manipulation routines which are independent of the number of indices of the corresponding tensors, thus significantly simplifying the general implementation of quantum chemical methods. Applying the automated tools of the program several quantum chemistry models and techniques of high complexity have been implemented so far including arbitrary single-reference coupled-cluster (CC) and configuration interaction (CI) methods, multi-reference CC approaches, CC and CI energy derivatives and response functions, arbitrary perturbative CC approaches. Many features of the package are also available with relativistic Hamiltonians allowing for accurate calculations on heavy element systems. The developed cost-reduction techniques and local correlation approaches also enable high-precision calculations for medium-sized and large molecules.

2 How to read this manual

In the following, words set in typewriter font denote file names, shell commands, environmental variables, and input records of the input file. These must be typed as shown. Variables, that is, numbers, options, etc. which must by specified by the user will be given as `<variable>`. These must be replaced by the corresponding values of the variables. Optional items are denoted by brackets, e.g., as `[<variable>]`.

3 Authors

The main authors of the Mrcc code and their major contributions are as follows.

Mihály Kállay: general design; driver program (dmrcc); input analyzer (minp); automated, string-based many-body code (goldstone, xmrcc, mrcc); domain construction for local correlation calculations (mulli); particular integral evaluation algorithms (integ); direct and density-fitting (DF) Hartree–Fock (HF) algorithms, DFT algorithms (scf); density-fitting MP2 and RPA algorithms (drpa);
Zoltán Rolik: integral transformation and orbital optimization code (ovirt); domain construction for local correlation calculations (mulli)

József Csontos: installation script (build.mrcc), geometry optimization, basis set optimization, the MRCC homepage

Péter Nagy: local correlation methods and multi-level approaches (drpa)

Gyula Samu: density-fitting integrals (integ)

Dávid Mester: excited-state approaches (cis), bond functions (integ)

József Csóka: quadratic self-consistent field algorithms (scf)

Bernát Szabó: open-shell coupled-cluster singles and doubles with perturbative triples [CCSD(T)] code (uccsd)

István Ladjánszki: Hartree–Fock self-consistent field code (scf)

Lóránt Szegedy: closed-shell CCSD(T) code (ccsd)

Bence Ladóczki: four-center atomic orbital integral code (integ)

Klára Petrov: orbital relaxation contribution to gradients for density fitting methods, density fitting MP2 gradient (prop)

Máté Farkas: orbital relaxation contribution to gradients for coupled-cluster methods (prop)

Pál D. Mezei: double hybrid and van der Waals density functionals (dft)

Bence Hégely: QM/MM and embedding approaches (qmmod)

In addition, Bence Kornis, Levente Dojcsák, Huliyar S. Nataraj, and Sanghamitra Das have also contributed to the development of the MRCC code.

4 Citation

If results obtained with the MRCC code are published, an appropriate citation would be:

5 Interfaces

MRCC can be used as a standalone code, but interfaces have been developed to the Cfour, Columbus, Dirac, Molpro, Orca, and Psi quantum chemistry packages as well as the Amber molecular dynamics (MD) code. MRCC, in standalone mode, can currently be used for single-point energy calculations, evaluation of first-order properties, geometry optimizations, and harmonic vibrational frequency calculations with the standard nonrelativistic Hamiltonian and effective core potentials. The interfaces enable the calculation of further molecular properties as well as several other features, such as the use of relativistic Hamiltonians and MCSCF orbitals or quantum mechanics/molecular mechanics (QM/MM) simulations. If MRCC is used together with the aforementioned quantum chemistry packages, the integral, property integral, HF, MCSCF, and CPHF calculations, the integral and density-matrix transformations, etc. are performed by these program systems. Transformed MO (property) integrals are passed over to MRCC, which carries out the correlation calculation and returns unrelaxed MO density matrices if necessary.

In the following we describe the use of the Cfour, Columbus, Dirac, Molpro, and Amber interfaces and the features that they enable. For a complete list of available features see Sect. 6. See also the description of keyword iface on page 87. For the Orca and Psi interfaces see the manual of these packages.

5.1 Cfour

Most of the implemented features are available via the Cfour interface using RHF, ROHF, and UHF orbitals: single-point energy calculations, geometry optimizations, first-, second-, and third-order property calculations, electronic excitation energies, excited-state and transition properties, diago-
nal Born–Oppenheimer correction (DBOC) calculations. Most of the properties implemented in Cfour are also available with Mrcc. The interface also enables the use of several relativistic Hamiltonians.

The Cfour interface is very user-friendly. You only have to prepare the input file ZMAT for Cfour with the keyword CC_PROG=MRCC, and run Cfour. The Mrcc input file is then written automatically and Mrcc is called directly by Cfour, and you do not need to write any input file for Mrcc. Most of the features of Mrcc can be controlled by the corresponding Cfour keyword, see Cfour’s homepage at www.cfour.de. If you use the Cfour interface, you can safely ignore the rest of this manual.

You also have the option to turn off the automatic construction of the Mrcc input file by giving INPUT_MRCC=OFF in the Cfour input file ZMAT. However, it is only recommended for expert users.

5.2 Columbus

Single-point energies, equilibrium geometries, ground- and excited-state first-order properties, and transition moments can be computed with RHF, ROHF, and MCSCF reference states using the Columbus interface. Evaluation of harmonic vibrational frequencies is also possible via numerically differentiated analytical gradients.

Running Mrcc with Columbus requires three additional programs, colto55, coldens, and runc_mrcc, which are available for Columbus licensees from the authors of Mrcc upon request.

To use this interface for single-point energy calculations first prepare input files for Columbus using the colinp script. It is important to set a calculation in the input file which requires a complete integral transformation (e.g., CISD and not just MCSCF). Execute Columbus. If you do not need the results of the Columbus calculations, you can stop them after completing the integral transformation. Run the colto55 program in the WORK directory created by Columbus. This will convert the Columbus integral files to the Mrcc format. Prepare input file MINP for Mrcc as described in Sect. 11. Run dmrcc as described in Sect. 9. It is recommended to execute first some inexpensive calculation (e.g., CISD) with Mrcc and compare the HF and CISD energies in order to test your input files.

For property calculations create the Columbus and the Mrcc input files. In the Columbus input set the corresponding MRCI property calculation. Copy the Mrcc input file MINP to the WORK directory of Columbus. If the directory does not exist, create it. Then execute the runc_mrcc script.
5.3 DIRAC

The interface to the DIRAC code enables four-component relativistic calculations with the full Dirac–Coulomb Hamiltonian and several approximate variants thereof. Single-point energy calculations are possible with all the methods implemented in MRCC using Kramers-paired Dirac–Fock orbitals. First-order property (unrelaxed) calculations are available with iterative CC and CI methods. See Refs. 16 and 18 for more details.

If you use DIRAC, you should first prepare input files for DIRAC (see http://diracprogram.org/). It is important to run a full integral transformation with DIRAC (see the description of the MOLTRA keyword in DIRAC’s manual), and to use Abelian symmetry (that is, the $D_{2h}$ group and its subgroups). Execute the pam script saving the MRCONEE and MDCINT files, e.g., running it as

```
pam --get="MRCONEE MDCINT" --inp=Y.inp --mol=X.mol
```

where `X.mol` and `Y.inp` should be replaced by your input files as appropriate. Then run the `dirac_mointegral_export` interface program, which generates the files needed by MRCC. It also creates a sample input file `MINP` for MRCC, which contains the input for a closed-shell CCSD calculation. If you intend to run another type of calculation, please edit the file as described in Sect. 11. Please also note that you may need to modify the occupation vector under the `refdet` keyword (see the description of the keyword on page 108), and you should set `hamilton=x2c` if exact 2-component Hamiltonians are used. Then run `dmrcc` as described in Sect. 9.

For relativistic property calculations define the corresponding operator in the DIRAC input file (see the description of the PROPERTIES and MOLTRA keywords in DIRAC’s manual). Then execute the pam script as

```
pam --get="MRCONEE MDCINT MDPROP" --inp=Y.inp --mol=X.mol
```

and edit the `MINP` file, in particular, set the `dens` keyword (page 57). The CC property code currently does not work with double-group symmetry, and you need to turn off symmetry for CC property calculations, that is, set `symm=off` in the `MINP` file. Finally run `dmrcc`.

5.4 MOLPRO

With MOLPRO single-point energy calculations are available using RHF, UHF, ROHF, and MCSCF orbitals. The interface also enables the use of Douglas–Kroll–Hess Hamiltonians as well as effective core potentials.

The MOLPRO interface is very user-friendly. You only have to prepare the input file for MOLPRO with a line starting with the `mrcc` label followed by the corresponding keywords, and run MOLPRO. The MRCC input file is
then written automatically and MRCC is called directly by MOLPRO, and you do not need to write any input file for MRCC. Most of the features of MRCC can be controlled by the corresponding MOLPRO keywords. If you use MOLPRO, you also have the option to install MRCC with the makefile of MOLPRO.

For a detailed description of the interface point your browser to the MOLPRO User’s Manual at www.molpro.net and then click “27 The MRCC program of M. Kallay (MRCC)”.

If you use the MOLPRO interface, you can safely ignore the rest of this manual.

5.5 Amber

The Amber/MRCC interface enables QM/MM and other multiscale calculations. The interface of the Amber MD code and MRCC is based on the work of Götz et al. [36], which facilitates the integration of QM codes into Amber as external modules. The detailed description of the Amber/MRCC interface is documented in Ref. 26. Currently for the separation of the QM and MM subsystems only the link atom approach is supported.

With the Amber/MRCC program the Huzinaga equation-based embedding approaches [29] can also be employed for the QM region. The latter approaches enables the embedding of wave function theory (WFT) or density functional theory (DFT) methods into lower-level WFT or DFT methods and also the combinations thereof (DFT-in-DFT, WFT-in-DFT, WFT-in-WFT, and WFT-in-WFT-in-DFT). Consequently, with the Amber interface you can also define three (QM/QM/MM) or four (QM/QM/QM/MM) layers for the multilevel calculations. At the present stage of development, the multilevel methods with three or four layers are only available for single point energy calculations.

To use the Amber/MRCC interface you need a properly installed version of Amber (version 2017 or later), see the Amber homepage at ambermd.org. The detailed description of the usage of the interface is well documented in the Amber manual, see section “10.2.6.6. AMBER/MRCC” in the manual.

6 Features

In this section the available features of the MRCC code are summarized. We also specify what type of reference states (orbitals) can be used, and if a particular feature requires one of the interfaces or is available with MRCC in
standalone mode. We also give the corresponding references which describe the underlying methodological developments.

6.1 Single-point energy calculations

Available methods

1. conventional and density-fitting (resolution-of-identity) Hartree–Fock SCF (Ref. 22): restricted HF (RHF), unrestricted HF (UHF), and restricted open-shell HF (ROHF)

2. conventional and density-fitting (resolution-of-identity) Kohn–Sham (KS) density functional theory (DFT) (Ref. 24): restricted KS (RKS) and unrestricted KS (UKS); local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA (depending on kinetic-energy density and/or the Laplacian of the density), hybrid, and double-hybrid (DH) functionals (for the available functionals see the description of keyword \texttt{dft}); dispersion corrections

3. time-dependent HF (TD-HF), time-dependent DFT (TD-DFT), TD-DFT in the Tamm–Dancoff approximation (TDA); currently only for closed-shell molecules with RHF/RKS reference using density fitting, for LDA and GGA functionals and their hybrids (Ref. 33)

4. density-fitting (resolution-of-identity) MP2, spin-component scaled MP2 (SCS-MP2), and scaled opposite-spin MP2 (SOS-MP2); currently only for RHF and UHF references (Ref. 24)

5. density-fitting (resolution-of-identity) random-phase approximation (RPA, also known as ring-CCD, rCCD), direct RPA (dRPA, also known as direct ring-CCD, drCCD), second-order screened exchange (SOSEX), and approximate RPA with exchange (RPAX2); currently the dRPA, SOSEX, and RPAX2 methods are available for RHF/RKS and UHF/UKS references, while the RPA method is only implemented for RHF/RKS (Refs. 24 and 27)

6. density-fitting (resolution-of-identity) second-order coupled-cluster singles and doubles (CC2), iterative doubles correction to configuration interaction singles [CIS(D$_\infty$)], and second-order algebraic diagrammatic construction [ADC(2)] approaches (Refs. 31 and 33)

7. arbitrary single-reference coupled-cluster methods (Ref. 1): CCSD, CCSDT, CCSDTQ, CCSDTQP, . . . , CC(n)
8. arbitrary single-reference configuration-interaction methods (Ref. 1):
   CIS, CISD, CISDT, CISDTQ, CISDTQP, ..., CI(n), ..., full CI

9. arbitrary perturbative coupled-cluster models (Refs. 7, 6, and 13):
   - CCSD[T], CCSDT[Q], CCSDTQ[P], ..., CC(n-1)[n]
   - CCSDT[Q]/A, CCSDTQ[P]/A, ..., CC(n-1)[n]/A
   - CCSDT[Q]/B, CCSDTQ[P]/B, ..., CC(n-1)[n]/B
   - CCSD(T), CCSDT(Q), CCSDTQ(P), ..., CC(n-1)(n)
   - CCSDT(Q)/A, CCSDTQ(P)/A, ..., CC(n-1)(n)/A
   - CCSDT(Q)/B, CCSDTQ(P)/B, ..., CC(n-1)(n)/B
   - CCSD(T)A, CCSDT(Q)A, CCSDTQ(P)A, ..., CC(n-1)(n)A
   - CCSDT-1a, CCSDTQ-1a, CCSDTQP-1a, ..., CC(n)-1a
   - CCSDT-1b, CCSDTQ-1b, CCSDTQP-1b, ..., CC(n)-1b
   - CC2, CC3, CC4, CC5, ..., CCn
   - CCSDT-3, CCSDTQ-3, CCSDTQP-3, ..., CC(n)-3

10. multi-reference CI approaches (Ref. 2)

11. multi-reference CC approaches using a state-selective ansatz (Ref. 2)

12. arbitrary single-reference linear-response (equation-of-motion, EOM)
    CC methods (Ref. 5): LR-CCSD (EOM-CCSD), LR-CCSDT (EOM-
    CCSDT), LR-CCSDTQ (EOM-CCSDTQ), LR-CCSDTQP (EOM-CC-
    SDTQP), ..., LR-CC(n) [EOM-CC(n)]

13. linear-response (equation-of-motion) MRCC schemes (Ref. 5)

14. DFT/WFT embedding (Ref. 29): DFT-in-DFT, WFT-in-DFT, WFT-
    in-WFT, and WFT-in-WFT-in-DFT embedding (where WFT stands
    for wave function theory); currently embedding is only available for
    closed-shell systems using density-fitting; LDA, GGA, meta-GGA, or
    hybrid functionals can be used as the DFT method; any WFT method
    implemented in Mrcc can by used in WFT-in-DFT type embedding
    calculations; WFT-in-WFT multi-level methods (via keyword corembed)
    is only available for local correlation methods.

The CI and CC approaches listed above are available with RHF, UHF, and
standard/semi-canonical ROHF orbitals. Density fitting with CI or CC is
currently enabled only for RHF references. For the perturbative CC ap-
proaches with ROHF reference determinant, for theoretical reasons, semi-
canonical orbitals are used (see Ref. 13).
Features available via interfaces

1. The CI and CC approaches listed above are also available with the following interfaces and references.

   - RHF: Cfour, Columbus, and Molpro
   - ROHF, standard orbitals: Cfour, Columbus, and Molpro
   - ROHF, semi-canonical orbitals: Cfour
   - UHF: Cfour, and Molpro
   - MCSCF: Columbus and Molpro

2. QM/MM calculations can be performed by the Amber interface using any method implemented in Mrcc for the QM region.

Notes

1. Single-point calculations are also possible with several types of relativistic Hamiltonians and reference functions, see Sect. 6.7 for more details.

2. Reduced-scaling approaches for the above CC and CI methods are available (Ref. 19). See Sect. 6.8 for details.

3. Local CC approaches for arbitrary single-reference and perturbative coupled-cluster models, local MP2 approaches, and local dRPA are available (Refs. 20, 22, 27, 28, 32, and 35). See Sect. 6.8 for details.

4. CCn calculations with ROHF orbitals are not possible for theoretical reasons, see Ref. 13 for explanation.

5. Single-point CI and CC calculations are, in principle, possible with RKS and UKS orbitals.

6.2 Geometry optimizations and first-order properties

Available methods

Geometry optimizations and first-order property calculations can be performed using analytic gradient techniques with the following methods.

1. conventional and DF (RI) HF-SCF (Ref. 22): RHF and UHF
2. conventional and DF (RI) DFT (Ref. 24): RKS and UKS with LDA, GGA, meta-GGA (depending only on kinetic-energy density), and hybrid functionals as well as dispersion corrections

3. double hybrid density functional methods, such as B2PLYP, B2PLYP-D3, B2GPPLYP, etc. (current limitations: only MP2 correlation, closed shell RKS, no spin-component scaling, no meta-GGA functionals, only DH functionals for which the DFT contribution to the energy is stationary with respect to the variation of the MO coefficients)

4. DF-MP2 (RI-MP2), currently only for RHF references (Ref. 24)

5. arbitrary single-reference coupled-cluster methods (Refs. 1 and 3): CCSD, CCSDT, CCSDTQ, CCSDTQP, ..., CC(n)

6. arbitrary single-reference configuration-interaction methods (Refs. 1 and 3): CIS, CISD, CISDT, CISDTQ, CISDTQP, ..., CI(n), ..., full CI

7. multi-reference CI approaches (Refs. 2 and 3)

8. multi-reference CC approaches using a state-selective ansatz (Refs. 2 and 3)

9. arbitrary single-reference linear-response (equation-of-motion, EOM) CC methods (Refs. 3 and 5): LR-CCSD (EOM-CCSD), LR-CCSDT (EOM-CCSDT), LR-CCSDTQ (EOM-CCSDTQ), LR-CCSDTQP (EOM-CCSDTQP), ..., LR-CC(n) [EOM-CC(n)]

10. linear-response (equation-of-motion) MRCC schemes (Refs. 3 and 5)

Currently only unrestricted geometry optimizations are possible, and electric dipole, quadrupole, and octapole moments as well as the electric field at the atomic centers can be evaluated. In addition, Mulliken, Löwdin, and intrinsic atomic orbital (IAO) atomic charges, and Mayer bond orders can be computed using the SCF wave functions. Analytic gradients for the CI and CC methods listed above are available with RHF, UHF, and standard ROHF orbitals without density fitting.

The following keywords are available to control the optimization process:

optalg – to select an algorithm for the optimization

optmaxit – maximum number of iterations allowed

optetol – convergence criterion for energy change
optgtol – convergence criterion for the gradient change

optstol – convergence criterion for the step-size

The optimization will be terminated and regarded as successful when the maximum gradient component becomes less than optgtol and either an energy change from the previous step is less than optetol or the maximum displacement from the previous step is less than optstol. For their detailed description see Sect. 12.

Features available via interfaces

1. The implemented analytic gradients for the CI and CC approaches listed above can also be utilized via the Cfour and Columbus interfaces with the following references.

   - RHF: Cfour and Columbus
   - ROHF, standard orbitals: Cfour and Columbus
   - UHF: Cfour
   - MCSCF: Columbus

In addition to geometries, most of the first-order properties (dipole moments, quadrupole moments, electric field gradients, relativistic contributions, etc.) implemented in Cfour and Columbus can be calculated with Mrcc.

2. QM/MM geometry optimizations and MD calculations can be performed by the Amber interface using any method implemented in Mrcc for which analytic gradients are available.

Notes

1. Geometry optimizations and first-order property calculations can also be performed via numerical differentiation for all methods available in Mrcc using the Cfour interface.

2. Analytic gradients are also available with several types of relativistic Hamiltonians and reference functions, see Sect. 6.7 for more details.
6.3 Harmonic frequencies and second-order properties

Available methods

Harmonic vibrational frequencies, infrared (IR) intensities, and ideal gas thermodynamic properties can be evaluated using numerically differentiated analytic gradients for all the methods listed in Sect. 6.2.

Features available via interfaces

CC and CI harmonic frequency and second-order property calculations for RHF and UHF references can also be performed using analytic second derivatives (linear response functions) with the aid of the CFour interface. Analytic Hessians (LR functions) are available for the following approaches.

1. arbitrary single-reference coupled-cluster methods (Refs. 1, 3, 4, 9, 10, and 14): CCSD, CCSDT, CCSDTQ, CCSDTQP, . . . , CC(n)
2. arbitrary single-reference configuration-interaction methods (Refs. 1, 3, and 4): CIS, CISD, CISDT, CISDTQ, CISDTQP, . . . , CI(n), . . . , full CI
3. multi-reference CI approaches (Refs. 2, 3, and 4)
4. multi-reference CC approaches using a state-selective ansatz (Refs. 2, 3, 4, and 9)

In addition to harmonic vibrational frequencies [4], the analytic Hessian code has been tested for NMR chemical shifts [4], static and frequency-dependent electric dipole polarizabilities [9], magnetizabilities and rotational \( g \)-tensors [10], electronic \( g \)-tensors [14], spin-spin coupling constants, and spin rotation constants. These properties are available via the CFour interface.

Notes

1. Using the CFour interface harmonic frequency calculations are also possible via numerical differentiation of energies for all implemented methods with RHF, ROHF, and UHF orbitals.
2. Using the CFour or the Columbus interface harmonic frequency calculations are also possible via numerical differentiation of analytic gradients for all implemented methods for which analytic gradients are available (see Sect. 6.2 for a list of these methods). With CFour the calculation of static polarizabilities is also possible using numerical differentiation.
3. NMR chemical shifts can be computed for closed-shell molecules using
gauge-including atomic orbitals and RHF reference function.

6.4 Higher-order properties

Features available via interfaces

Third-order property calculations can be performed using analytic third
derivative techniques (quadratic response functions) invoking the Cfour inter-
face for the following methods with RHF and UHF orbitals.

1. arbitrary single-reference coupled-cluster methods (Refs. 1, 3, 4, 11, 
and 12): CCSD, CCSDT, CCSDTQ, CCSDTQP, ..., CC(n)

2. multi-reference CC approaches using a state-selective ansatz (Refs. 2, 
3, 4, 11, and 12)

Notes

1. The analytic third derivative code has been tested for static and frequency-
dependent electric-dipole first (general, second-harmonic-generation, 
optical-rectification) hyperpolarizabilities [11] and Raman intensities 
[12]. Please note that the orbital relaxation effects are not considered 
for the electric-field. These properties are available via the Cfour inter-
face.

2. Using the Cfour interface anharmonic force fields and the correspond-
ing spectroscopic properties can be computed using numerical differen-
tiation techniques together with analytic first and/or analytic second 
derivatives at all computational levels for which these derivatives are 
available (see Sect. 6.2 and 6.3 for a list of these methods).

6.5 Diagonal Born-Oppenheimer corrections

Features available via interfaces

Diagonal Born-Oppenheimer correction (DBOC) calculations can be per-
formed using analytic second derivative techniques via the Cfour inter-
face for the following methods with RHF and UHF references.

1. arbitrary single-reference coupled-cluster methods (Refs. 1, 3, 4, and 
8): CCSD, CCSDT, CCSDTQ, CCSDTQP, ..., CC(n)
2. arbitrary single-reference configuration-interaction methods (Refs. 1, 3, 4, and 8): CIS, CISD, CISDT, CISDTQ, CISDTQP, \ldots, CI(n), \ldots, full CI

3. multi-reference CI approaches (Refs. 2, 3, 4, and 8)

4. multi-reference CC approaches using a state-selective ansatz (Refs. 2, 3, 4, and 8)

### 6.6 Electronically excited states

**Available methods**

Excitation energies, first-order excited-state properties, and ground to excited-state transition moments can be computed as well as excited-state geometry optimizations can be performed using linear response theory and analytic gradients with the following methods.

1. arbitrary single-reference linear-response CC methods (Refs. 1, 3, and 5): LR-CCSD, LR-CCSDT, LR-CCSDTQ, LR-CCSDTQP, \ldots, LR-CC(n)

2. linear-response MRCC schemes (Refs. 2, 3, and 5)

3. arbitrary single-reference configuration-interaction methods (Refs. 1, 3, and 5): CIS, CISD, CISDT, CISDTQ, CISDTQP, \ldots, CI(n), \ldots, full CI

4. multi-reference CI approaches (Refs. 2, 3, and 5)

Excitation energy and property calculations for the aforementioned methods are available with RHF, UHF, and standard ROHF orbitals. Density fitting is only possible for RHF-based single point calculations. So far electric and magnetic dipole transition moments, both in the length and the velocity gauge, as well as the corresponding oscillator and rotator strengths have been implemented. For the list of implemented first-order properties see Sect. 6.2.

Excitation energies can also be computed for closed-shell systems using the density fitting approximation and RHF (RKS) orbitals with the following methods (Refs. 31 and 33).

1. time-dependent HF (TD-HF), Tamm–Dancoff approximation (TDA),
time-dependent DFT (TD-DFT)

2. second-order coupled-cluster singles and doubles (CC2) method
3. iterative doubles correction to configuration interaction singles \([\text{CIS}(D_{\infty})]\) method

4. second-order algebraic diagrammatic construction \([\text{ADC}(2)]\) approach

Ground to excited-state transition moments are available for TD-HF, TDA, TD-DFT, and ADC(2). For the CIS, TD-HF, TDA, TD-DFT, CC2, CIS\((D_{\infty})\), and ADC(2) methods an efficient reduced-cost approach is also implemented, see Sect. 6.8 for details.

**Features available via interfaces**

Excitation energies, first-order excited-state properties, and ground to excited-state transition moments can also be calculated as well as excited-state geometry optimizations can also be carried out using the following interfaces and reference states.

- **RHF**: Cfour, Columbus, and Molpro (only excitation energy)
- **ROHF**, standard orbitals: Cfour, Columbus, and Molpro (only excitation energy)
- **UHF**: Cfour and Molpro (only excitation energy)
- **MCSCF**: Columbus and Molpro (only excitation energy)

**Notes**

1. Please note that for excitation energies and geometries LR-CC methods are equivalent to the corresponding EOM-CC models. It is not true for first-order properties and transition moments.

2. With CI methods excited to excited-state transition moments can also be evaluated.

3. Excited-state harmonic frequencies can be evaluated for the above methods with the help of numerical differentiation of analytical gradients, see Sect. 6.3.

4. Excited-state harmonic frequencies can also be calculated for the above methods via numerical differentiation using the Cfour or Columbus interface.

5. Excited-state harmonic frequencies and second-order properties can be evaluated for CI methods using analytic second derivatives and the Cfour interface.
6.7 Relativistic calculations

Treatment of special relativity in single-point energy calculations is possible for all the CC and CI methods listed in Sect. 6.1 using various relativistic Hamiltonians with the following interfaces.

1. With **MOLPRO** relativistic calculations can be performed with Douglas-Kroll-Hess Hamiltonians using RHF, UHF, ROHF, and MCSCF orbitals. The interface also enables the use of effective core potentials (see **MOLPRO**’s manual for the specification of the Hamiltonian and effective core potentials).

2. With **Cfour** exact two-component (X2C) and spin-free Dirac–Coulomb (SF-DC) calculations can be performed. The evaluation of mass-velocity and Darwin corrections is also possible using analytic gradients for all the methods and reference functions listed in Sect. 6.2. (See the description of the RELATIVISTIC keyword in the Cfour manual for the specification of the Hamiltonian.)

3. With **DIRAC** relativistic calculations can be carried out with the full Dirac–Coulomb Hamiltonian and several approximate variants thereof using Kramers-paired Dirac–Fock orbitals. See Refs. 16 and 18 as well as Sect. 5.3 for more details.

Treatment of special relativity in analytic gradient calculations is possible for all the CC and CI methods listed in Sect. 6.2 using various relativistic Hamiltonians with the following interfaces.

1. With **Cfour** analytic gradient calculations can be performed with the exact two-component (X2C) treatment.

2. With **DIRAC** unrelaxed first-order properties can be computed using the Dirac–Coulomb Hamiltonian. See Ref. 16 and Sect. 5.3 for more details.

6.8 Reduced-scaling and local correlation calculations

Orbital transformation techniques

The computational expenses of the CC and CI methods listed in Sect. 6.1 can be reduced via orbital transformation techniques (Ref. 19). In this framework, to reduce the computation time the dimension of the properly transformed virtual one-particle space is truncated. Currently optimized virtual orbitals (OVOs) or MP2 natural orbitals (NOs) can be chosen. This
technique is recommended for small to medium-size molecules. This scaling reduction approach is available using RHF or UHF orbitals. See the description of keywords ovirt, eps, and ovosnorb for more details.

Natural auxiliary functions

The cost of density-fitting methods can be reduced using natural auxiliary functions (NAFs) introduced in Ref. 24. The approach is very efficient for dRPA, but considerable speedups can also be achieved for MP2 and CC2. See the description of keywords naf_cor and naf_scf for more details.

Orbital transformation techniques for excited states

The computational expenses of CIS, TD-HF, TDA, TD-DFT, CIS(D∞), CC2, and ADC(2) excited-state calculations can be efficiently reduced using state-averaged NOs and NAFs (Refs. 31 and 33). See the description of keyword redcost_exc for more details.

Local correlation methods

The cost of MP2, dRPA, SOSEX as well as single-reference iterative and perturbative coupled-cluster calculations can be reduced for large molecules by the local natural orbital CC (LNO-CC) approach (Refs. 20, 22, 27, 28, 32, and 35). This method combines ideas from the cluster-in-molecule approach of Li and co-workers [37], the incremental approach of Stoll et al. [38], domain- and pair approximations introduced first by Pulay et al. (see, e.g., Ref. 39) with frozen natural orbital, natural auxiliary function, and Laplace transform techniques. It is currently available only for closed-shell molecules using RHF (RKS) orbitals. See the description of keywords localcc, lnoepso, lnoepsv, domrad, lmp2dens, dendec, nchol, osveps, spairtol, wpairtol, laptol, lccrest, and lccorthr for further details.

Multi-level local correlation methods

Utilizing the above local correlation techniques a multi-level scheme is defined in which the LMOs are classified as active or environment (Ref. 29). The contributions of these LMOs to the total correlation energy are evaluated using different models for the two subsystems, for instance, one can choose a LNO-CC model for the active subsystem and LMP2 for the environment. See the description of keyword corembed for further details.
6.9 Optimization of basis sets

The optimization of basis set’s exponents and contraction coefficients can be performed with any method for which single-point energy calculations are available (see Sect. 6.1). The implementation is presented in Ref. 25. The related keywords are

- **basopt** – to turn on/off basis set optimization
- **optalg** – to select an algorithm for the optimization
- **optmaxit** – maximum number of iterations allowed
- **optetol** – convergence criterion for energy change
- **optstol** – convergence criterion for parameter (exponent, contraction coefficient) change

For their detailed description see Sect. 12.

For the optimization of basis sets it is important to know the format for the storage of the basis set parameters. In MRCC the format used by the CFOUR package is adapted. The format is communicated by the following example.
In a basis set optimization process you need two files in the working directory: the appropriate MINP file with the basopt keyword set and a user supplied GENBAS file that contains the basis set information in the above format. You do not need to write the GENBAS file from scratch, you can use the files in the BASIS directory of MRCC to generate one or you can use the Environmental Molecular Sciences Laboratory (EMSL) Basis Set Library [40–42] to download a basis in the appropriate form (AcesII format). Note that you can optimize several basis sets at a time: all the basis sets which are added to the GENBAS file will be optimized.

You can perform unconstrained optimization when all the exponents and contraction coefficients are optimized except the ones which are exactly 0.0 or 1.0. Alternatively, you can run constrained optimizations when particular
exponents/coefficients or all exponents and coefficients for a given angular momentum quantum number are kept fixed during the optimization. The parameters to be optimized can be specified in the GENBAS file as follows.

1. Unconstrained optimization: no modifications are needed—by default all exponents and contraction coefficients will be optimized except the ones which are exactly 0.0 or 1.0.

2. Constrained optimization: by default all the exponents and coefficients will be optimized just as for the unconstrained optimization. To optimize/freeze particular exponents or coefficients special marks should be used:

- use the “---” mark (without quotes) if you want to keep an exponent or coefficient fixed during the optimization. You should put this mark right after the fixed parameter (no blank space is allowed). If this mark is attached to an angular momentum quantum number, none of the exponents/coefficients of the functions in the given shell will be optimized except the ones which are marked by “++”.
- use the “++” mark (without quotes) if you want a parameter to be optimized. Then you should put this mark right after it (no blanks are allowed). You might wonder why this is needed if the default behavior is optimization. Well, this makes life easier. If you want to optimize just a few parameters, it is easier to constrain all parameters first then mark those, which are needed to be optimized (see the example below).

Examples:

1. To reoptimize all parameters in the above basis set but the exponents and coefficients of s-type functions you should copy the basis set to the GENBAS file and put mark “---” after the angular momentum quantum number of 0. The first lines of the GENBAS file:

```
C:6-31G
Pople’s Gaussian basis set

2
0-- 1
3 2
10 4

3047.5249 457.36952 ...
```
2. Both s- and p-type functions are fixed but the first s-exponent:

\[
\begin{array}{c}
C:6-31G \\
Pople's Gaussian basis set \\
2 \\
0-- 1-- \\
3 2 \\
10 4 \\
3047.5249++ 457.36952 \\
\end{array}
\]

During the optimization the GENBAS file is continuously updated, and if the optimization terminated successfully, it will contain the optimized values (in this case it is equivalent to the GENBAS.opt file, see below, the only difference is that the file GENBAS.opt may contain the special marks, i.e., “++”, “--”). Further files generated in the optimization are:

- **GENBAS.init** – the initial GENBAS file saved
- **GENBAS.tmp** – temporary file, updated after each iteration, can be used to restart conveniently a failed optimization process
- **GENBAS.opt** – this file contains the optimized parameters after a successful optimization.

## 7 Installation

### 7.1 Installation of pre-compiled binaries

After registration at the MRCC homepage pre-built, statically-complied binaries are available in the download area. To install these executables Linux operating system and the 2.5 or later version of the GNU C Library (glibc) is required. The binaries are provided in a gzipped tar file, `mrcc.YYYY-MM-DD.binary.tar.gz`, where `YYYY-MM-DD` is the release date of the program. Note that you will find several program versions on the homepage. Unless there are overriding reasons not to do so, please always download the last version. To unpack the file type

```
tar xvzf mrcc*.binary.tar.gz
```

Please do not forget to add the name of the directory where the executables are placed to your PATH environmental variable.
7.2 Installation from source code

To install Mrcc from source code some version of the Unix operating system, Fortran 90 and C++ compilers as well as BLAS (basic linear algebra subprograms) and LAPACK (linear algebra package) libraries are required. Optionally, Mrcc can also be linked with the Libxc library of density functionals [43, 44]. Please be sure that the directories where the compilers are located are included in your PATH environmental variable. Please also check your LD_LIBRARY_PATH environmental variable, which must include the directories containing the BLAS and LAPACK libraries.

After registration at the Mrcc homepage the program can be downloaded as a gzipped tar file, mrcc.YYYY-MM-DD.tar.gz, where YYYY-MM-DD is the release date of the program. Note that you will find several program versions on the homepage. Unless there are overriding reasons not to do so, please always download the last version. To unpack the file type

```bash
tar xzvf mrcc*.tar.gz
```

To install Mrcc run the build.mrcc script as

```bash
```

`<compiler>` specifies the compiler to be used. Currently the supported compiler systems are:

- **Intel** Intel compiler
- **GNU** GNU compiler (g77 or gfortran)
- **PGF** Portland Group Fortran compiler
- **G95** G95 Fortran 95 compiler
- **PATH** Pathscale compiler
- **HP** HP Fortran Compiler
- **DEC** Compaq Fortran Compiler (DEC machines)
- **XLF** XL Fortran Compiler (IBM machines)
- **Solaris10** Sun Solaris10 and Studio10 Fortran Compiler (AMD64)

If the build.mrcc script is invoked without specifying the `<compiler>` variable, a help message is displayed.

Optional arguments:

- `-i` specifies if 32- or 64-bit integer variables are used. Accordingly, `<option1>` can take the value of 32 or 64. The 32-bit integer version is not sup-
ported any more.  
Default: 64 for 64-bit machines, 32 otherwise.

-p generates parallel code using message passing interface (MPI) or OpenMP technologies. Accordingly, <option2> can take the MPI or OMP values. MPI parallelization is available with the PGF, Intel, GNU, and Solaris10 compilers, while OpenMP parallelization has been tested with PGF, Intel, GNU, and HP compilers. Please note that currently the two parallelization schemes cannot be combined.  
Default: no parallelization.

-g source codes are compiled with debugging option (use this for development purposes)  
Default: no debugging option.

-d source codes are compiled for development, no optimization is performed (use this for development purposes)  
Default: codes are compiled with highest level optimization.

-f specifies the installation folder. Executables, basis set libraries, and test jobs will be copied to directory <folder>. If this flag is not used, you will find the executables, etc. in the directory where you perform the installation.

-l Mrcc is linked with an external library, currently the only option for <library> is libxc, which requires the installation of the Libxc library, see notes below.

Notes:

1. After the installation please do not forget to add the directory where the Mrcc executables are located to your PATH environmental variable. This is the <folder> directory if you used the -f flag at the installation, otherwise the directory where you executed the build.mrcc script.

2. The build.mrcc script has been tested on several platforms with several versions of the supported compilers and libraries. Nevertheless you may need to customize the compiler flags, names of libraries, etc. These data can be found in the build.mrcc.config file, please edit this file if necessary. Please do not change build.mrcc.

3. To ensure the best performance of the software the use of Intel compiler is recommended.
4. If you use MRCC together with MOLPRO, you can also use the MOLPRO installer to install MRCC, please follow the instructions in the MOLPRO manual (www.molpro.net).

5. If MRCC is linked with the LIBXC library, LIBXC must be installed before starting the installation of MRCC. Note that you must compile LIBXC with the same Fortran compiler as used for the installation of MRCC. At the installation of LIBXC it is recommended to set the installation path of LIBXC (\texttt{--prefix} option of \texttt{configure}) to the directory where the installation of MRCC is carried out, otherwise please set the \texttt{LIBS_LIBXC} environmental variable to the installation path of LIBXC before running \texttt{build.mrcc}. See the manual for the LIBXC project for details [44], as well as the examples below. The current release of MRCC has been tested with the 4.0.3 version of LIBXC.

Examples:

1. Compile MRCC for OpenMP parallel execution with the Intel compiler (recommended):
   \begin{verbatim}
   build.mrcc Intel -pOMP
   \end{verbatim}

2. Compile MRCC for OpenMP parallel execution with the Intel compiler and install it to the /prog/mrcc directory (recommended):
   \begin{verbatim}
   build.mrcc Intel -pOMP -f/prog/mrcc
   \end{verbatim}

3. Compile MRCC for OpenMP parallel execution with the Intel compiler and link with the LIBXC library supposing that MRCC is compiled in the /prog/mrcc directory (recommended):
   Download the LIBXC library (libxc*.tar.gz) from the homepage of the LIBXC project [44].
   \begin{verbatim}
   tar xvzf libxc*.tar.gz
   cd libxc*
   ./configure --prefix=/prog/mrcc/ FC=ifort
   make
   make install
   cd /prog/mrcc
   build.mrcc Intel -pOMP -llibxc
   \end{verbatim}

4. Compile MRCC for serial execution with the Intel compiler:
   \begin{verbatim}
   build.mrcc Intel
   \end{verbatim}

5. Compile MRCC for parallel execution using MPI environment with the Intel compiler for 32-bit machines:
   \begin{verbatim}
   build.mrcc Intel -i32 -pMPI
   \end{verbatim}
7.3 Installation under Windows

Under the Windows operating system the pre-built binaries cannot be directly executed, and the direct compilation of the source code has not been attempted so far. For Windows users we recommend the use of virtualization software packages, such as VirtualBox, which allow Linux as a guest operating system. In that environment Mrcc can be installed in the normal way as described in the previous subsections.

8 Testing Mrcc

Once you have successfully installed Mrcc, you may wish to test the correctness of the installation. For that purpose numerous test jobs are at your disposal. The corresponding input files can be found in the MTEST directory created at the installation, where a test script, mtest, is also available. Your only task is to change to the MTEST directory and execute the mtest script. (Please do not forget to add the directory where the Mrcc executables are located to your PATH environmental variable.) The test jobs will be automatically executed and you will receive feedback about the results of the tests. The corresponding output files will be left in the MTEST directory, and you can also check them. If all the tests complete successfully, your installation is correct with high probability.

The execution of the test jobs will take for a couple of hours. If you want to run the test on another machine, e.g., on a node of a cluster, you should copy the entire MTEST directory to that machine and start the mtest script there.

Please note that there are some test jobs that allocate a small amount of memory to test the out-of-core algorithms of the program (MINP_*smallmem). If you run these test jobs with OpenMP-parallelized executables (i.e., the build.mrcc script was run with the -pOMP switch) on more than two cores, some of them will fail since the memory requirement for OpenMP-parallel runs grows with the number of cores. In this case the failure of these tests does not indicate a problem with your installation.

We note that currently the mtest script does not support MPI. The MPI jobs stop at some point and require the manual execution of mrcc with mpirun (see Sect. 9.3). The mtest script is not prepared for such jobs and will return with an error message. To test your installation you should collect a couple of such jobs and run them manually.

If you do not use Libxc, the test jobs requiring the library (jobs *Libxc*) will fail. You can ignore this or, to avoid it, delete files *Libxc* from the
Please also note that you can also create your own test jobs, e.g., if you modify the code, compile the program with new compiler versions, or use unusual combination of keywords. To that end you should calculate a reliable energy for your test job (e.g., using a stable compiler version) include the test keyword and the calculated energy to the MINP file (see the description of the keyword for more details), and copy the MINP file to the MTEST directory renaming it as MINP_<job_name>. Then the new job will be automatically executed when the mtest script is invoked next time.

9 Running Mrcc

Please be sure that the directory where the Mrcc executables are located are included in your PATH environmental variable. Note that the package includes several executables, and all of them must be copied to the aforementioned directory, not only the driver program dmrcc. Please also check your LD_LIBRARY_PATH environmental variable, which must include the directories containing the libraries linked with the program. This variable is usually set before the installation, but you should not change by removing the names of the corresponding directories. Please do not forget to copy the input file MINP (see Sect. 11) to the directory where the program is invoked.

9.1 Running Mrcc in serial mode

To run Mrcc in serial the user must invoke the driver of the package by simply typing

```
dmrcc
```

on a Unix console. To redirect the input one should execute dmrcc as

```
dmrcc > out
```

where out is the output file.

9.2 Running Mrcc in parallel using OpenMP

Several executables of the package can be run in OpenMP parallel mode, hence it is recommended to use this option on multiprocessor machines.

The pre-built binaries available at the Mrcc homepage support OpenMP-parallel execution. If you prefer source-code installation, to compile the program for OpenMP parallel execution you need to invoke the build.mrcc script with the -pOMP option at compilation (see Sect. 7). The OpenMP parallelization has been tested with PGF, Intel, GNU, and HP compilers.
Please be careful with other compilers, run, e.g., our test suite (see Sect. 8) with the OpenMP-complied executables before production calculations.

To run the code with OpenMP you only need to set the environmental variable `OMP_NUM_THREADS` to the number of cores you want to use. E.g., under Bourne shell (bash):

```bash
export OMP_NUM_THREADS=4
```

Then the program should be executed as described above.

### 9.3 Running MRCC in parallel using MPI

Currently only executable `mrcc` can be run in parallel using MPI technology. To compile the program for MPI parallel execution you need to invoke the `build.mrcc` script with the `-pMPI` option at compilations (see Sect. 7). It has been tested with the PGF, Intel, GNU, and Solaris compilers as well as the Open MPI and local area multicomputer MPI (LAM/MPI) environments.

To execute `mrcc` using MPI you should follow the following steps. Prepare input files as usual. Execute `dmrcc`. The program will stop after some time with the message “Now launch `mrcc` in parallel mode!”

Then copy files `fort.1*` and `fort.5*` to the compute nodes, and execute `mrcc` using `mpirun`. E.g. (with Open MPI):

```bash
for i in 'cat myhosts'
do
  scp fort.1* fort.5* $i:/scr/$USER/
done
mpirun --nolocal --hostfile myhosts -wdir /scr/$USER/ -np 10 mrcc
```

In the above script it is supposed that the user has a file named `myhosts` with the names of the compute nodes, and that the user has a temporary directory, `/scr/$USER/`, on each node. The script will execute `mrcc` on 10 nodes specified in `myhosts`, no program is executed on the submit node.

### 10 The programs of the suite

In this section we discuss the major characteristics of the programs of the MRCC package, and also provide some information about their use and the corresponding outputs.

`dmrcc` Driver for the program system. It calls the programs of the suite (except `build.mrcc`). It is recommended to run always `dmrcc`, but advanced users may run the programs one-by-one (e.g., for the purpose of debugging). See also Sect. 9 for further details.
minp Input reader and analyzer. This program reads the input file MINP, checks keywords, options, and dependencies; sets default values for keywords.

integ An open-ended atomic orbitals integral code. This code reads and analyzes the molecular geometry, reads the basis sets, and calculates one- and two-electron integrals as well as property integrals over Gaussian-type atomic orbitals. Both the Obara–Saika and the Rys quadrature schemes are implemented for the evaluation of two-electron integrals. In principle integrals over basis functions of arbitrary high angular momentum can be evaluated using the Obara–Saika algorithm.

scf Hartree–Fock and Kohn–Sham SCF code. It solves the RHF, UHF, ROHF, RKS, or UKS equations using either conventional or direct SCF techniques. It also performs the semi-canonicalization of orbitals (if requested) for ROHF wave functions.

orbloc Orbital localization program. It performs the localization of MOs using the Cholesky, Boys, or generalized Boys procedures. It also constructs the domains for local correlation calculations.

drpa An efficient three-index integral transformation, density-fitting MP2, RPA, dRPA, SOSEX, and RPAX2 code. The dRPA method is implemented using the modified algorithm of Ref. 45, which scales as the fourth power of the system size, see Ref. 24.

mulli Domain construction for local correlation calculations. It assigns the localized MOs (LMOs) to atoms using the Boughton–Pulay method, and for each occupied LMO it constructs a domain of occupied and virtual LMOs on the basis of their spatial distance. Projected atomic orbitals (PAOs) are also constructed if requested.

ovirt Integral transformation and orbital optimization code. This program performs the four-index integral transformations of AO integral for correlation calculations. It also carries out the construction of optimized virtual orbitals (OVOs) or MP2 natural orbitals in the case of reduced-cost CC calculations.

ccsd A very fast, hand-coded, MO-integral-based CCSD and CCSD(T) code. The code has been optimized for local CC calculations but can also be used for conventional CC calculations. Currently it only functions for closed-shell systems, and the spatial symmetry is not utilized.
**cis** A very fast, hand-coded, integral direct DF CIS, TDA, TD-DFT, ADC(2), CIS(D∞), and CC2 code. Currently it only works for closed-shell systems, and the spatial symmetry is not utilized.

**prop** This program solves the CPHF/KS equations, constructs relaxed density matrices, calculates first-order molecular properties and Cartesian gradients.

**qmmod** Interface program for QM/MM and embedding calculations.

**goldstone** This program generates the formulas for mrcc. The program also estimates the memory requirement of the calculation. This is a very crude (the symmetry and spin is not treated exactly) but quick estimate. The real memory requirement, which is usually much smaller, is calculated by xmrcc after the termination of goldstone.

**xmrcc** It calculates the exact memory requirement for mrcc. Note that it may take a couple of minutes for complicated wave functions (e.g., MRCC derivatives). It prints out five numbers at the end (in MBytes):

- **Real*8** Minimal and optimal memory for double-precision (real*8) arrays.
- **Integer** Memory allocated by mrcc for integer arrays.
- **Total ( = Real*8 + Integer)** The minimal and the optimal amount of total required memory. It is not worth starting the calculation if the real physical memory of the machine is smaller than the Minimal value. The performance of the program is optimal if it can use at least as much memory as the Optimal value. If the memory is between the Minimal and Optimal values, out-of-core algorithms will be executed for particular tasks, and it may result in slow down of the code. Please note that the memory available to the program can be specified by keyword mem (see page 94).

**mrcc** Automated, string-based many-body code. It performs the single-point energy as well as derivative calculations for general CC, LR-CC, and CI methods. Abelian spatial symmetry is utilized and a partial spin adaptation is also available for closed-shell systems.

**build.mrcc** Installation script of the suite. See Sect. 7 for a detailed description.
11 Input files

The input file of the MRCC package is the MINP file. This file must be placed in the directory where the program is invoked. In addition, if you use your own basis sets (see keyword basis), angular integration grids for DFT calculations (see keyword agrid), or Laplace-quadrature for Laplace transform calculations (see keyword dendec), you may also need the GENBAS file, and then it must be also copied to the above directory.

In general, the execution of MRCC is controlled by keywords. The list of the keywords is presented in Sect. 12. The keywords and the corresponding options must be given in the MINP file as

\[ \text{<keyword> [=<option>] } \]

\[ \text{...} \]

You can add only one keyword per line, but there are keywords which require multiple-line input, and the corresponding variables must be specified in the subsequent lines as

\[ \text{<keyword> [=<option>] } \]
\[ \text{<input record 1>} \]
\[ \text{<input record 2>} \]
\[ \text{...} \]
\[ \text{<input record n>} \]
\[ \text{...} \]

The input is not case-sensitive. Any number of lines can be left blank between two items, however, if a keyword requires multiple-line input, the lines including the keyword and its input records cannot be separated. Under similar conditions any line can be used for comments, but the beginning of a comment line must not be identical to a keyword because that line may be identified as a keyword by the input reader and misinterpreted. Thus it is recommended to start comment lines with some special character, e.g., hash mark.

Please note that you can find input files for numerous test jobs in the MTEST directory created at the installation of MRCC (see Sect. 8). The input files have self-explanatory names and also include a short description at the beginning. You should look at these files for examples for the structure of the input file and the use of various keywords. You can use these files as templates, but please note that these files have been created to thoroughly check the correctness of the code and the installation, and thus some of them contain very tight convergence thresholds as well as unusual combination of (auxiliary) basis sets. In production calculations you should use the de-
fault convergence thresholds (i.e., delete the lines including keywords itol, scftol, cctol, etc.), select the basis set carefully (i.e., set the appropriate option for keyword basis), and use the default auxiliary basis sets (i.e., delete the lines including keywords dfbasis.scf or dfbasis.cor). Please also do not forget to remove keyword test and to specify the amount of memory available to the program by setting the mem keyword.

12 Keywords

In this section the keywords of the Mrcc input file are listed in alphabetical order.

active The active orbitals for multi-reference (active-space) CI/CC calculations can be specified using this keyword. Note that this keyword overwrites the effect of keywords nacto and nactv.

Options:

- none All orbitals are inactive (i.e., single-reference calculation).
- serialno Using this option one can select the active orbitals specifying their serial numbers. The latter should be given in the subsequent line as < n_1 >, < n_2 >, ..., < n_k >, < n_l >, ..., where n_i’s are the serial numbers of the correlated orbitals. Serial numbers separated by dash mean that < n_k > through < n_l > are active. Note that the numbering of the orbitals is relative to the first correlated orbital, that is, frozen orbitals are excluded.
- vector Using this option one can set the active/inactive feature for each correlated orbital. In the subsequent line an integer vector should be supplied with as many elements as the number of correlated orbitals. The integers must be separated by spaces. Type 1 for active orbitals and 0 for inactive ones.

Default: active=none

Examples:

1. We have 20 correlated orbitals. Orbitals 1, 4, 5, 6, 9, 10, 11, 12, and 14 are active. Using the serialno option the input should include the following two lines:

   active=serialno
   1,4-6,9-12,14
2. The same using the vector option:
   \[
   \text{active=vector}
   \]
   \[
   1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0
   \]

agrid Specifies the angular integration grid for DFT calculations. The grid construction follows the design principles of Becke [46], the smoothing function for the Voronoi polyhedra are adopted from Ref. 47 with \( m_\mu = 10 \). Angular grids are taken from the Grid file which is located in the BASIS directory created at the installation. By default, the 6-, 14-, 26-, 38-, 50-, 74-, 86-, 110-, 146-, 170-, 194-, 230-, 266-, 302-, 350-, 434-, 590-, 770-, 974-, 1202-, 1454-, and 1730-point Lebedev quadratures [46] are included in the file, which are labeled, respectively, by LD0006, LD0014, etc. In addition to the above grids, any angular integration grid can be used by adding it to the BASIS/Grid file or alternatively to the GENBAS file to be placed in the directory where MRCC is executed. The format is as follows. On the first line give the label of the grid as **XXNNNN**, where **XX** is any character and **NNNN** is the number of the grid points (see the above examples). The subsequent **NNNN** lines must contain the Cartesian coordinates and the weights for the grid points.

For the selection of the angular grids, by default, an adaptive scheme motivated by Ref. 48 is used. The angular grids are selected for each radial point so that the error in the angular integrals will not be larger than \( 10^{-\text{grrtol}} \). The important difference is that the grids are optimized for each atom separately to avoid discontinuous potential energy surfaces. For the construction of the radial integration grid see the description of keyword rgrid. See also the description of keyword grrtol.

Options:

- **<name of the grid>** the name of the quadrature as it is specified in the BASIS/Grid (or GENBAS) file. This angular quadrature will be used in each radial point.
- **LDMMMM-LDNNNN** An adaptive integration grid will be used. For each radial point, depending on its distance from the nucleus, a different Lebedev grid will be selected. The minimal and maximal number of points is MMMM and NNNN, respectively.

Default: agrid=LD0006-LD0590

Examples:

1. for a 974-point Lebedev grid set agrid=LD0974
2. to use an adaptive grid with at least 110 and at most 974 angular points set agrid=LD0110-LD0974
3. for a very fine grid use
   agrid=LD0110-LD0974
   grtol=12

**basis** Specifies the basis set used in all calculations. By default the basis sets are taken from the files named by the chemical symbol of the elements, which can be found in the BASIS directory created at the installation. The basis sets are stored in the format used by the Cfour package (see Sect. 6.9). In addition to the basis sets provided by default, any basis set can be used by adding it to the corresponding files in the BASIS directory. Alternatively, you can also specify your own basis sets in the file GENBAS which must be copied to the directory where Mrcc is executed.

**Options:**

- `<basis set label>`: If the same basis set is used for all atoms, the label of the basis set must be given.

- **atomtype**: If different basis set are used, but the basis sets are identical for atoms of the same type, `basis=atomtype` should be given, and the user must specify the basis sets for each atomtype in the subsequent lines as `<atomic symbol> : <basis set> .`

- **mixed**: Mixed basis sets will be used, that is, different basis sets will be used for different groups of atoms specified by their serial number. The number of groups, the basis sets, and corresponding atoms must be specified in the subsequent lines as

  `<number of groups>
   <basis set label 1> < n_1 >, < n_2 >, ..., < n_k >, < n_l >, ...
   <basis set label 2> < m_1 >, < m_2 >, ..., < m_k >, < m_l >, ...
   ...`

  where `n_i`'s, `m_i`'s, ... are the serial numbers of the atoms. Serial numbers separated by dash mean that atoms `< n_k >` through `< n_l >` are included.

- **embed**: A mixed basis set composed of two AO bases will be used in the case of an embedding calculation. It only works if keyword **embed** is also specified. The two basis sets must be given in the following two lines. The first basis will be used for the environment, while the second one is the AO basis for the embedded subsystem (see also the description of keyword **embed**).
corembed It is the same as embed, but the partitioning defined by keyword corembed will be used.

special In the general case, if different basis set are used for each atom, then one should give basis=special and specify the basis sets for each atom in the subsequent lines by giving the label of the corresponding basis sets in the order the atoms appear at the specification of the geometry.

Notes:

1. By default the following basis sets are available for elements H to Kr in MRCC:
   - Dunning’s correlation consistent basis sets [49–53]: cc-pVXZ, cc-pCVXZ, aug-cc-pVXZ, aug-cc-pCVXZ (X = D, T, Q, 5, 6)
   - the def2 Gaussian basis sets of Weigend and Ahlrichs [63]: def2-SV(P), def2-SVP, def2-TZVP, def2-TZVPP, def2-QZVP, def2-QZVPP
   - the augmented def2 Gaussian basis sets of Rappoport and Furche [64]: def2-SVPD, def2-TZVPD, def2-TZVPPD, def2-QZVPD, def2-QZVPPD
   - F12 basis sets for explicitly correlated wave functions developed by Peterson et al. [65]: cc-pVXZ-F12 (X = D, T, Q)
   - the Gaussian basis sets of Dunning and Hay (LANL2DZ) [66]
   - the auxiliary basis sets of Weigend et al. for correlation calculations using the density fitting/resolution of the identity approximation [67, 68]: cc-pVXZ-RI, aug-cc-pVXZ-RI (X = D, T, Q, 5, 6); def2-SV(P)-RI, def2-SVP-RI, def2-TZVP-RI, def2-TZVPP-RI, def2-QZVP-RI, def2-QZVPP-RI
   - the auxiliary basis sets of Hellweg and Rappoport for the augmented def2 Gaussian basis sets [69]: def2-SVPD-RI, def2-TZVPPD-RI, def2-TZVPPD-RI, def2-QZVPPD-RI, def2-QZVPPD-RI
Weigend’s Coulomb/exchange auxiliary basis sets for density fitting/resolution of the identity SCF calculations [70]: cc-pVXZ-RI-JK, aug-cc-pVXZ-RI-JK (X = D, T, Q, 5), def2-QZVPP-RI-JK

From Na to La and from Hf to Rn the following basis sets are available, which must be used together with the corresponding ECP (see also the description of keyword ECP):

- the LANL2DZ basis sets of Hay and Wadt [71–73]
- the def2 Gaussian basis sets of Weigend and Ahlrichs [63]: def2-SV(P), def2-SVP, def2-TZVP, def2-TZVPP, def2-QZVP, def2-QZVPP
- the augmented def2 Gaussian basis sets of Rappoport and Furche [64]: def2-SVPD, def2-TZVPD, def2-TZVPPD, def2-QZVPD, def2-QZVPPD
- the correlation consistent PP basis sets of Peterson and co-workers [74–78]: cc-pVXZ-PP and aug-cc-pVXZ-PP (X = D, T, Q, 5)
- the auxiliary basis sets of Hellweg and Rappoport for the augmented def2 Gaussian basis sets [69]: def2-SVPD-RI, def2-TZVPD-RI, def2-TZVPPD-RI, def2-QZVPD-RI, def2-QZVPPD-RI
- the auxiliary basis sets of Hättig for correlation calculations with the PP basis sets: cc-pVXZ-PP-RI and aug-cc-pVXZ-PP-RI (X = D, T, Q, 5)

Please note that some of the above basis sets are not available for all elements.

2. If you need basis sets other than the default ones, you can, e.g., download them from the EMSL Basis Set Exchange [40–42]. Please choose format “AcesII” when downloading the basis sets.

3. If you use your own basis sets, these must be copied to the end of the corresponding file in the BASIS directory. Alternatively, you can also create a file called GENBAS in the directory where Mrcc is executed, and then you should copy your basis sets to that file.

4. The labels of the basis sets must be identical to those used in the BASIS/* files (or the GENBAS file). For the default basis sets just type the usual name of the basis set as given above, e.g., cc-pVDZ, 6-311++G**, etc. If you employ non-default
basis sets, you can use any label.

5. For Dunning’s aug-cc-p(C)VXZ basis sets one, two, or three additional diffuse function sets can be automatically added by attaching the prefix d-, t-, or q-, respectively, to the name of the basis set. To generate a d-aug basis set one even tempered diffuse function is added to each primitive set. Its exponent is calculated by multiplying the exponent of the most diffuse function by the ratio of the exponents of the most diffuse and the second most diffuse functions in the primitive set. If there is only one function in the set, the exponent of the most diffuse function is divided by 2.5. To generate t-aug and q-aug sets this procedure is repeated.

6. For Dunning’s basis sets, to use the aug-cc-p(C)VXZ set for the non-hydrogen atoms and the corresponding cc-p(C)VXZ set for the hydrogens give aug’-cc-p(C)VXZ. Then the diffuse functions will be automatically removed from the hydrogen atoms.

7. Only the conventional AO basis set can be specified with this keyword. For the fitting basis sets used in density fitting approximations see the description of keywords dfbasis.*.

8. The cc-pVDZ-RI-JK basis set has been generated from cc-pVTZ-RI-JK by dropping the functions of highest angular momentum. The aug-cc-pVXZ-RI-JK (def2-QZVPPD-RI-JK) basis sets are constructed automatically from the corresponding cc-pVXZ-RI-JK (def2-QZVPP-RI-JK) sets by adding diffuse functions as described above for the d-aug-cc-p(C)VXZ basis sets.

9. For Dunning’s and Pople’s basis sets add the -min postfix to the basis set name to generate a minimal basis set dropping all the polarization (correlation) functions.

10. If the (aug-)cc-pVXZ-PP basis set does not exist for an element with \( Z \leq 28 \), the program will automatically attempt to use the corresponding aug-cc-pVXZ basis instead.

Default: none, that is, the basis set must be specified (excepting the case when Mrcc is used together with another code, that is, iface \( \neq \) none).

Examples:

1. Consider any molecule and suppose that the cc-pVDZ basis set is used for all atoms. The input must include the following
2. To use Dunning’s doubly augmented cc-pVDZ basis set (d-aug-cc-pVDZ) for all atoms the input must include the following line:

```
basis=d-aug-cc-pVDZ
```

3. Consider the water molecule and use the cc-pVDZ basis set for the hydrogens and cc-pVTZ for the oxygen. The input must include the following lines:

```
basis=atomtype
O:cc-pVTZ
H:cc-pVDZ
```

4. Consider water again and use the cc-pVQZ, cc-pVTZ, and cc-pVDZ basis sets for the oxygen atom, for the first hydrogen, and for the second hydrogen, respectively. Note that the order of the basis set labels after the `basis=special` statement must be identical to the order of the corresponding atoms in the Z-matrix/Cartesian coordinates:

```
geom
O
H 1 R
H 1 R 2 A
```

```
R=0.9575
A=104.51
```

```
basis=special
cc-pVQZ
cc-pVTZ
cc-pVDZ
```

5. Consider the water molecule and use the cc-pVTZ basis set for the hydrogens and aug-cc-pVTZ for the oxygen. The following two inputs are identical:

```
basis=atomtype
O:aug-cc-pVTZ
H:cc-pVTZ
```

```
basis=aug’-cc-pVTZ
```

6. Consider the water molecule. If you specify

```
basis=cc-pVTZ-min
```
minimal basis sets generated from cc-pVTZ will be used for the atoms, that is, only one s function (two s and one p shells) will be retained from the s–p kernel of the H (O) cc-pVTZ basis set.

7. Consider the PbO molecule. If you want to use the cc-pVDZ basis set for O and the cc-pVDZ-PP basis with the corresponding ECP for Pb, you only need to set
   \texttt{basis=cc-pVDZ-PP}
   in the MINP file.

8. Mixed basis approach with two basis sets, the cc-pVTZ basis is used for atoms 1, 2, 3, and 5, while cc-pVDZ is employed for atoms 4, 6, 7, 8:
   \begin{verbatim}
   basis=mixed
   2
   cc-pVTZ 1-3,5
   cc-pVDZ 4,6-8
   \end{verbatim}

\texttt{basis\_sm} Specifies the small basis set used in dual basis-set calculations as well as for generating SCF initial guess (scfiguess=small).

Options: the options are the same as for keyword \texttt{basis}, but there is an additional one, \texttt{none}, which means that no small basis is defined.

Default: \texttt{basis\_sm=none}

Examples:

1. To restart an SCF calculation with the cc-pVQZ basis set from the densities obtained with the cc-pVDZ basis give
   \begin{verbatim}
   basis=cc-pVQZ
   basis\_sm=cc-pVDZ
   scfiguess=small
   \end{verbatim}

2. To perform a dual basis set DF-HF calculation with the 6-311G** and 6-31G** basis sets you need:
   \begin{verbatim}
   basis=6-311G**
   basis\_sm=6-31G**
   dual=on
   calc=DF-HF
   \end{verbatim}

\texttt{basopt} Use this keyword to turn on/off basis set optimization. Besides setting this keyword a user supplied \texttt{GENBAS} file is also required for basis set optimization jobs. It is also possible to set the value of \texttt{basopt} to be equal to an appropriate energy. In this case the basis set parameters
are optimized so that the absolute value of the difference between this value and the actual energy is minimized. This option comes handy when optimizing a density fitting basis set. In this case the difference between the actual and non-density-fitting energy (obtained from a previous calculation) will be minimized. See also Sect. 6.9.

Options: on, off, or <any real number>

Default: basopt=off

Examples:
1. To optimize a basis set variationally set basopt=on
2. To optimize a basis set minimizing the difference of the calculated energy and -76.287041 E_h set basopt=-76.287041

bfbasis Specifies the bond function (BF) basis (see Ref. 25 for details).

Options:
none No BFs are used.
<BF basis name> name of the BF basis to be used.

Notes:
1. The format of the name of the BF basis, <BF basis name>, is <AO basis name>-<BF type>. E.g., 6-31G-1s1p is a BF basis optimized for the 6-31G AO basis and one s and one p function set are placed on the corresponding bonds.
2. The BF basis sets are stored in the BASIS/Bond file but the BF basis can also be specified in the GENBAS file similar to the AO basis sets (see the description of keyword basis). The format of the label of the BF basis in the file is B<bond name>:<BF basis name>. E.g., BCH:6-31G-1s1p is 6-31G-1s1p BF basis optimized for the C–H bond.
3. If BF bases are used, the geometry must be given in mol format (see the description of keyword geom)

Default: bfbasis=none

Example: hydrogen-fluoride molecule, the 6-31G basis and the 6-31G-1s1p bond function basis are used:
basis=6-31G
bfbasis=6-31G-1s1p
geom=mol
2 1
0.00000000 0.00000000 0.00000000 F
bpcompo  Boughton–Pulay completeness criterion [79] for occupied orbitals. In various local correlation approaches the Boughton–Pulay procedure is used to identify the atoms on which an LMO is localized. The least-squares residual of the parent LMO and the LMO truncated to the selected atoms is required to be less than one minus this criterion.

Options:

\[\text{<any real number in the } [0,1] \text{ interval}>\]  This number will be used as the completeness criterion.

Default: bpcompo=0.985

Note: Atom domains determined by bpcompo are also utilized to construct local fitting domains in the case of localcc=2016 or 2018 according to Ref. 28.

Example: to set a threshold of 0.99 type bpcompo=0.99

bpcompv  Boughton–Pulay completeness criterion [79] for virtual orbitals (projected atomic orbitals). See also keyword bpcompo.

Options:

\[\text{<any real number in the } [0,1] \text{ interval}>\]  This number will be used as the completeness criterion.

Default: bpcompv=0.98

Example: to set a threshold of 0.95 type bpcompv=0.95

bpedo  Boughton–Pulay completeness criterion [79] for the occupied orbitals of an extended domain. See also keyword bpcompo.

Options:

\[\text{<any real number in the } [0,1] \text{ interval}>\]  This number will be used as the completeness criterion.

Default: bpedo=0.9999 is set as default in the case of localcc=2018 and lcorthr=normal for both LMP2 and LNO-CC computations, according to Refs. 28 and 35. See the description of lcorthr for further details on the predefined values of bpedo for other cases

Note: bpedo=bpcompo is set if bpedo is not specified and not employed in the local correlation calculation

Example: to set a threshold of 0.9998 type bpedo=0.9998
bpedv

Boughton–Pulay completeness criterion [79] for the virtual orbitals (projected atomic orbitals) of an extended domain. See also keyword bpcompo.

Options:

\(<any\ real\ number\ in\ the\ [0,1]\ interval>\) This number will be used as the completeness criterion.

Default: \(\text{bpedv}=0.995\) is set as default in the case of \texttt{localcc}=2016 or 2018 according to Ref. 28.

Note: \(\text{bpedv} = \text{bpcompv}\) is set if \texttt{bpedv} is not specified and not employed in the local correlation calculation

Example: to set a threshold of 0.99 type \texttt{bpedv}=0.99

bppdo

Boughton–Pulay completeness criterion [79] for the occupied orbital of a primary domain. See also keyword bpcompo.

Options:

\(<any\ real\ number\ in\ the\ [0,1]\ interval>\) This number will be used as the completeness criterion.

Default: \(\text{bppdo}=0.999\) is set as default in the case of \texttt{localcc}=2016 or 2018 according to Ref. 28.

Note: \(\text{bppdo} = \text{bpcompo}\) is set if \texttt{bppdo} is not specified and not employed in the local correlation calculation

Example: to set a threshold of 0.99 type \texttt{bppdo}=0.99

bppdv

Boughton–Pulay completeness criterion [79] for virtual orbitals (projected atomic orbitals) of a primary domain. See also keywords bppdo and bpcompo.

Options:

\(<any\ real\ number\ in\ the\ [0,1]\ interval>\) This number will be used as the completeness criterion.

Default: \(\text{bppdv}=\text{bpcompv}\)

Example: to set a threshold of 0.99 type \texttt{bppdv}=0.99

calc

Specifies the type of the calculation.

Options:

- SCF
- HF
Hartree–Fock SCF calculation, the type of the Hartree–Fock wave function can be controlled by keyword `scftype` (see also keyword `scftype`).

**RHF, UHF, ROHF**

Restricted, unrestricted, or restricted open-shell Hartree–Fock SCF calculation, respectively. The type of the Hartree–Fock wave function is also defined at the same time if these options are chosen, and it is not necessary to set `scftype`. That is, `calc=RHF` is equivalent to `calc=SCF` plus `scftype=RHF`, etc.

**B3LYP, PBE0, B3PW91, B3LYP-D3, B2PLYP-D3, ...**

Kohn–Sham SCF calculation with the specified density functional. The type of the Kohn–Sham procedure (i.e., RKS of UKS) can be controlled by keyword `scftype` (see also keyword `scftype`). The options are identical to those of keyword `dft` (except for `off`, `user`, and `userd`), see the description of keyword `dft`. Note that for a correlated calculation with KS orbitals you can only select the functional with keyword `dft`, the value of keyword `calc` must be set to the desired correlation method. Note also that for DFT calculations the density fitting approximation is used by default, i.e., `dfbasis_scf` is set to `auto`. To run a conventional KS calculation set `dfbasis_scf=none`.

**TDHF**

Time-dependent HF (TD-HF, also known as random-phase approximation). If `calc=SCF` and number of the states is greater than one (set by keywords `nsing`, `ntrip`, or `nstate`), also TD-HF calculations are performed for the excited states. It is only available with density fitting.

**TDDFT**

Full time-dependent DFT (TD-DFT). The density functional must be set using keyword `dft`. Alternatively, if `calc` is set to the name of the functional, and the number of the states is greater than one (set by keywords `nsing`, `ntrip`, or `nstate`), also TD-DFT calculations are performed for the excited states using the given functional. For HF reference it is equivalent to TD-HF. It is only available with density fitting.

**TDA**

TD-DFT in the Tamm–Dancoff approximation (TDA). For HF reference it is equivalent to CIS. It is only available with
density fitting.

MP2
Second-order Møller–Plesset (MP2) calculation, the spin-component scaled MP2 (SCS-MP2) \[80\] and the scaled opposite-spin MP2 (SOS-MP2) \[81\] energy will also be computed (see also keywords \texttt{scsps} and \texttt{scspt}). Note that efficient MP2 calculations are only possible with the density-fitting (resolution-of-identity) approximation, and, by default, a DF-MP2 (≡ RI-MP2) calculation is performed (that is, options \texttt{MP2}, \texttt{DF-MP2}, and \texttt{RI-MP2} are synonyms). If you are still interested in the MP2 energy without DF, you can, e.g., run a CCSD calculation (without DF), where the MP2 energy is also calculated.

SOS-MP2
Scaled opposite-spin second-order Møller–Plesset (SOS-MP2) calculation \[81\] using an $N^4$-scaling algorithm based on the Cholesky decomposition/Laplace transform of energy denominators (in practice one dRPA iteration is performed, see below). Note that it is only possible with the density-fitting (resolution-of-identity) approximation, and, by default, a DF-SOS-MP2 (≡ RI-SOS-MP2) calculation is performed (that is, options \texttt{SOS-MP2}, \texttt{DF-SOS-MP2}, and \texttt{RI-SOS-MP2} are synonyms).

SCS-MP2
For canonical calculations it is equivalent to option \texttt{MP2}. If a local correlation calculation is executed, only the spin-component scaled MP2 (SCS-MP2) energy will be computed.

dRPA
Direct random-phase approximation (dRPA) calculation (see Eqs. 7 and 8 in Ref. 82). Note that dRPA calculations are only possible with the density-fitting (resolution-of-identity) approximation, and, by default, a DF-dRPA (≡ RI-dRPA) calculation is performed (that is, options \texttt{dRPA}, \texttt{DF-dRPA}, and \texttt{RI-dRPA} are synonyms).

RPA
Random-phase approximation (RPA) calculation (see Eqs. 10 and 13 in Ref. 82, where it is referred to as RPAX-SO2). Note that RPA calculations are only possible with the density-fitting (resolution-of-identity) approximation, and, by default, a DF-RPA (≡ RI-RPA) calculation is performed (that is, op-
tions RPA, DF-RPA, and RI-RPA are synonyms).

SOSEX

Second-order screened exchange (SOSEX) [83] calculation (see Eqs. 7 and 9 in Ref. 82), the dRPA energy is also computed. Note that SOSEX calculations are only possible with the density-fitting (resolution-of-identity) approximation, and, by default, a DF-SOSEX (≡ RI-SOSEX) calculation is performed (that is, options SOSEX, DF-SOSEX, and RI-SOSEX are synonyms).

RPAX2

RPAX2 calculation (see Eqs. 17 to 19 in Ref. 45). Note that RPAX2 calculations are only possible with the density-fitting (resolution-of-identity) approximation, and, by default, a DF-RPAX2 (≡ RI-RPAX2) calculation is performed (that is, options RPAX2, DF-RPAX2, and RI-RPAX2 are synonyms).

CIS

Configuration interaction singles (CIS) calculation [31, 33]. Efficient CIS calculations are only possible with the density-fitting (resolution-of-identity) approximation, and, by default, a DF-CIS (≡ RI-CIS) calculation is performed (that is, options CIS, DF-CIS, and RI-CIS are synonyms). If you are still interested in the CIS energy without DF, set ccprog=mrcc, dfbasis_scf=none, and dfbasis_cor=none.

CIS(Di)

Iterative doubles correction to configuration interaction singles [CIS(D∞)] calculation [31, 33, 84]. Note that CIS(D∞) calculations are only possible with the density-fitting (resolution-of-identity) approximation, and, by default, a DF-CIS(D∞) (≡ RI-CIS(D∞)) calculation is performed [that is, options CIS(Di), DF-CIS(Di), and RI-CIS(Di) are synonyms].

ADC(2)

Second-order algebraic diagrammatic construction [ADC(2)] calculation [31, 33, 85]. Note that ADC(2) calculations are only possible with the density-fitting (resolution-of-identity) approximation, and, by default, a DF-ADC(2) (≡ RI-ADC(2)) calculation is performed [that is, options ADC(2), DF-ADC(2), and RI-ADC(2) are synonyms].

CC2

Second-order coupled-cluster singles and doubles (CC2) cal-
Efficient CC2 calculations are only possible with the density-fitting (resolution-of-identity) approximation, and, by default, a DF-CC2 (≡ RI-CC2) calculation is performed (that is, options CC2, DF-CC2, and RI-CC2 are synonyms). If you are still interested in the CC2 energy without DF, set ccprog=mrcc, dfbasis.scf=none, and dfbasis.cor=none.

CCS, CCSD, CCSDT, CCSDTQ, CCSDTQP, CC(<n>)

The corresponding single-reference CC calculation if the number of active orbitals is zero (see Ref. 1); the corresponding SRMRCOSD, SRM RCCSDT, etc. calculation otherwise (see Ref. 2).

CCSD(T), CCSDT(Q), CCSDTQ(P), CC(<n-1>)(<n>)

The corresponding single-reference CC calculation with perturbative corrections (see Ref. 7).

CCSD(T)_L, CCSDT(Q)_L, CCSDTQ(P)_L, CC(<n-1>)(<n>)_L

The corresponding CCSD(T)_A, CCSDT(Q)_A, etc. calculation (see Ref. 7).

CCSDT-1a, CCSDTQ-1a, CCSDTQP-1a, CC(<n>)-1a

The corresponding iterative approximate single-reference CC calculation (see Ref. 7).

CCSDT-1b, CCSDTQ-1b, CCSDTQP-1b, CC(<n>)-1b

The corresponding iterative approximate single-reference CC calculation (see Ref. 7).

CC2, CC3, CC4, CC5, CC<n>

The corresponding iterative approximate single-reference CC calculation (see Ref. 7).

CCSDT-3, CCSDTQ-3, CCSDTQP-3, CC(<n>)-3

The corresponding iterative approximate single-reference CC calculation (see Ref. 7).

CCSDT[Q]/A, CCSDTQ[P]/A, CC(<n-1>)[<n>]_A

The corresponding single-reference CC calculation with perturbative corrections using ansatz A (see Ref. 13).

CCSDT[Q]/B, CCSDTQ[P]/B, CC(<n-1>)[<n>]_B
The corresponding single-reference CC calculation with perturbative corrections using ansatz B (see Ref. 13).

CCSDT(Q)/A, CCSDTQ(P)/A, CC(<n-1>(<n>))/A

The corresponding single-reference CC calculation with perturbative corrections using ansatz A (see Ref. 13).

CCSDT(Q)/B, CCSDTQ(P)/B, CC(<n-1>(<n>))/B

The corresponding single-reference CC calculation with perturbative corrections using ansatz B (see Ref. 13).

CIS, CISD, CISDT, CISDTQ, CISDTQP, CI(<n>), FCI

The corresponding single-reference CI calculation if the number of active orbitals is zero (see Ref. 1), the corresponding MRCISD, MRCISDT, etc. calculation otherwise (see Ref. 2).

Notes:

1. In the above options $n$ is a positive integer, which is the excitation level of the highest excitation. $n$ is supposed to be equal to or greater than 6 since for smaller $n$’s the CC(<n>) and similar options are equivalent to one of the other options, e.g., CC(5) is equivalent to CCSDTQP or CC(3)(4) is identical with CCSDT(Q).

2. For excited-state calculations with the TD-HF, TDA, TD-DFT, CIS, CIS(D∞), ADC(2), CC2 and various CC and CI methods the number of states should be greater than one (keywords nsing, ntrip, or nstate). If more than one state is requested for CC calculations, the corresponding linear-response (LR) CC (for excitation energies it is equivalent to equation-of-motion CC, EOM-CC) calculation is performed automatically for the excited states. If more than one state is requested and calc=SCF, TD-HF (dft=off) or TD-DFT (dft≠off) calculations will be carried out for the excited states.

3. The active orbitals can be selected and the MRCI/CC calculations can be controlled by keywords nacto, nactv, active, maxex, and maxact.

4. In principle, all methods can be used with the density fitting (resolution-of-identity) approximation. It is possible in two ways. You can attach the prefix DF- or RI- to the corresponding option from the above list. Then, for a HF calculation keyword dfbasis_scf will be set to auto, while for a correlated calculation both dfbasis_scf and dfbasis_cor
will be given the value auto. Alternatively, you can also set the values for keywords dfbasis_scf and dfbasis_cor, see their description.

5. Local correlation methods can be run if the prefix “L” is added to the corresponding option of the keyword, e.g., as LMP2, LdRPA, LCCSD(T), etc. Additionally, the prefix “LNO-” can also be used as a synonym in the case of local coupled-cluster approaches, e.g., as LNO-CCSD, LNO-CCSD(T), LNO-CCSDT, etc. Both options are equivalent to setting localcc=on.

6. For the dRPA, RPA, and SOSEX methods the use of PBE orbitals is recommended.

7. For the RPAX2 method the use of PBEEx orbitals is recommended.

Default: calc=SCF

Examples:

1. To run a CCSD(T) calculation the user should set calc=CCSD(T)
2. For DF-HF (RI-HF) calculations type:
   calc=DF-HF
   which is equivalent to the following input:
   calc=SCF
dfbasis.scf=auto
3. For a local CCSD(T) calculation using the local natural orbital approximation set calc=LCCSD(T) or calc=LNO-CCSD(T)
4. For a RI-MP2 calculation set calc=MP2
5. For a DFT calculation with the B3LYP functional set calc=B3LYP
6. Direct RPA calculation with Kohn–Sham orbitals calculated with the PBE functional:
   calc=dRPA
dft=PBE
7. TD-DFT calculation for the 3 lowest singlet excited states of a molecule using the PBE functional:
   calc=TDDFT
dft=PBE
   nsing=4
   A somewhat less complicated input for the same purpose:
   calc=PBE
   nsing=4

ccmaxit Maximum number of iteration steps in correlated calculations (CC, CI, RPA, ...).
Options: \(<any\ positive\ integer>\)
Default: \(ccmaxit=50\)

Example: to increase the maximum number of CC iterations to 100
give \(ccmaxit=100\)

\(ccprog\) Specifies the CC program to be used.

Options:
- \(mrcc\) The automated, string-based CC program \(mrcc\) will be called.
- \(ccsd\) The very fast, hand-coded CCSD(T) codes, \(ccsd\) or \(uccsd\),
  will be executed (currently the spatial symmetry cannot be
  utilized).
- \(cis\) The very fast, hand-coded, integral direct DF-CIS code \(cis\)
  will be executed (currently the spatial symmetry cannot be
  utilized).

Note: Please note that the \(mrcc\) code was optimized for high-order CC
calculations, such as CCSDT(Q) and CCSDTQ, which require
different algorithms than CCSD(T). Thus it is slow for CCSD(T),
but optimal for high-order CC models.

Default: \(ccprog=ccsd\) for CCSD and CCSD(T) calculations, \(ccprog=cis\)
for CIS, CIS(D\(_\infty\)), ADC(2), and CC2 calculations, \(ccprog=mrcc\)
otherwise.

Example: to use the \(mrcc\) code for CCSD or CCSD(T) calculations
give \(ccprog=mrcc\)

\(cctol\) Convergence threshold for the energy in correlated calculations (CC,
CI, dRPA, RPA, etc.). The energy will be accurate to \(10^{-cctol} E_h\).

Options: \(<any\ integer>\)
Default: \(cctol=8\) for property calculations, \(cctol=[-\log_{10}(optetol)]+2\)
for geometry optimizations, \(cctol=5\) for \(localcc=2016\) and
\(localcc=2018\), \(cctol=6\) otherwise

Example: for an accuracy of \(10^{-8} E_h\) one must give \(cctol=8\)

\(charge\) Charge of the system.

Options: \(<any\ integer>\)
Default: \(charge=0\)

Example: for the Cl\(^-\) ion one should give \(charge=-1\)
**cialg** Specifies what type of algorithm is to be used in CIS, TDA, TD-HF, and TD-DFT calculations.

Options:
- **disk** Conventional algorithm, two-electron integrals are stored on disk
- **direct** Completely I/O-free, integral-direct algorithm, two-electron integrals are recalculated in each iteration step.
- **direct2** Partially I/O-free, integral-direct algorithm; recommended if the I/O is fast and/or few states are required.
- **direct3** Variant of **direct2**, but usually slower.
- **auto** Based on the size of the molecule the program will automatically select the most efficient one from the above options.

Default: **cialg=auto**

Example: to use disk-based algorithm set **cialg=disk**

**ciguess** The initial guess vectors for CI and LR-CC calculations can be specified using this keyword.

Options:
- **on** The initial trial vectors are supplied by the user and should be given in the subsequent lines as follows. For each state the corresponding initial guess vector must be given by the number of non-zero elements of the vector on the first line, followed by as many lines as the number of non-zero elements. In each line the corresponding excitation operator and the value for this element of the vector must be provided in the following format:
  
  `< n > < sp1 > < sp2 > ... < spn > < a1 > < a2 > ... < an > < i1 > < i2 > ... < in > < coeff >`

  where `< n >` is the level of excitation, and the electrons are promoted from occupied orbitals `< i1 > < i2 > ... < in >` to virtual orbitals `< a1 > < a2 > ... < an >` with spins `< sp1 > < sp2 > ... < spn >` (< `spk` > is 1 for alpha and 0 for beta), respectively. `< coeff >` is the corresponding coefficient.

- **off** Initial trial vectors are not specified, the program applies simple unit vectors as initial guess. The unit vectors are determined on the basis of the diagonal elements of the Hamiltonian: if `n` roots are requested, `n` unit vectors corresponding to the `n` lowest diagonals will be used.
Default: ciguess=off

Example: Suppose that we have two excited states in a LR-CC calculation. Then the initial guess can be given as follows.

```
ciguess=on
1
1 1 6 4 1.0
3
1 1 7 3 0.1
2 1 0 7 5 5 1.0
2 1 1 7 6 3 4 0.1
```

For the first state there is only one entry, a single excitation of the alpha electron from orbital 4 to orbital 6 with a coefficient of 1.0. For the second root the initial guess vector contains three entries. A single excitation from orbital 3 to orbital 7 with alpha spin and a relative weight of 0.1, a double excitation from orbital 5 to orbital 7 with a weight of 1.0, and another double excitation of the alpha electrons from orbitals 3 and 4 to orbitals 6 and 7 with a weight of 0.1.

Notes:

1. For $M_S = 0$ states the vector is automatically spin-adapted, and you do not need to specify the coefficients for the corresponding spin-reversed excitations. E.g., in the above example, for root 1 the $1 0 6 4 1.0$ entry is unnecessary.

2. The guess vector is not required to be normalized, it is done automatically.

3. In the case of four-component relativistic calculations (DIRAC interface) the serial numbers of the spinors should be specified. In addition, the second number in the above strings must be 1 (that is, all excitations are formally considered as excitations of alpha electrons).

**cmpgrp** Specifies the computational point group. All calculations will use the specified Abelian group. See Sect. 13 for more details.

Options:

- **auto** The molecular symmetry is automatically recognized.

```
<point group symbol> Schönhflies symbol of the Abelian point group such as C1, Ci, Cs, C2, C2v, C2h, D2, D2h
```

Note: cmpgrp=C1 is equivalent to symm=off
Default: `cmpgrp=auto`  
Example: to use $C_{2v}$ point group for benzene set `cmpgrp=C2v`

**core** Specifies whether the core electrons are correlated.

Options:

- `frozen` Frozen core approximation
- `corr` All core electrons are correlated
  
  `<any non-negative integer n>` The lowest (according to orbital energy order) $n$ pieces of spatial orbitals (the lowest $n$ pieces of alpha and $n$ pieces of beta spin orbitals for UHF/semicanonical ROHF reference) will be dropped.

Default: `core=frozen`

Example: to correlate all core electrons set `core=corr` or `core=0`

**coreembed** This keyword controls the models and subsystems selected for multi-level local correlation methods. Currently it is only available for closed-shell systems using density-fitting.

Options:

- `off` Conventional case, a single model defined by `calc` is used for the entire system.
- `on` Multi-level calculation is performed with different local correlation methods for the active (high-level) and the environmental (low-level) subsystems. The three input lines following `coreembed` define the list of active atoms, the computational model for the environment level, and the number of embedded orbitals (if it is specified). The syntax for these three lines is analogous with that for keyword `embed`. (See the description of keyword `embed`.) The high-level method for the active region should be specified by the keyword `calc`.

Default: `coreembed=off`

Notes:

1. Local correlation methods available with `localcc=2015`, `localcc=2016`, and `localcc=2018` (e.g., MP2 or arbitrary single-reference CC) can be chosen for both the active and the environmental subsystem. Additionally, HF or HF+LRC are also available choices for the low-level model. If the latter is set, the environment is treated at the HF level but the long-range correlation (LRC) between the active subsystem and its
environment is also taken into account (see Ref. 29). Note that models with KS-DFT reference, such as dRPA, SOSEX, etc., are not available for multi-level local correlation calculations.

2. The threshold settings of the local correlation method chosen for the high-level model can be given (as in the case of corembed=off) by the keywords controlling the local correlation methods (see their list in Sect. 6.8). Default settings according to lcorthr=normal and localcc=2018 (or for previous versions according to lcorthr=loose and localcc=2015 or localcc=2016) are employed for the low-level model of the environment.

Examples:

1. LNO-CCSD(T)-in-LMP2 scheme, where LNO-CCSD(T) is performed for the active orbitals with tight thresholds, atoms 1 and 2 are included in the high-level region, and the number of the active orbitals is determined automatically:
   
   ```
   calc=LNO-CCSD(T)
lcorthr=tight
corembed=on
   1-2
   LMP2
   0
   ```

2. LNO-CCSDT-in-LNO-CCSD scheme, where the local CCSDT calculation is performed with the mrcc program for the active orbitals and the local CCSD is calculation performed with the ccsd program for the environment:
   
   ```
   calc=LCCSDT
corembed=on
   1-2
   LCCSD
   0
   ```

3. LNO-CCSD(T)-in-HF+LRC embedding where only HF is used for the environment but the additional LRC term accounts for the interaction of the active and environmental parts. Atoms 1, 2, 3, and 5 define the active subsystem, and 10 orbitals are included in the active region:
   
   ```
   calc=LNO-CCSD(T)
corembed=on
   1-3,5
   ```
HF+LRC
10

dboc Diagonal Born–Oppenheimer correction (DBOC) (available only with CFour).

Options: on or off
Default: dboc=off
Example: for a DBOC calculation set dboc=on

dendec Selects the algorithm for the decomposition of energy denominators, Cholesky-decomposition or Laplace transform, for canonical SOS-MP2 and dRPA (also required for SOSEX) as well as for local MP2 and dRPA calculations. The dRPA calculation is performed using the modified algorithm of Heßelmann [45] based on the decomposition of energy denominators. For the calculation of the SOS-MP2 energy, in practice one dRPA iteration is performed with the aforementioned algorithm. In the case of local MP2 and dRPA calculations the correlation energy contributions are also evaluated with the aid of the decomposition of energy denominators (see Ref. 27). The algorithm for the decomposition can be set using this keyword in all of the above cases. The number of retained Cholesky vectors/quadrature points can be controlled by keyword nchol.

Options:
   Cholesky Cholesky decomposition will be used
   Laplace Laplace transform will be used
Default: dendec=Laplace for SOS-MP2, dendec=Cholesky otherwise

Notes:
1. The algorithms based on the Laplace-transformed technique use minimax quadratures obtained from Ref. 87.
2. The default quadratures are taken from the Quad file which is located in the BASIS directory created at the installation. In addition to the default quadratures, any further quadrature can be used by adding it to the BASIS/Quad file or alternatively to the GENBAS file to be placed in the directory where Mrcc is executed. The format is as follows. On the first line give the label of the quadrature as KNNRXXY, where NN is the number of the quadrature points and XXX is the upper
limit of the interval in which the Laplace transform is approximated (variable $R$ in Ref. 87). The subsequent NN lines must contain, respectively, the weights and quadrature points.

Example: to use Laplace transform give \texttt{dendec=Laplace}

\textbf{dens} Construction of density, derivative density, and transition density matrices for property calculations. If mod($\texttt{dens},2$)=1, only one-particle, if mod($\texttt{dens},2$)=0, both one- and two-particle density matrices will be calculated and contracted with the available property integrals. See Refs. 3–5, 9, 11, 12 for more details.

Options:

1, 2 Density-matrix calculation (for geometry optimizations, first-order properties, etc.)
3, 4 Density-matrix first derivatives (for second-order property calculations, available only with Cfour)
5, 6 Transition density matrices (for transition moment calculations)
7, 8 Second and third derivatives of the density-matrix (for third-order property calculations, available only with Cfour)

Default: $\texttt{dens}=2$ for geometry optimizations and QM/MM calculations, $\texttt{dens}=0$ otherwise

Notes:

1. Transition moment as well as excited-state gradient calculations can be performed for only one excited state at a time, that is, $\texttt{nsing}$, $\texttt{ntrip}$, or $\texttt{nstate}$ cannot exceed 2. To compute the transition moment or gradient for a higher excited state you need to converge the equations to that root. The best practice is to run a calculation with the desired number of excited states, and then restart the calculation selecting a higher solution (see the description of keyword \texttt{rest}). You can also try to start the calculation from a good initial guess (see the description of keyword \texttt{ciguess}).

2. If $\texttt{dens} \neq 0$, a population analysis is also performed, and Mulliken and Löwdin atomic charges as well as Mayer bond orders are computed.

Example: for the calculation of both one- and two-particle density matrices set $\texttt{dens}=2$
**dfalg** Specifies how the inverse of the two-center Coulomb integral matrix is decomposed in density fitting direct SCF calculations.

Options:

- **LinEq** The fitting coefficients are computed by solving the corresponding system of linear equations. It is efficient and numerically stable. It is the best choice for very large auxiliary basis sets for which the diagonalization of the two-center integral matrix is prohibitive.

- **InvSqrt** Inverse square root of the two-center integral matrix is used. It is relatively stable numerically, but the diagonalization is slow and requires much memory.

- **Cholesky** Cholesky decomposition of the inverse of the two-center integral matrix is used. It is an efficient algorithm but numerically unstable if the two-center matrix tends to be singular.

**Default:** `dfalg=InvSqrt` for property calculations, `dfalg=LinEq` otherwise

**Example:** to use Cholesky decomposition set `dfalg=Cholesky`

**dfbasis_cor** Specifies whether the density fitting approximation will be used in the correlated calculations and also specifies the fitting basis set.

Options:

- **none** The density fitting approximation is not used for the correlated calculation.

- `<basis set label>`, **atomtype**, **special** The density fitting approximation is invoked, and the specified basis set is used as fitting basis set. For the specification of the basis the same rules apply as for keyword **basis**, see the description of keyword **basis**.

- **auto** This option can only be used if Dunning’s (aug-)cc-pVXZ, Weigend and Ahlrichs’ def2, the augmented def2 basis sets of Rappoport and Furche, Peterson’s cc-pVXZ-F12 or (aug-)cc-pVXZ-PP, or Pople’s basis sets are used as the normal basis set. In this case, if `dfbasis_cor=auto`, the density fitting approximation is invoked. For the (aug-)cc-pVXZ(-PP) basis sets the corresponding (aug-)cc-pVXZ(-PP)-RI basis sets will be used automatically as the fitting basis sets, while for a cc-pVXZ-F12 basis set the corresponding aug-cc-pVXZ-RI basis will be taken. For the (augmented) def2 basis sets also the
corresponding RI basis sets will be used, e.g., def2-TZVPP-RI for def2-TZVPP, def2-QZVPP-RI for def2-QZVPP, def2-TZVPPD-RI for def2-TZVPPD, etc. For Pople-type minimal and double-\(\zeta\) basis sets (i.e., STO-3G, 3-21G, 6-31G**, etc.) the cc-pVDZ-RI basis set, while for triple-\(\zeta\) basis sets (i.e., 6-311G, 6-311G**, etc.) the cc-pVTZ-RI basis set will be used as the auxiliary basis; if the basis also includes diffuse functions (i.e., 6-31+G**, 6-311++G**, etc.) the aug-cc-pVDZ-RI and aug-cc-pVTZ-RI basis sets are employed by default.

Notes:

1. For the available fitting basis sets see the notes for keyword basis on page 37.
2. The density fitting approximation can also be invoked by attaching the prefix DF- or RI- to the corresponding option of keyword calc, see the description of calc.

Default: dfbasis_cor=auto for all the correlation methods that use the density fitting approximation by default as well as for local correlation calculations (i.e., localcc \(\neq\) off), dfbasis_cor=none otherwise.

Examples:

1. To use the cc-pVTZ-RI fitting basis in the correlated calculation for all atoms the input must include dfbasis_cor=cc-pVTZ-RI
2. Consider the water molecule and use the cc-pVTZ-RI fitting basis set for the hydrogens and aug-cc-pVTZ-RI for the oxygen. The following inputs are equivalent:
   dfbasis_cor=atomtype
   O:aug-cc-pVTZ-RI
   H:cc-pVTZ-RI
   or
   dfbasis_cor=aug’-cc-pVTZ-RI
3. Consider the water molecule and use the cc-pVTZ (cc-pVTZ-RI) basis set (fitting basis set) for the hydrogens and aug-cc-pVTZ (aug-cc-pVTZ-RI) for the oxygen in a local correlation calculation. The following inputs are equivalent:
   calc=CCSD(T)
   localcc=on
   basis=aug’-cc-pVTZ
   dfbasis_scf=aug’-cc-pVTZ-RI
dfbasis.cor=aug'–cc-pVTZ-RI
or
calc=LCCSD(T)
basis=aug'–cc-pVTZ

4. To run a DF-HF calculation with the cc-pVTZ-F12 basis set and the aug-cc-pVTZ-RI auxiliary basis the input should only include the following lines:
basis=cc-pVTZ-F12
calc=DF-HF

dfbasis_scf Specifies whether the density fitting approximation will be used in the HF- or KS-SCF calculation and also specifies the fitting basis set. For the syntax see the description of keyword dfbasis.cor. The important difference is that, if dfbasis_scf=auto, the (aug-)cc-pVXZ-RI-JK basis sets will be used as auxiliary basis sets for Dunning’s, Peterson’s, and Pople’s basis sets, while for the def2 basis sets the def2-QZVPP-RI-JK auxiliary basis is taken. For the augmented def2 as well as for the aug-cc-pVXZ-PP basis sets the def2-QZVPPD-RI-JK auxiliary basis will be used.

Default: dfbasis_scf=auto if dfbasis.cor≠none and for DFT calculations, dfbasis_scf=none otherwise.

dfintran Specifies the integral transformation program to be used for the transformation of three-center Coulomb integrals.

Options:
  drpa the drpa program will be called
  ovirt the ovirt program will be called

Default: dfintran=ovirt if ovirt≠off, dfintran=drpa otherwise.
Example: to use the ovirt code set dfintran=ovirt

dft Use this keyword to perform DFT calculations and to specify the functional.

Options:
  off No DFT calculation is carried out.
  <functional name> The name of the functional, see Table 1 for the available functionals.
  <Libxc identifier> The identifier of a functional implemented in the Libxc library (if installed), such as LDA_X, LDA_C_VWN_1, GGA_X_B88, etc. (see the homepage of the Libxc project [44]).
user User-defined functional. Any combination of the following contributions can be defined:

- the available standalone functionals, see column “User” in Table 1.
- the functionals available in the Libxc library (if installed), use simply the Libxc identifier of the functionals (see the homepage of the Libxc project [44]).
- the HF exchange, denoted by HFx
- the MP2, dRPA, and SOSEX correlation, denoted, respectively, by MP2, dRPA, and SOSEX;
- the antiparallel- and parallel-spin components of the latter correlation corrections, add the s and t postfix to the above labels, respectively, e.g., instead of the MP2 label, the MP2s and MP2t labels should be used.

Note that for hybrid functionals, such as B97, the HF exchange will be neglected. The combination should be specified in the subsequent lines as follows (see also the examples below):

\[
<\text{number of entries}> \\
<\text{coefficient 1}> <\text{functional name 1}> \\
<\text{coefficient 2}> <\text{functional name 2}> \\
<\text{coefficient 3}> <\text{functional name 3}> \\
\ldots
\]

userd User-defined functional, but different functionals are used for the calculation of the density and the energy. It is useful for defining special double-hybrid functionals. The combination should be specified in the subsequent lines as follows (see also the examples below):

\[
<\text{number of entries for density}> \\
<\text{coefficient 1}> <\text{functional name 1}> \\
<\text{coefficient 2}> <\text{functional name 2}> \\
<\text{coefficient 3}> <\text{functional name 3}> \\
\ldots
\]

\[
<\text{number of entries for energy}> \\
<\text{coefficient 1’}> <\text{functional name 1’}> \\
<\text{coefficient 2’}> <\text{functional name 2’}> \\
<\text{coefficient 3’}> <\text{functional name 3’}> \\
\ldots
\]

See option user for the possible values of \(<\text{functional name n}>\) and \(<\text{functional name n’}>\). The weight of the HF ex-
change (HFx), if any, can be different for the density and the energy, and, in contrast to previous versions of Mrcc, must be specified also in the second block.

Table 1: Functionals (the options for keyword dft) implemented in Mrcc. The rightmost column shows if the functional can be used with the user/userd options.

<table>
<thead>
<tr>
<th>Functional</th>
<th>Description</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA exchange functionals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDA</td>
<td>Slater–Dirac exchange (local density approximation) [88–90]</td>
<td>Yes</td>
</tr>
<tr>
<td>LDA correlation functionals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VWN1</td>
<td>functional I of Vosko, Wilk, and Nusair [91]</td>
<td>Yes</td>
</tr>
<tr>
<td>VWN2</td>
<td>functional II of Vosko, Wilk, and Nusair [91]</td>
<td>Yes</td>
</tr>
<tr>
<td>VWN3</td>
<td>functional III of Vosko, Wilk, and Nusair [91]</td>
<td>Yes</td>
</tr>
<tr>
<td>VWN4</td>
<td>functional IV of Vosko, Wilk, and Nusair [91]</td>
<td>Yes</td>
</tr>
<tr>
<td>VWN5</td>
<td>functional V of Vosko, Wilk, and Nusair [91]</td>
<td>Yes</td>
</tr>
<tr>
<td>mPW91x</td>
<td>modified PW91x functional of Adamo and Barone [98]</td>
<td>Yes</td>
</tr>
<tr>
<td>G96</td>
<td>exchange functional of Gill [95]</td>
<td>Yes</td>
</tr>
</tbody>
</table>

GGA exchange functionals

<table>
<thead>
<tr>
<th>Functional</th>
<th>Description</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>B88</td>
<td>Becke’s 1988 exchange functional [94]</td>
<td>Yes</td>
</tr>
<tr>
<td>PBEx</td>
<td>functional of Perdew, Burke, and Ernzerhof [95]</td>
<td>Yes</td>
</tr>
<tr>
<td>PBExh</td>
<td>1988 revision of PBEx by Ernzerhof and Perdew [96]</td>
<td>Yes</td>
</tr>
<tr>
<td>G96</td>
<td>exchange functional of Gill [95]</td>
<td>Yes</td>
</tr>
<tr>
<td>mPW91x</td>
<td>modified PW91x functional of Adamo and Barone [98]</td>
<td>Yes</td>
</tr>
</tbody>
</table>

GGA correlation functionals

<table>
<thead>
<tr>
<th>Functional</th>
<th>Description</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>LYP</td>
<td>correlation functional of Lee, Yang, and Parr [99]</td>
<td>Yes</td>
</tr>
<tr>
<td>P86</td>
<td>Perdew’s 1986 correlation functional [100]</td>
<td>Yes</td>
</tr>
<tr>
<td>PBEc</td>
<td>functional of Perdew, Burke, and Ernzerhof [95]</td>
<td>Yes</td>
</tr>
</tbody>
</table>

GGA exchange-correlation functionals

<table>
<thead>
<tr>
<th>Functional</th>
<th>Description</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLYP</td>
<td>Becke’s 1988 exchange functional [94] and the correlation functional of Lee, Yang, and Parr (B88 + LYP) [99]</td>
<td>No</td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
<td>Exchange-Correlation Functional</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>BP86</td>
<td>BP86 exchange-correlation functional ((\text{B88} + \text{P86}))</td>
<td>No [94, 100]</td>
</tr>
<tr>
<td>PBE</td>
<td>exchange-correlation functional of Perdew, Burke, and Ernzerhof ((\text{PBE}x + \text{PBE}c))</td>
<td>No [95]</td>
</tr>
<tr>
<td>PW91</td>
<td>Perdew and Wang 1991 exchange-correlation functional ((\text{PW91}x + \text{PW91c}))</td>
<td>No [97]</td>
</tr>
<tr>
<td>HCTH120</td>
<td>HCTH120 exchange-correlation functional of Boese and co-workers [101]</td>
<td>Yes</td>
</tr>
<tr>
<td>HCTH147</td>
<td>HCTH147 exchange-correlation functional of Boese and co-workers [101]</td>
<td>Yes</td>
</tr>
<tr>
<td>HCTH407</td>
<td>HCTH407 exchange-correlation functional of Boese and Handy [102]</td>
<td>Yes</td>
</tr>
<tr>
<td>XLYP</td>
<td>exchange-correlation functional of Xu and Goddard [103]</td>
<td>Yes</td>
</tr>
<tr>
<td>mPWLYP1w</td>
<td>exchange-correlation functional of Dahlke and Truhlar optimized for water [104]</td>
<td>Yes</td>
</tr>
</tbody>
</table>

**Hybrid GGA exchange-correlation functionals**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Exchange-Correlation Functional</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHLYP</td>
<td>Becke’s half-and-half exchange in combination with the LYP correlation functional ((0.5 \text{B88} + 0.5 \text{HF exchange} + \text{LYP}))</td>
<td>No [94, 99, 105]</td>
<td></td>
</tr>
<tr>
<td>B3LYP</td>
<td>Becke’s three-parameter hybrid functional including the correlation functional of Lee, Yang, and Parr ((0.08 \text{LDA} + 0.72 \text{B88} + 0.2 \text{HF exchange} + 0.19 \text{VWN5} + 0.81 \text{LYP}))</td>
<td>No [88, 89, 91, 94, 99, 106]</td>
<td></td>
</tr>
<tr>
<td>B3LYP3</td>
<td>Becke’s three-parameter hybrid functional including the correlation functional of Lee, Yang, and Parr ((0.8 \text{LDA} + 0.72 \text{B88} + 0.2 \text{HF exchange} + 0.19 \text{VWN3} + 0.81 \text{LYP}))</td>
<td>Yes [88, 89, 91, 94, 99, 106, 107]. Note that this is equivalent to the B3LYP functional of the GAUSSIAN package.</td>
<td></td>
</tr>
<tr>
<td>B3PW91</td>
<td>Becke’s three-parameter hybrid functional including the 1991 correlation functional of Perdew and Wang ((0.08 \text{LDA} + 0.72 \text{B88} + 0.2 \text{HF exchange} + 0.19 \text{VWN5} + 0.81 \text{PW91c}))</td>
<td>No [88, 89, 91, 94, 97, 106]</td>
<td></td>
</tr>
<tr>
<td>B1LYP</td>
<td>modified B3LYP functional of Adamo and Barone [108]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>O3LYP</td>
<td>modified B3LYP functional of Cohen and Handy [109]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>B97</td>
<td>Becke’s 1997 exchange-correlation functional (including 0.1943 HF exchange) [110]</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

63
<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
<th>Reference</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBE0</td>
<td>hybrid functional of Perdew, Burke, and Ernzerhof (0.75 PBEx + 0.25 HF exchange + PBEc)</td>
<td>[95, 111]</td>
<td>No</td>
</tr>
<tr>
<td>X3LYP</td>
<td>hybrid functional of Xu and Goddard</td>
<td>[103]</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Meta-GGA exchange functionals

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
<th>Reference</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPSSx</td>
<td>exchange functional of Tao, Perdew, Staroverov, and Scuseria</td>
<td>[112]</td>
<td>Yes</td>
</tr>
<tr>
<td>revTPSSx</td>
<td>revised TPSS exchange of Perdew et al.</td>
<td>[113]</td>
<td>Yes</td>
</tr>
<tr>
<td>SCANx</td>
<td>exchange functional of Sun, Ruzsinszky, and Perdew</td>
<td>[114]</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Meta-GGA correlation functionals

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
<th>Reference</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>B95</td>
<td>Becke’s 1995 correlation functional</td>
<td>[115]</td>
<td>Yes</td>
</tr>
<tr>
<td>TPSSc</td>
<td>correlation functional of Tao, Perdew, Staroverov, and Scuseria</td>
<td>[112]</td>
<td>Yes</td>
</tr>
<tr>
<td>revTPSSc</td>
<td>revised TPSS correlation of Perdew et al.</td>
<td>[113]</td>
<td>Yes</td>
</tr>
<tr>
<td>SCANc</td>
<td>correlation functional of Sun, Ruzsinszky, and Perdew</td>
<td>[114]</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Meta-GGA exchange-correlation functionals

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
<th>Reference</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPSS</td>
<td>exchange-correlation functional of Tao, Perdew, Staroverov, and Scuseria</td>
<td>[112]</td>
<td>No</td>
</tr>
<tr>
<td>revTPSS</td>
<td>revised TPSS functional of Perdew et al.</td>
<td>[113]</td>
<td>No</td>
</tr>
<tr>
<td>M06-L</td>
<td>2006 exchange-correlation functional of Zhao and Truhlar</td>
<td>[116, 117]</td>
<td>No</td>
</tr>
<tr>
<td>B97M-V</td>
<td>exchange-correlation functional of Mardirossian and Head-Gordon</td>
<td>[118]</td>
<td>Yes</td>
</tr>
<tr>
<td>SCAN</td>
<td>exchange-correlation functional of Sun, Ruzsinszky, and Perdew</td>
<td>[114]</td>
<td>No</td>
</tr>
</tbody>
</table>

Hybrid meta-GGA exchange-correlation functionals

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
<th>Reference</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>M06-2X</td>
<td>29-parameter exchange-correlation functional of Zhao and Truhlar including 0.54 HF exchange</td>
<td>[116]</td>
<td>No</td>
</tr>
<tr>
<td>M08-HX</td>
<td>47-parameter exchange-correlation functional of Zhao and Truhlar including 0.5223 HF exchange</td>
<td>[119]</td>
<td>Yes</td>
</tr>
<tr>
<td>M08-SO</td>
<td>44-parameter exchange-correlation functional of Zhao and Truhlar including 0.5679 HF exchange</td>
<td>[119]</td>
<td>Yes</td>
</tr>
<tr>
<td>TPSSh</td>
<td>hybrid version of TPSS including 0.1 HF exchange</td>
<td>[120]</td>
<td>Yes</td>
</tr>
<tr>
<td>revTPSSh</td>
<td>revised TPSSh of Csonka, Perdew, and Ruzsinszky including 0.1 HF exchange</td>
<td>[120, 121]</td>
<td>Yes</td>
</tr>
<tr>
<td>Functional</td>
<td>Description</td>
<td>Included?</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>mPW1B95</td>
<td>mixture of mPW91x and B95 by Zhao and Truhlar [122]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PW6B95</td>
<td>mixture of PW91x and B95 by Zhao and Truhlar [123]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SCAN0</td>
<td>hybrid version of SCAN including 0.25 HF exchange [114, 124]</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

**Double hybrid functionals**

<table>
<thead>
<tr>
<th>Functional</th>
<th>Description</th>
<th>Included?</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2PLYP</td>
<td>Grimme’s two-parameter double hybrid functional including MP2 correction (0.47 B88 + 0.53 HF exchange + 0.73 LYP + 0.27 MP2 correlation) [125]</td>
<td>No</td>
</tr>
<tr>
<td>B2GPPLYP</td>
<td>two-parameter double hybrid functional including MP2 correction of Martin and co-workers (0.35 B88 + 0.65 HF exchange + 0.64 LYP + 0.36 MP2 correlation) [126]</td>
<td>No</td>
</tr>
<tr>
<td>DSDPBEP86</td>
<td>dispersion corrected, spin-component scaled double hybrid functional of Kozuch and Martin (0.30 PBEx + 0.70 HF exchange + 0.43 P86 + 0.53 MP2 antiparallel-spin correlation + 0.25 MP2 parallel-spin correlation) [127, 128]. Note that the dispersion correction is only included if the -D3 postfix is added (see the note below).</td>
<td>No</td>
</tr>
<tr>
<td>DSDPBEhB95</td>
<td>dispersion corrected, spin-component scaled double hybrid functional of Kozuch and Martin (0.34 PBEh + 0.66 HF exchange + 0.55 B95 + 0.47 MP2 antiparallel-spin correlation + 0.09 MP2 parallel-spin correlation) [128]. Note that the dispersion correction is only included if the -D3 postfix is added (see the note below).</td>
<td>No</td>
</tr>
<tr>
<td>XYG3</td>
<td>double hybrid functional of Zhang, Xu, and Goddard (0.2107 B88 - 0.014 LDA + 0.8033 HF exchange + 0.6789 LYP + 0.3211 MP2 correlation evaluated with B2LYP orbitals) [129, 130]</td>
<td>No</td>
</tr>
<tr>
<td>SCAN0–2</td>
<td>SCAN-based double-hybrid of Hui and Chai (0.793701 HF exchange + 0.206299 SCANx + 0.5 SCANc + 0.5 MP2 correlation [114, 124]</td>
<td>No</td>
</tr>
<tr>
<td>Method</td>
<td>Description</td>
<td>Default:</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------------------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td><strong>dRPA75</strong></td>
<td>the dual-hybrid random phase approximation method of Mezei et al. [131]. The KS orbitals are obtained with the “0.25 PBEx + 0.75 HF exchange + PBEc” functional, while the energy is calculated using the “0.25 PBEx + 0.75 HF exchange + dRPA correlation” expression. Dispersion correction [132] can be included if the -D3 postfix is added.</td>
<td>No</td>
</tr>
<tr>
<td><strong>SCS-dRPA75</strong></td>
<td>the spin-component scaled dual-hybrid random phase approximation (SCS-dRPA75) method of Mezei et al. [131, 133]. The KS orbitals are obtained with the “0.25 PBEx + 0.75 HF exchange + PBEc” functional, while the energy is calculated using the “0.25 PBEx + 0.75 HF exchange + 1.5 dRPA antiparallel-spin correlation + 0.5 dRPA parallel-spin correlation” expression.</td>
<td>No</td>
</tr>
<tr>
<td><strong>van der Waals density functionals</strong></td>
<td>VV10NL the nonlocal part (the $\beta N$ term is ignored) of the 2010 van der Waals density functional of Vydrov and Van Voorhis [134], both self-consistent and non-self-consistent implementations are available, see also the comment below</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Default: dft=off

Notes:

1. The built-in functionals implemented in MRCC were obtained from the Density Functional Repository [135, 136]. Other functionals are available via the Libxc interface [43, 44] and require the Libxc library, see Sect. 7.2 for the installation of Libxc.


3. For a simple DFT calculation (i.e., without subsequent correlation calculations) the value of keyword calc can be SCF, HF,
RHF, or UHF. Note that you do not need to set its value since it is set to SCF by default. Alternatively, you can select the DFT functional using keyword calc, and in this case you do not have to set keyword dft (see the description of calc).

4. For a correlated calculation with KS orbitals you should select the functional with this keyword, and the value of keyword calc must be set to the desired correlation method. Note that you can also accelerate the post-KS calculation using local correlation schemes (e.g., local dRPA). See the examples below.

5. For a correlated calculation with KS orbitals (excluding calculations with double hybrid functionals) the HF energy computed with KS orbitals is used as reference energy.

6. For the B2PLYP, B2GPPLYP, DSDPBEp86, DSDPBEhB95, dRPA75, etc. double hybrid functionals as well as for user-defined double hybrid functionals including MP2 (SCS-MP2), dRPA, etc. correlation calc is automatically set to MP2, dRPA, etc. Note that you can accelerate the MP2, dRPA, . . . part of a double hybrid DFT calculation for large molecules using local correlation approaches. For the built-in double hybrid functionals just add the “L” prefix, while for the user-defined functionals set localcc=on. See the examples below.

7. The DSDPBEp86, DSDPBEhB95, and dRPA75 functionals use special parameters for the calculation of the D3 correction which are read by the DFT-D3 program from the .dftd3par.$HOST file located in your home directory. This file will be created by the program, but you must be sure that the program is able to access your home directory. Also note that, if you already have this file in your home, it will be overwritten, so please do not forget to save it before executing Mrcc.

8. For the VV10 van der Waals functional you can modify parameters b and C (see Ref. 134) if it is used with the user or userd options. For that purpose the two parameters should be specified after the VV10NL flag separated by spaces, see the example below. If the parameters are not set, those of Ref. 134 will be used.

Examples:

1. To perform a DFT calculation with the B3LYP functional give dft=B3LYP or calc=B3LYP
2. The B3LYP functional can also be defined using the user option as
   \[\text{calc=}scf\]
   \[\text{dft=}user\]
   \[5\]
   \[0.08 \text{ LDA}\]
   \[0.72 \text{ B88}\]
   \[0.20 \text{ HFx}\]
   \[0.19 \text{ VWN5}\]
   \[0.81 \text{ LYP}\]

3. The B2PLYP double-hybrid functional can also be defined using the user option as
   \[\text{calc=}scf\]
   \[\text{dft=}user\]
   \[4\]
   \[0.47 \text{ B88}\]
   \[0.73 \text{ LYP}\]
   \[0.53 \text{ HFx}\]
   \[0.27 \text{ MP2}\]

4. The DSDPBEPS86 double-hybrid functional can also be defined using the user option as
   \[\text{calc=}SCF\]
   \[\text{dft=}user\]
   \[5\]
   \[0.30 \text{ PBEx}\]
   \[0.43 \text{ P86}\]
   \[0.70 \text{ HFx}\]
   \[0.53 \text{ MP2s}\]
   \[0.25 \text{ MP2t}\]

5. SOSEX calculation with Kohn–Sham orbitals calculated with the LDA exchange functional:
   \[\text{calc=}SOSEX\]
   \[\text{dft=}LDA\]

6. To perform a DFT calculation with the B2PLYP double-hybrid functional and add the D3 dispersion correction set \[\text{dft=}B2PLYP-D3\] or \[\text{calc=}B2PLYP-D3\]

7. B2PLYP calculation, the MP2 contribution is evaluated using local MP2 approximation:
   \[\text{calc=}LB2PLYP\]

8. User-defined functional, different functionals are used for the
calculation of the density (0.25 PBEx + 0.75 HF exchange + PBEc) and the energy (0.50 PBEx + 0.50 HF exchange + MP2 correlation).
dft=userd
3
0.75 HFx
0.25 PBEx
1.00 PBEc
3
0.50 HFx
0.50 PBEx
1.00 MP2

9. The dRPA75 dual-hybrid functional can also be defined using the userd option as
   dft=userd
   3
   0.75 HFx
   0.25 PBEx
   1.00 PBEc
   3
   0.75 HFx
   0.25 PBEx
   1.00 dRPA

10. Local dRPA calculation with Kohn–Sham orbitals calculated with the PBE functional:
calc=LdRPA
dft=PBE

11. To perform a DFT calculation with the B3LYP functional using its LIBXC implementation set calc=HYB_GGA_XC_B3LYP5
12. The B3LYP functional can also be defined using the user option and the functionals implemented in the LIBXC library as
dft=user
   5
   0.08 LDA_X
   0.72 GGA_X_B88
   0.20 HFx
   0.19 LDA_C_VWN
   0.81 GGA_C_LYP

13. DFT calculation with a user-defined PBE0-VV10 functional.
Parameter $b$ of VV10 is modified, while for $C$ its default value, 0.0093, is used. If you do not want to modify either $b$ or $C$, simply drop the two numbers for the VV10NL entry.

dft=userd

<table>
<thead>
<tr>
<th>3</th>
<th>0.75 PBEx</th>
<th>0.25 HFx</th>
<th>1.00 PBEc</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.75 PBEx</td>
<td>0.25 HFx</td>
<td>1.00 PBEc</td>
</tr>
<tr>
<td>1.00 VV10NL 8.0 0.0093</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

diag Type of diagonalization algorithm used for the CI and LR-CC calculations.

Options:

david Standard Davidson diagonalization

olsen Another algorithm proposed by Olsen using only two expansion vectors (see Refs. 139, 140, and 1), useful for very large CI/LR-CC vectors

follow Davidson diagonalization with root-following, recommended for excited-state calculations if the initial guess is given manually or the calculation is restarted

Default: diag=david

Example: for root-following type diag=follow

domrad Radius of atom domains for the local correlation method of Ref. 22 (localcc=2013). For each localized MO (LMO), using the Boughton–Pulay procedure [79], we assign those atoms to the LMO on which it is localized. Then, for each LMO an atom domain is constructed in two steps, the LMO is called the central LMO of the domain. In the first step, those atoms are included in the domain whose distance from the atoms assigned to the central LMO is smaller than domrad. In the second step, those LMOs are identified which are localized on the atoms selected in the first step, and the domain is extended to include all atoms assigned to these LMOs.

Options:
In the first step of the construction of atom domains all atoms whose distance from the atoms assigned to the central LMO is smaller than this number (in bohr) will be included in the domain.

\textit{inf} Infinite radius will be applied, i.e., there is only one atom domain including all atoms.

Default: \texttt{domrad=10.0}

Note: To use the local CC methods as defined in Ref. 20 set \texttt{domrad=inf}, that is, use only one atom domain including all atoms.

Example: to set a threshold of 12.0 bohr type \texttt{domrad=12.0}

\texttt{drpaalg} Specifies the type of the algorithm for the solution of the dRPA equations or the calculation of SOS-MP2 energies. See Ref. 27 for more details.

Options:

\texttt{fit} The algorithm of Ref. 45 will be used, the fitting of integral lists will be performed before the dRPA iterations (SOS-MP2 calculation).

\texttt{nofit} The algorithm of Ref. 27 will be executed, the fitting of the integrals is not performed. This algorithm is efficient for large molecules.

\texttt{plasmon} The dRPA correlation energy is calculated using the plasmon formula.

\texttt{auto} The algorithm is automatically selected on the basis of the size of the molecule (canonical dRPA) or the HOMO-LUMO gap (local dRPA).

Notes:

1. For SOSEX calculations \texttt{drpaalg=fit} is the only option, which is forced by the program.

2. For canonical dRPA the algorithm using the plasmon formula scales as \(N^6\), it is only competitive for smaller molecules but inefficient for bigger ones. It avoids, however, the problems of the other algorithms, that is, convergence problems and unphysical solutions. Thus, it is useful for testing.

3. For local dRPA \texttt{drpaalg=plasmon} is also linear scaling but typically 2- to 4-times slower than \texttt{drpaalg=fit}. It is advantageous for the aforementioned reasons. If \texttt{drpaalg=auto}, the plasmon formula-based algorithm is executed if the HOMO-LUMO gap is lower than 0.05 \(E_h\).
drpaalg=fit and drpaalg=auto for canonical and local dRPA, respectively.

Example: to set the second option give drpaalg=nofit

dual Activates dual basis set calculations. For these calculations two basis sets must be specified: a smaller one by keyword basis_sm (see the description of the keyword) and a bigger basis defined by keyword basis. The energy evaluated with the bigger basis set is estimated from a small-basis calculation. See Ref. 34 for more details.

Options:

off No dual basis calculation.

on Dual basis set calculation for conventional SCF and correlated methods. First, an SCF calculation will be performed using the small basis set. Second, one iteration of a SCF calculation is carried out with the large basis, and the energy is extrapolated using a first-order formula. If a correlation calculation is requested, the orbitals obtained in the second SCF step will be used for that purpose.

e1 Dual basis set embedding, Ansatz 1 of Ref. 34. A Huzinaga-embedding calculation is performed with the small basis set. The steps of the large-basis Huzinaga-embedding calculation are non-iterative. See also the description of keyword embed.

e2 Dual basis set embedding, Ansatz 2 of Ref. 34. Similar to e1, but there is also an iterative step with the large basis.

Default: dual=off

Examples:

1. To perform a dual basis set PBE calculation with the cc-pVTZ and cc-pVDZ basis sets you need:
   basis=cc-pVTZ
   basis_sm=cc-pVDZ
dual=on
calc=PBE

2. Dual basis set PBE-in-LDA calculation with Ansatz 1 using the cc-pVTZ and cc-pVDZ basis sets as large and small basis set, respectively; atoms 1 to 5 are included in the embedded subsystem:
   basis=cc-pVTZ
   basis_sm=cc-pVDZ

72
calc=PBE
dual=e1
embed=Huzinaga
1-5
LDA
0

3. Dual basis set PBE-in-LDA calculation with Ansatz 1 using a mixed large basis (cc-pVTZ for atoms 1 to 5, cc-pVDZ otherwise) and the cc-pVDZ basis sets as the small basis set; atoms 1 to 5 are included in the embedded subsystem:
basis=embed
cc-pVTZ
cc-pVDZ
basis_sm=cc-pVDZ
calc=PBE
dual=e1
embed=Huzinaga
1-5
LDA
0

ecp Specifies the effective core potential (ECP) used in all calculations. By default the ECPs are taken from the files named by the chemical symbol of the elements, which can be found in the BASIS directory created at the installation. The ECPs are stored in the format used by the Cfour package. In addition to the ECPs provided by default, any ECP can be used by adding it to the corresponding files in the BASIS directory. Alternatively, you can also specify your own ECP in the file GENBAS which must be copied to the directory where Mrcc is executed.

Options:

none No ECPs will be used.

auto The ECPs will be automatically selected: no ECP will be used for atoms with all-electron basis sets, while the ECP adequate for the basis set of the atom will be selected otherwise.

<ECP label> If the same ECP is used for all atoms, the label of the ECP can be given here.

atomtype If different ECPs are used or no ECP is used for particular atoms, but the atoms of the same type are treated in the same way, ecp=atomtype should be given, and the user must specify the ECP for each atomtype (for which an ECP
is used) in the subsequent lines as \texttt{<atomic symbol>:<ECP label>}.\footnote{atomic symbol\label{atomic-symbol}}

\textbf{special} In the general case, if different ECPs are used for each atom, then one should give \texttt{ecp=\texttt{special}} and specify the ECP for each atom in the subsequent lines by giving the label of the corresponding ECP (or \texttt{none} if no ECP is used for that atom) in the order the atoms appear at the specification of the geometry.

Notes:

1. By default the following ECP are available for elements Na to Rn in Mrcc:
   \begin{itemize}
   \item the LANL2DZ ECP’s of Hay and Wadt\footnote{LANL2DZ-ECP-10, LANL2DZ-ECP-18, LANL2DZ-ECP-28, LANL2DZ-ECP-36, LANL2DZ-ECP-46, LANL2DZ-ECP-60, LANL2DZ-ECP-68, LANL2DZ-ECP-78}:
   \item the Stuttgart–Köln ECPs for the def2 basis sets\footnote{def2-ECP-28, def2-ECP-46, def2-ECP-60}:
   \item the Stuttgart–Köln multiconfiguration Dirac–Hartree–Fock-adjusted ECPs\footnote{MCDHF-ECP-10, MCDHF-ECP-28, MCDHF-ECP-60}:
   \end{itemize}

Please note that some of the above ECPs are not available for all elements.

2. If you need ECPs other than the default ones, you can, e.g., download them from the EMSL Basis Set Exchange\footnote{MCDHF-ECP-10, MCDHF-ECP-28, MCDHF-ECP-60}. Please choose format “AcesII” when downloading the ECPs.

3. If you use your own ECPs, these must be copied to the end of the corresponding file in the \texttt{BASIS} directory. Alternatively, you can also create a file called \texttt{GENBAS} in the directory where Mrcc is executed, and then you should copy your ECPs to that file.

4. The labels of the ECPs must be identical to those used in the \texttt{BASIS/*} files (or the \texttt{GENBAS} file). For the default ECPs just type the name of the ECPs as given above, e.g., \texttt{LANL2DZ-ECP-10}, \texttt{def2-ECP-28}, etc. If you employ non-default ECPs, you can use any label.

Default: \texttt{ecp=\texttt{auto}}

Examples:

1. To use the MCDHF-ECP-10 pseudopotential for all atoms the input must include \texttt{ecp=MCDHF-ECP-10}
2. Consider the PbO molecule and use the def2-SVP basis set for both elements as well as the def2-ECP-60 pseudopotential for Pb. The following inputs are equivalent.

Input 1:
```
basis=def2-SVP
geom
Pb
0 1 R

R=1.921813
```

Input 2:
```
basis=def2-SVP
ecp=atomtype
Pb: def2-ECP-60
geom
Pb
0 1 R

R=1.921813
```

Input 3:
```
basis=def2-SVP
ecp=special
def2-ECP-60
none
geom
Pb
0 1 R

R=1.921813
```

**edisp** This keyword controls the calculation of empirical dispersion corrections for DFT and HF calculations using the DFT-D3 approach of Grimme and co-workers [137, 138]. The corrections are evaluated by the DFTd3 program of the latter authors, which is available at [http://www.thch.uni-bonn.de/tc/](http://www.thch.uni-bonn.de/tc/) and interfaced to MRCC. You need to separately install this code and add the directory where the dftd3 executable is located to your PATH environmental variable.
Options:

- **off** No dispersion correction will be computed.
- **auto** The dispersion correction will be automatically evaluated to the KS or HF energy. Note that it is only possible for particular functionals listed in the description of keyword *dft* (and the HF method). For these methods, however, you can also turn on the calculations of the dispersion corrections by attaching the \(-D3\) postfix to the corresponding options, e.g., as BLYP-D3, B3LYP-D3, B2PLYP-D3, etc. (see the description of keyword *dft*).

< *any options of the dftd3 program*> You can directly give any options of the *dftd3* code. The options will be passed over to *dftd3* without any consistency check, the user should take care of the compatibility of these options with the calculation performed by *Mrcc*. Note that the coordinate file name must not be specified here, the coordinates will be taken from the *COORD.xyz* file generated by *Mrcc*.

Note: If *edisp=auto* or the \(-D3\) postfix is added to the corresponding options, the empirical dispersion correction is by default evaluated with the Becke and Johnson (BJ) damping function [138].

Default: *edisp=off*

Example:

1. to calculate the D3 dispersion correction including BJ damping to the B3LYP energy give *calc=B3LYP-D3*
2. to calculate the D3 dispersion correction to the B3LYP energy without the BJ damping the input should include:
   - *calc=B3LYP*
   - *edisp=-func b3-lyp -zero*

**embed** This keyword controls DFT embedding calculations. Currently it is only available for closed-shell systems using density-fitting.

Options:

- **off** No embedding.
- **Huzinaga** The Huzinaga-equation-based embedding approach [29, 34] will be used. The embedded atoms and the low-level DFT approach (or HF) used for the embedding must be specified and the number of embedded orbitals can be given in the subsequent lines as follows. The embedded atoms must be
given by their serial numbers in the first line as $<n_1>, <n_2>, \ldots, <n_k> <n_l>$, where $n_i$'s are the serial numbers of the atoms. Serial numbers separated by dash mean that $n_k$ through $n_l$ are embedded atoms. Note that the numbering of the atoms must be identical to that used in the Z-matrix or Cartesian coordinate specification, but dummy atoms must be excluded. The low-level DFT (LDA, GGA, or hybrid) or HF approach must be specified in the second line using the corresponding option of keyword dft (for HF simply HF). The high-level method (any DFT, HF, or any correlation method) for the active region should be specified by the keyword calc (or keywords calc and dft if a KS reference is used in a correlation calculation). In the third line an integer should be given which is the number of the embedded orbitals or zero if the latter is determined automatically. In addition, the algorithm for the selection of the orbitals can also be given in the third line after the integer. The options are aMul and bopu, which mean the Mulliken population- and the Boughton–Pulay algorithm-based schemes of Refs. 29 and 34, respectively. For aMul you can also specify the Mulliken population threshold (see the appendix of Ref. 34). The threshold for the bopu algorithm can be controlled by the bpcompo keyword. The default is aMul with a threshold of 0.3. See also examples below.

project The projector-based embedding approach of Manby and co-workers [148] will be used. The embedded atoms and the low-level DFT approach can be specified as described above.

Default: embed=off

Examples:

1. CCSD(T)-in-PBE embedding with the Huzinaga-equation-based approach, atoms 1 and 2 are included in the embedded region, the number of the embedded orbitals is determined automatically, the aMul algorithm is used for the selection of the orbitals with the default threshold:
   \begin{verbatim}
calc=DF-CCSD(T)
embed=huzinaga
1-2
PBE
0
\end{verbatim}

2. The same as example 1, but the aMul algorithm is used with a
threshold of 0.25:
calc=DF-CCSD(T)
embed=huzinaga
1-2
PBE
0 amul 0.25

3. The same as example 1, but the bopu algorithm is used:
calc=DF-CCSD(T)
embed=huzinaga
1-2
PBE
0 bopu

4. Same as example 1, but a mixed basis set is used, cc-pVDZ for the environment and cc-pVTZ for the embedded subsystem:
calc=DF-CCSD(T)
basis=embed
cc-pVDZ
cc-pVTZ
embed=huzinaga
1-2
PBE
0

5. dRPA@PBE-in-PBE embedding with the Huzinaga-equation-based approach, atoms 1, 2, 3, and 5 as well as 10 orbitals are included in the active region:
calc=dRPA
dft=PBE
embed=huzinaga
1-3,5
PBE
10

epert Use this option to add an external perturbation to the Hamiltonian, e.g., an external electric dipole field.

Options:
none No perturbations are added.
<any integer in the [0,9] interval> the number of the operators added to the Hamiltonian. The operators and the corresponding coefficients (in a.u.) should be specified in the subsequent lines as follows:
where the operator can be \( x, y, z, xx, yy, zz, xy, xz, yz, xxx, \\
xx, xz, xy, xyy, xyz, xzz, yyy, yyyy, yzz, zzz \).

Note: The symmetry of the perturbation is not taken care of automatically. If the perturbation lowers the symmetry of the system, you must change the computational point group (keyword \texttt{cmpgrp}) or turn off symmetry (\texttt{symm=off}).

Default: \texttt{epert=none}

Example: to add the \( \hat{y} \) and \( \hat{z} \) dipole length operators to the Hamiltonian with coefficients 0.01 and 0.001 a.u., respectively, the input should include the following lines

\begin{verbatim}
epert=2
y 0.01
z 0.001
\end{verbatim}

\textbf{\texttt{eps}} Threshold for the cumulative populations of MP2 natural orbitals (NOs) or optimized virtual orbitals (OVOs), to be used together with keyword \texttt{ovirt}. The cumulative population for an MO is calculated by summing up the occupation number of that particular MO and all the MOs with larger occupation numbers, and then this number is divided by the number of electrons. See Ref. 19 for more details.

Options:

\begin{verbatim}<any real number in the [0,1] interval>\end{verbatim} Virtual orbitals with cumulative populations of higher than this number will be dropped.

Default: \texttt{eps=0.975}

Example: to set a threshold of 0.95 type \texttt{eps=0.95}

\textbf{\texttt{excrad}} Sets the radius of local fitting domains for the exchange contribution in direct density-fitting SCF calculations [28, 149]. In direct DF-SCF calculations, in each iteration step, the MOs are localized. For each localized MO Löwdin atomic charges are computed, and all atoms are selected which have a charge greater than 0.05. All further atoms will be included in the fitting domain of the MO for which the electron repulsion integrals including the corresponding AOs and the basis functions residing on the atoms selected in the first step are estimated to be greater than a threshold.

79
Options:

\(<any\ positive\ real\ number>\) Threshold for the integrals (in E_h).

0 A threshold of zero will be applied, i.e., a conventional direct DF-SCF calculation will be executed.

Notes:

1. Local fitting domains are currently available only for RHF and RKS wave functions.
2. For average organic molecules with localized electronic structure \(\text{excrad}=1.0\) is a good choice. For more complicated systems other thresholds may be necessary. For \(\text{excrad}=1.0\) \(\text{excrad}_\text{fin}\) is set to \(10^{-3}\), which is fine with basis sets excluding diffuse functions. For basis sets with diffuse functions \(\text{excrad}_\text{fin}=1e-5\) or tighter is recommended.

Default: \(\text{excrad}=0\)

Example: to set a threshold of 1.0 E\(_h\) type \(\text{excrad}=1.0\)

\(\text{excrad}_\text{fin}\) In density-fitting SCF calculations, if \(\text{excrad}\) and \(\text{excrad}_\text{fin}\) differ, an extra iteration is performed to get an accurate SCF energy. \(\text{excrad}_\text{fin}\) specifies the radius of local fitting domains for the exchange contribution in this iteration step. See also notes for keyword \(\text{excrad}\).

Options: See the description of keyword \(\text{excrad}\).

Default: \(\text{excrad}_\text{fin}=\text{excrad}/1000\)

Example: to avoid the use of local fitting domains in the extra iteration step give \(\text{excrad}_\text{fin}=0.0\)

\(\text{freq}\) Requests harmonic vibrational frequency calculation (numerical). Ideal gas thermodynamic properties will also be evaluated in the rigid-rotor harmonic-oscillator approximation. If geometry optimization is also carried out, i.e., \(\text{gopt} \neq \text{off}\), the frequencies are calculated at the optimized geometry.

Options: \textbf{on} or \textbf{off}

Note: You should also set this keyword if you are interested thermodynamic properties of atoms.

Default: \(\text{freq}=\text{off}\)

Example: for a frequency calculation set \(\text{freq}=\text{on}\)

\(\text{gauss}\) Specifies whether spherical harmonic or Cartesian Gaussian basis functions will be used.
Options:

spher  Spherical harmonic Gaussians will be used

cart  Cartesian Gaussians will be used

Notes:

1. For calculations using the density fitting (DF) approximation, if intalg=os or intalg=auto, the Coulomb integrals are evaluated by algorithms [30, 150] which only enable the use of spherical harmonic Gaussians. Consequently, Cartesian Gaussians are only available with intalg=rys in DF calculations (see the description of keyword intalg).

2. The derivative integrals are evaluated by the solid-harmonic Hermite scheme [151] (see the description of keyword intalg), consequently, differentiated integrals, and thus energy derivatives cannot be evaluated with Cartesian Gaussian basis sets.

Default: gauss=spher

Example: for Cartesian Gaussians the user should set gauss=cart

ggeom  Specifies the format of molecular geometry. The geometry must be given in the corresponding format in the subsequent lines.

Options:

zmat  Usual Z-matrix format. In the Z-matrix the geometrical parameters can only be specified as variables, and the variables must be defined after the matrix, following a blank line. Another blank line is required after the variables. This Z-matrix format is compatible to that of Cfour and nearly compatible to that for Gaussian and Molpro. Z-matrices can be generated by Molden (see also Sect. 14.1), then the Gaussian-style Z-matrix format must be chosen. The symbol for dummy atoms is “X”.

xyz  Cartesian coordinates in xyz format, that is, the number of atoms, a blank line, then for each atom the atomic symbol or atomic number and the x, y, and z components of Cartesian coordinates. Cartesian coordinates in xyz format can also be generated by Molden (see also Sect. 14.1).

tmol  Cartesian coordinates in a format similar to that used by the Turbomole package, that is, the number of atoms, a blank line, then for each atom the x, y, and z components of Cartesian coordinates and the atomic symbol or atomic number.

81
mol Cartesian coordinates and connectivity in .mol format, that is, the number of atoms and number of bonds in the first line, then for each atom the x, y, and z components of Cartesian coordinates and the atomic symbol, then for each bond the serial number of the atoms connected by the bond and the type of the bond (1 for single bond, etc.). This geometry specifications is needed if the specified method requires the connectivity.

Note: For the use of ghost atoms see the description of keyword ghost.

Default: geom=zmat, which is equivalent to geom, i.e., if it is not specified whether the geometry is supplied in Z-matrix format or in other formats, Z-matrix format is supposed. Nevertheless, the coordinates must be given in the subsequent lines in any case.

Examples: the following five geometry inputs for H₂O₂ are equivalent

1. Z-matrix format, bond lengths in Å:
   geom
   H
   0 1 R1
   0 2 R2 1 A
   H 3 R1 2 A 1 D
   R1=0.967
   R2=1.456
   A=102.32
   D=115.89

2. xyz format, coordinates in bohr, atoms are specified by atomic symbols:
   unit=bohr
   geom=xyz
   4
   H 0.00000000 0.00000000 0.00000000
   0 1.82736517 0.00000000 0.00000000
   0 2.41444411 2.68807873 0.00000000
   H 3.25922198 2.90267673 1.60610134

3. xyz format, coordinates in bohr, atoms are specified by atomic
numbers:
unit=bohr
geom=xyz
4

1 0.00000000 0.00000000 0.00000000
8 1.82736517 0.00000000 0.00000000
8 2.41444411 2.68807873 0.00000000
1 3.25922198 2.90267673 1.60610134

4. **TURBOMOLE** format, coordinates in bohr, atoms are specified by atomic symbols:
unit=bohr
geom=tmol
4

0.00000000 0.00000000 0.00000000 H
1.82736517 0.00000000 0.00000000 O
2.41444411 2.68807873 0.00000000 O
3.25922198 2.90267673 1.60610134 H

4. **.mol** format, coordinates in bohr:
unit=bohr
geom=mol
4 3
0.00000000 0.00000000 0.00000000 H
1.82736517 0.00000000 0.00000000 O
2.41444411 2.68807873 0.00000000 O
3.25922198 2.90267673 1.60610134 H
1 2 1
2 3 1
3 4 1

**ghost** Ghost atoms can be specified using this keyword, e.g., for the purpose of basis set superposition error (BSSE) calculations with the counterpoise method.

Options:

- **none** There are no ghost atoms.
- **serialno** Using this option one can select the ghost atoms specifying their serial numbers. The latter should be given in the
subsequent line as \(< n_1 >, < n_2 >, \ldots, < n_k > < n_l >, \ldots,\)
where \(n_i\)'s are the serial numbers of the atoms. Serial numbers separated by dash mean that \(< n_k >\) through \(< n_l >\) are ghost atoms. Note that the numbering of the atoms must be identical to that used in the Z-matrix or Cartesian coordinate specification, but dummy atoms must be excluded.

Default: ghost=none

Examples:

1. Rectangular HF dimer, the atoms of the second HF molecule are ghost atoms:

```
geom
H
F 1 R1
H 2 R2 1 A
F 3 R1 2 A 1 D
```

\[ R1=0.98000000 \]
\[ R2=2.00000000 \]
\[ A=90.00000000 \]
\[ D=0.00000000 \]

\text{ghost=serialno}
3-4

2. Ammonia, the third hydrogen is a ghost atom (note that the serial number of the hydrogen is 4 instead of 5 because of the dummy atom):

```
geom
X
N 1 R
H 2 NH 1 AL
H 2 NH 1 AL 3 A
H 2 NH 1 AL 3 B
```

\[ R=1.00000000 \]
\[ NH=1.01000000 \]
\[ AL=115.40000000 \]
\[ A=120.00000000 \]
\[ B=-120.00000000 \]

\text{ghost=serialno}
gopt Requests geometry optimization. Currently only the full geometry optimization is supported, geometrical parameters cannot be frozen.

Options:

   off  no geometry optimization.
   full full geometry optimization.

Notes:

1. The coordinates in the MINP file are replaced by the converged ones at the end of the geometry optimization. The initial MINP file is saved as MINP.init.
2. The Abelian symmetry of the molecule is utilized at the calculation of gradients and update of the coordinates, thus, the computational point group is preserved during the optimization.

Default: gopt=off

Example: to carry out a full geometry optimization set gopt=full

gtol Threshold for automatic point group recognition. Two atoms will be considered symmetry-equivalent if the difference in any component of their Cartesian coordinates after the symmetry operation is less than $10^{-\text{gtol}}$ bohr.

Options: $<\text{any integer}>$

Default: gtol=7

Example: for a tolerance of $10^{-4}$ bohr give gtol=4

grdens This keyword is useful for the analysis of HF, KS, or correlated (MP2, CI, CC, ...) one-electron density and its derivatives. The one-electron density, its gradient, and Laplacian will be calculated on a grid used for DFT calculations (see keywords agrid and rgrid) and saved for external use. In the case of correlated calculations the densities are evaluated using the relaxed density matrices.

Options:

   off  Densities are not evaluated.
   on   The one-electron density and its derivatives are calculated in the grid points. These values together with the grid are written to the unformatted Fortran file DENSITY. If a correlation
calculation is performed the densities calculated with the correlation method are stored in the DENSITY file, while the SCF densities are saved to the file DENSITY.SCF. For restricted orbitals the files use the following format:

\[
\begin{align*}
N \\
r_1 \ w_1 \ \rho(r_1) \ \nabla \rho(r_1) \ \nabla^2 \rho(r_1) \\
r_2 \ w_2 \ \rho(r_2) \ \nabla \rho(r_2) \ \nabla^2 \rho(r_2) \\
\vdots \\
r_N \ w_N \ \rho(r_N) \ \nabla \rho(r_N) \ \nabla^2 \rho(r_N)
\end{align*}
\]

where \( N \) is the number of grid points, \( r_i = (x_i, y_i, z_i) \) is the Cartesian coordinate of grid point \( i \) with \( w_i \) as the corresponding weight, and \( \rho(r_i) \) is the density in point \( i \). For unrestricted calculations the corresponding \( \alpha \) and \( \beta \) quantities are stored separately, and the lines of the files change as \( r_i \ w_i \ \rho_\alpha(r_i) \ \rho_\beta(r_i) \ \nabla \rho_\alpha(r_i) \ \nabla \rho_\beta(r_i) \ \nabla^2 \rho_\alpha(r_i) \ \nabla^2 \rho_\beta(r_i) \)

Default: \( \text{grdens=off} \)

Example: to save the densities give \( \text{grdens=on} \)

\textbf{grtol} The keyword controls the fineness of the angular and radial integration grids employed in DFT calculations. The tolerance for the accuracy of angular integrals will be \( 10^{-\text{grtol}} \), while the number of radial grid points increases linearly with \( \text{grtol} \). See also the description of keywords \texttt{agrid} and \texttt{rgrid}.

Options: \( <\text{any positive integer}> \)

Note: meta-GGA functionals or molecules with special bonding characteristics may require larger integration grids, and it is recommended to run test calculations to decide if the default value of \( \text{grtol} \) is sufficient.

Default: \( \text{grtol=10} \)

Example: for a fine integration grid give \( \text{grtol=12} \)

\textbf{hamilton} Specifies what type of Hamiltonian is used in relativistic calculations. This keyword has only effect if \texttt{iface=Dirac}.

Options:

- \texttt{X2Cmmf} exact 2-component molecular-mean-field Hamiltonian [152]
other types of relativistic Hamiltonians such as the full Dirac–Coulomb Hamiltonian or the exact 2-component Hamiltonian

Default: \texttt{hamilton=DC}

Example: if you use the exact 2-component molecular-mean-field Hamiltonian, set \texttt{hamilton=X2Cmmf}

\textbf{iface} Specifies whether MRCC is used together with another program system. In this case the transformed MO integrals are calculated by that program and not by MRCC. See Sect. 5 for the description of various interfaces.

Options:

- \texttt{none} Transformed MO integrals are calculated by MRCC.
- \texttt{Cfour} MRCC is interfaced to CFOUR.
- \texttt{Columbus} MRCC is interfaced to COLUMBUS.
- \texttt{Dirac} MRCC is interfaced to DIRAC.
- \texttt{Molpro} MRCC is interfaced to MOLPRO.

Notes:

1. If you use MRCC together with CFOUR or MOLPRO, you do not need to use this keyword. The MRCC input file is automatically written and MRCC is automatically called by these program systems. The user is not required to write the MRCC input file, most of the features of MRCC can be controlled from the input files of these programs. With CFOUR the user has the option to turn off the automatic construction of the MRCC input file by giving \texttt{INPUT_MRCC=OFF} in the CFOUR input file \texttt{ZMAT}. In the latter case one should use this keyword.

2. If you use MRCC together with COLUMBUS or DIRAC, this keyword must be always given.

Default: \texttt{iface=none}, that is, all calculations will be performed by MRCC.

Example: to carry out four-component relativistic calculations using the DIRAC interface give \texttt{iface=Dirac}

\textbf{intalg} Specifies the algorithm used for the evaluation of two-electron integrals over primitive Gaussian-type orbitals.

Options:
The $(\mathbf{e}_0|\mathbf{f}_0)$ integrals are evaluated by the Obara–Saika procedure using the vertical and transfer recurrence relations [153, 154].

The $(\mathbf{e}_0|\mathbf{f}_0)$ integrals are evaluated by the Rys quadrature scheme [154–156].

Depending on the angular momenta the program automatically determines which of the two algorithms is executed. For integrals of low angular momentum functions the Rys procedure is used, while the Obara–Saika algorithm is executed otherwise.

The integrals over contracted Gaussians are evaluated by the solid-harmonic Hermite scheme of Reine et al. [151].

Notes:

1. For calculations using the density fitting (DF) approximation `intalg=auto` is equivalent `intalg=os` since the Obara–Saika algorithm is more efficient for any integrals.

2. For DF methods option `herm` is not available.

3. For DF methods, if `intalg=os` or `intalg=auto` the Coulomb integrals are evaluated by the algorithm of Ref. 30, which only enables the use of spherical harmonic Gaussians. Consequently, Cartesian Gaussians are only available with `intalg=rys` in DF calculations (see the description of keyword `gauss`).

4. The derivative integrals are evaluated by the solid-harmonic Hermite scheme even if another option is used for the undifferentiated integrals. Consequently, differentiated integrals, and thus energy derivatives cannot be evaluated with Cartesian Gaussian basis sets.

Default: `intalg=auto`

Example: to use the Obara–Saika scheme for all angular momenta add `intalg=os`

`itol` Threshold for integral calculation. Integrals less than $10^{-itol} E_h$ will be neglected.

Options: `<any integer>`

Default: `itol=max(10, scftol+4, scfdtol)`, but `itol` is changed to `itol+1` if basis functions are dropped because of linear dependence (see keyword `ovltol`)

Example: for an accuracy of $10^{-15} E_h$ one must give `itol=15`
**laptol** Specifies the accuracy of the numerical Laplace transform in the (T) correlation energy term of local CCSD(T) calculations with localcc=2016 or 2018. See also the description of keyword talg and Ref. 32.

Options:

- `<any positive real number>` The (T) energy denominator will be approximated using its numerical Laplace transform. The number of quadrature points \( n_q \), and hence the accuracy is determined by this number. The minimum value of \( n_q \) is also set by this number as \( n_q > \log_{10}(\text{laptol}) \).

Default: laptol=\(10^{-2}\), but laptol=\(10^{-3}\) is set if lcorthr=tight. See also the description of lcorthr for further details.

Example: to use a threshold of \(10^{-3}\) type laptol=\(1e-3\)

**lccrest** Use this keyword to restart local CC calculations in the case of localcc=2015, localcc=2016, and localcc=2018, e.g., after power failure. For the restart with lccrest=on the LMP2 calculation and integral transformations have to be completed, and for the remaining domains the DFINT.AI.*, DFINT_AB.*, DFINT_IJ.*, ajb.*, 55.*, 56, localcc.restart, and VARS files are required. In the case of localcc=2016 or localcc=2018 and talg=lapl or topr the laplbas.* files are also needed.

If the loop for the extended domains has started but was not finish in the LMP2 calculation or in the LMP2 part of and LNO-CC calculation with localcc=2016 or localcc=2018, the calculation can be restarted with the lccrest=domain option. In this case all intermediate files located in the folder of execution have to be kept intact, and only the updated MINP file should be overwritten before the calculation is restarted. Note that the beginning of the computation up to the pair energy evaluation is repeated in the restarted run, and the loop over the extended domains will continue from the index of the first unfinished domain.

Options: on, off, or domain.

Default: lccrest=off

Example: to restart a local CCSD(T) calculation set lccrest=on or lccrest=domain depending on the point of interruption

**lcorthr** Controls the accuracy of local correlation calculations by setting the relevant thresholds: bp*, lnoepso, lnoepsv, laptol, naf_cor, osveps, wpairtol, spairstol (see also Refs. 27, 28, and 35 for details).
Options:

**Loose** Relatively loose thresholds will be used, see Tables 2 and 3.

**Normal** Default threshold set if `localcc=2018`. 1corthr=Normal is a synonym for 1corthr=Loose if `localcc=2015` or 2016. See Tables 2 and 3.

**Tight** Tight thresholds will be used, see Tables 2 and 3.

0 The truncation thresholds will be set so that the canonical energy be reproduced, it is only useful for testing.

Notes:

1. The values of the thresholds controlled by 1corthr are summarized in Table 2 for the default `localcc=2018` case and in Table 3 for the previous schemes.

2. Expected accuracy. Using the Normal settings for local MP2 and CCSD(T), if `localcc=2018`, 1 kJ/mol (1 kcal/mol) average (maximum) errors are expected in energy differences even for relatively complicated or sizable systems (see Refs. 28 and 35). In the case of `localcc=2015` considering local dRPA and dRPA related methods the expected average (maximum) errors for energy differences are 2 kJ/mol (2 kcal/mol) with Loose and 1 kJ/mol (1 kcal/mol) with Tight settings (see Ref. 27).

3. For local MP2 `naf_cor=off` is set if `localcc=2015`. Keywords lnoepso, lnoepsv, and laptol are irrelevant for local MP2 calculations.

Default: 1corthr=Normal

Example: to use tight thresholds set 1corthr=Tight

**lmp2dens** Determines whether the MP2 density matrix fragments are calculated using the “correct” expressions derived for the general type of orbitals, or using the expressions derived for the canonical case (as described in Ref. 20).

Options:

**on** The MP2 density matrix fragments are calculated using the correct, non-canonical expressions.

**off** The MP2 density matrix fragments are calculated using the approximate canonical expressions (as defined in Ref. 20).

Notes:
Table 2: Keyword values set by lcorthr if localcc=2018.

<table>
<thead>
<tr>
<th>calc</th>
<th>MP2</th>
<th>CC</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>localcc</td>
<td>2018</td>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>lcorthr</td>
<td>Loose</td>
<td>Normal</td>
<td>Tight</td>
</tr>
<tr>
<td>bpedo</td>
<td>0.9999</td>
<td>0.9999</td>
<td>0.9999</td>
</tr>
<tr>
<td>wpairtol</td>
<td>3e-5</td>
<td>1e-5</td>
<td>3e-6</td>
</tr>
<tr>
<td>lnoepso</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>lnoepsv</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>laptol</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>naf_cor</td>
<td>2e-3</td>
<td>2e-3</td>
<td>2e-3</td>
</tr>
<tr>
<td>bpcompo</td>
<td>0.985</td>
<td>0.985</td>
<td>0.985</td>
</tr>
<tr>
<td>bpcompv</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>bppdo</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
</tr>
<tr>
<td>bppdv</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>bpedv</td>
<td>0.995</td>
<td>0.995</td>
<td>0.995</td>
</tr>
<tr>
<td>osveps</td>
<td>off</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>spairtol</td>
<td>off</td>
<td>off</td>
<td>off</td>
</tr>
</tbody>
</table>

Table 3: Keyword values set by lcorthr for localcc=2015 or 2016. Note that identical settings are used for both lcorthr=Normal and lcorthr=Loose if localcc=2015 or 2016.

<table>
<thead>
<tr>
<th>calc</th>
<th>MP2, dRPA, CC</th>
<th>MP2</th>
<th>CC</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>localcc</td>
<td>2015</td>
<td>2016</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>lcorthr</td>
<td>Normal</td>
<td>Tight</td>
<td>Normal</td>
<td>Tight</td>
</tr>
<tr>
<td>bpedo</td>
<td>-</td>
<td>-</td>
<td>0.9998</td>
<td>0.9999</td>
</tr>
<tr>
<td>wpairtol</td>
<td>1e-6</td>
<td>1e-7</td>
<td>1.5e-5</td>
<td>1e-5</td>
</tr>
<tr>
<td>spairtol</td>
<td>1e-4</td>
<td>1e-5</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>osveps</td>
<td>1e-3</td>
<td>1e-4</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>lnoepso</td>
<td>3e-5</td>
<td>1e-5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>lnoepsv</td>
<td>1e-6</td>
<td>3e-7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>laptol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>naf_cor</td>
<td>1e-2</td>
<td>8e-3</td>
<td>2e-3</td>
<td>2e-3</td>
</tr>
<tr>
<td>bpcompo</td>
<td>0.985</td>
<td>0.985</td>
<td>0.985</td>
<td>0.985</td>
</tr>
<tr>
<td>bpcompv</td>
<td>0.98</td>
<td>0.98</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>bppdo</td>
<td>-</td>
<td>-</td>
<td>0.999</td>
<td>0.999</td>
</tr>
<tr>
<td>bppdv</td>
<td>-</td>
<td>-</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>bpedv</td>
<td>-</td>
<td>-</td>
<td>0.995</td>
<td>0.995</td>
</tr>
</tbody>
</table>
1. To reproduce the method described in Ref. 20 use \texttt{lmp2dens=off}.
2. The use of \texttt{lmp2dens=on} is recommended since in this case the local CC energy can be corrected by the difference of the local MP2 energy and the approximate local MP2 energy calculated in the local interacting subspaces (see Total CC... energy + correction in the output). This correction usually improves the local CC energy.

Default: \texttt{lmp2dens=on}

Example: to use the canonical expressions give \texttt{lmp2dens=off}

\texttt{lnoepso} Threshold for the occupation numbers of occupied local natural orbitals (LNOs) in the case of local correlation calculations, or for state-averaged MP2/CIS(D) occupied natural orbitals for reduced-cost excited-state calculations, see also keyword \texttt{lnoepsv}. See Ref. 22 as well as Refs. 31 and 33 for more details.

Options:

\texttt{<any real number in the [0,1] interval> } Orbitals with occupation numbers greater than 1-\texttt{lnoepso} will be frozen.

Note: For default settings with options other than \texttt{localcc=2018} and \texttt{lcorthr=Normal}, see the description of \texttt{lcorthr}.

Default: \texttt{lnoepso=1e-5} for local correlation, \texttt{lnoepso=0} for excited-states

Example: to set a threshold of $5 \cdot 10^{-6}$ type \texttt{lnoepso=5e-6}

\texttt{lnoepsv} Threshold for the occupation numbers of virtual local natural orbitals (LNOs) in the case of local correlation calculations, or for state-averaged MP2/CIS(D) virtual natural orbitals for reduced-cost excited-state calculations, see also keyword \texttt{lnoepso}. See Ref. 22 as well as Refs. 31 and 33 for more details.

Options:

\texttt{<any real number in the [0,1] interval> } Orbitals with occupation numbers smaller than this number will be dropped.

Note: For default settings with options other than \texttt{localcc=2018} and \texttt{lcorthr=Normal}, see the description of \texttt{lcorthr}.

Default: \texttt{lnoepsv=1e-6} for local correlation, \texttt{lnoepsv=7.5e-5} for excited-states

Example: to set a threshold of $5 \cdot 10^{-7}$ type \texttt{lnoepsv=5e-7}
**localcc** Specifies if local correlation calculation is performed. See Refs. 20, 22, 27, 28, 32, and 35 for more details.

Options:

- **off** No local correlation calculation is performed.
- **2013** The algorithm of Ref. 22 is used.
- **2015** An algorithm based on Ref. 27 is used.
- **2016** The local MP2 algorithm of Ref. 28 or the local CC algorithm of Ref. 32 is used.
- **2018** The local MP2 algorithm of Ref. 28 (with tighter settings) or the local CC algorithm of Ref. 35 is used.

- **on** Equivalent to **localcc=2018** in the case of MP2 or CC, and equivalent to **localcc=2015** otherwise

Note: Local correlation methods can also be run if the prefix “L” (or “LNO-” in the case of CC methods) is added to the corresponding option of keyword calc, see the description of calc. Local SCS-MP2 (SOS-MP2) calculations can be run with calc=LSCS-MP2 (calc=LSOS-MP2).

Default: **localcc=off**

Example: for local correlation calculations give **localcc=on**

**maxact** Maximum number of inactive labels. One can impose restrictions on the cluster operator using this keyword. The maximum number of virtual/occupied inactive labels on the singly, doubly, ... excited clusters can be specified.

Options: **on** or **off**. If **maxact=on**, the maximum number of virtual and occupied inactive labels must be specified in the subsequent line as an integer vector. The integers must be separated by spaces. The vector should contain as many elements as the excitation rank of the highest excitation in the cluster operator. The integers are maximum number of virtual/occupied inactive labels allowed on amplitudes of single, double, ... excitations, respectively.

Default: **maxact=off**

Example: Suppose that we have up to quadruple excitations, and the single, double, triple, and quadruple excitations are allowed to have maximum of 1, 2, 2, and 1 inactive virtual and occupied labels, respectively. Then the input file should include the following lines:
**maxact=on**

1 2 2 1

**maxdim** Maximum number of trial vectors in the Davidson procedure in the case of CIS, TDA, TD-HF, and TD-DFT calculations. The procedure will be restarted if the dimension of the reduced subspace reaches **maxdim**.

Options: <any positive integer>
Default: **maxdim=**max(100, 3*max(ntrip, nsing))
Example: for a maximum of 50 expansion vectors set **maxdim=50**

**maxex** Level of highest excitation included in the cluster operator in the case of MRCI/CC calculations. In an MR calculation all single, double (or higher) excitations out of the reference determinants are included in the cluster operator (see the description of keyword **nacto**), however, the very high excitations are frequently irrelevant. Using this option the latter can be dropped. If **maxex** is set to a positive integer \( n \), only up to \( n \)-fold excitations will be included in the cluster operator. The excitation manifold can be further selected by imposing constrains on the number of active/inactive labels of the excitations (see keyword **maxact**). See Refs. 2 and 3 for more details.

Options:
- 0 The excitation manifold is not truncated.
- <any positive integer> The excitation manifold is truncated at \( n \)-fold excitations, see above.

Default: **maxex=0**
Example: to truncate the excitation manifold at triple excitations set **maxex=3**

**mem** Specifies the core memory used.

Options:
- <any positive integer>MB The amount of memory to allocate is specified in megabytes
- <any positive integer>GB The amount of memory to allocate is specified in gigabytes

Default: **mem=256MB**
Example: to allocate 8 GB core memory the user should set **mem=8GB**
**molden** Specifies whether input file for the MOLDEN program and an xyz-file containing the Cartesian coordinates are written (see also Sect. 14).

Options:

- **on** Cartesian coordinates, basis set information, and MO coefficients are saved to file `MOLDEN`. This file can be opened by MOLDEN and used to visualize the structure of the molecule and the MOs. In addition, Cartesian coordinates are also written to file `COORD.xyz` in xyz (XMol) format, which can be processed by many molecular visualization programs.

- **off** The construction of the `MOLDEN` input and the `COORD.xyz` file is turned off.

Default: `molden=on`

Example: if you do not need MOLDEN input and the `COORD.xyz` file, add `molden=off`

**mulmet** Specifies the multipole approximation used for the evaluation of pair energies of distant pairs.

Options:

- **0** The simplified dipole-dipole estimate of Ref. 157 will be used.
- **1** Full dipole-dipole estimate [158].
- **2** All the terms are included in the multipole expansion up to the contributions of the quadrupole moment [28].
- **3** All the terms are included in the multipole expansion up to the contributions of the octapole moment [28].

Default: `mulmet=3` if `localcc=2016` or `2018`, `mulmet=0` otherwise

Example: to use the octapole approximation set `mulmet=3`

**mult** Spin multiplicity \((2S + 1)\) of the Hartree–Fock or Kohn–Sham wave function. If a CI or CC calculation is also performed, the same multiplicity is supposed for the ground-state wave function. For excited states the multiplicity will be arbitrary, only \(M_S\) is conserved. For closed-shell reference determinants the multiplicity (strictly speaking the parity of \(S\)) can be controlled by keywords `nsing` and `ntrip`, see below.

Options: `<any positive integer>`
Default: for atoms the corresponding experimental multiplicity is set, for molecules \texttt{mult}=1 (singlet) for an even number of electrons, \texttt{mult}=2 (doublet) otherwise.

Example: for a triplet state one should give \texttt{mult}=3

\texttt{nacto} Number of active occupied spinorbitals. By default, \texttt{nacto} pieces of spinorbitals under the Fermi level are supposed to be active. This can be overwritten using keyword \texttt{active}, which enables the user to select the active orbitals manually (see the description of keyword \texttt{active}). In a MRCI/CC calculation a complete active space (CAS) is supposed defined by keywords \texttt{nacto} and \texttt{nactv} (or alternatively by \texttt{active}) and up to \textit{n}-fold excitations from the reference determinants of this space are included in the excitation manifold, where \textit{n} is determined by keyword \texttt{calc} (2 for CCSD, 3 for CCSDT, \ldots). See Ref. 2 for more details. See also keywords \texttt{nactv}, \texttt{maxex}, and \texttt{maxact}.

Options: \texttt{<any positive integer>} or 0

Default: \texttt{nacto}=0

Example: for two active occupied spin-orbitals give \texttt{nacto}=2

\texttt{nactv} Number of active virtual spinorbitals. By default, \texttt{nactv} pieces of spinorbitals above the Fermi level are supposed to be active, which can be overwritten using keyword \texttt{active}. For a detailed description see keyword \texttt{nacto}.

Options: \texttt{<any positive integer>} or 0

Default: \texttt{nactv}=0

Example: for two active virtual spin-orbitals give \texttt{nactv}=2

\texttt{nafalg} Specifies how natural auxiliary functions (NAFs) will be constructed in the case spin-unrestricted MOs. NAFs can be calculated by diagonalizing \((W^\alpha + W^\beta)/2\) or \(W^\alpha\) (see Ref. 24 for the definitions). The latter option is somewhat more efficient but can be dangerous for processes involving atoms.

Options:
\begin{itemize}
  \item \texttt{albe} NAFs are constructed from \((W^\alpha + W^\beta)/2\).
  \item \texttt{alpha} NAFs are constructed from \(W^\alpha\).
\end{itemize}

Default: \texttt{nafalg=albe}

Example: to use \(W^\alpha\) set \texttt{nafalg=alpha}
**naf_cor** Specifies whether natural auxiliary functions (NAFs) will be used for density-fitting correlated calculations and also specifies the threshold for the occupation numbers of NAFs (see Ref. 24).

Options:
- **off** NAFs will not be constructed.
- `<any real number in the [0,1] interval>` A NAF basis will be constructed and NAFs with occupation numbers smaller than this number will be dropped.
- **on** Equivalent to `naf_cor=1e-2` for local correlation methods, and to `naf_cor=5e-3` otherwise.

Default: according to the value of `lcorthr` for local correlation methods, `naf_cor=0.1` for the reduced-cost excited-state approaches of Refs. 31 and 33 (see keyword `redcost_exc`), `naf_cor=off` otherwise.

Example: to use NAFs and set a threshold of $10^{-2}$ type `naf_cor=1e-2`

**naf_scf** Specifies whether NAFs will be used for density-fitting SCF calculations and also specifies the threshold for the occupation numbers of NAFs (see Ref. 24). The syntax is analogous with that for keyword `naf_cor`.

**naftyp** Specifies how NAFs will be constructed in the case of local correlation calculations. NAFs are constructed by diagonalizing the $W = J^T J$ matrix where $J$ is a particular block of the three-center Coulomb integral matrix (see Refs. 24 and 35 for details).

Options:
- **Jai** NAFs are constructed from $J^P_{ai}$
- **Jpi** NAFs are constructed from $J^P_{pi}$
- **Jpq** NAFs are constructed from $J^P_{pq}$
- **Jmi** NAFs are constructed from $J^P_{mi}$

Default: `naftyp=Jpq` for local CC and `localcc=2016` or `2018` as well as for the reduced-cost excited-state approaches of Refs. 31 and 33 (see keyword `redcost_exc`), `naftyp=Jai` for local MP2 and `localcc=2016` or `2018`

Example: to construct NAFs using $J^P_{pq}$ set `naftyp=Jpq`

**nchol** Number of Cholesky vectors/quadrature points for the Laplace integral in the case methods based on the decomposition of energy denominators. See also the description of keyword `dendec`.  

97
Options:

- **auto** The number of Cholesky vectors/quadrature points will be automatically determined to achieve the required precision.
- **<any positive integer>** The number of Cholesky vectors/quadrature points will also be automatically determined but the maximum number of the vectors cannot exceed this number.

Default: `nchol=auto`

Example: to use ten Cholesky vectors/quadrature points give `nchol=10`

**ndeps** Step size for the numerical differentiation in atomic units.

Options: **<any positive real number>**

Default: `ndeps=1e-3`

Example: for a step size of $5 \cdot 10^{-4}$ a.u. for numerical Hessian evaluation set `ndeps=5e-4`

**nstate** Number of electronic states including the ground state and excited states. In non-relativistic calculations, for closed-shell reference determinants **nstate** is supposed to be the number of singlet states. See also keywords **nsing** and **ntrip**.

Options: **<any positive integer>**

Default: `nstate=max(1, nsing+ntrip)`

Example: for three states give `nstate=3`

**nsing** Number of singlet electronic states (strictly speaking the number of states with $M_S = 0$ and $S$ is even) including the ground state and excited states. Use this option only for non-relativistic calculations and closed-shell reference determinants, it should be zero otherwise. In the case of closed-shell reference determinants a partial spin-adaptation is possible, see Ref. 1. This enables us to search for singlet and triplet roots separately. See also keywords **nstate** and **ntrip**.

Options: **<any positive integer>**

Default: `nsing=1` for closed-shell reference determinants, `nsing=0` otherwise

Example: for two singlet states give `nsing=2`
**ntrip** Number of triplet electronic states (strictly speaking the number of states with $M_S = 0$ and $S$ is odd) including the ground state and excited states. Use this option only for non-relativistic calculations and closed-shell reference determinants, it should be zero otherwise. See the description of keywords **nstate** and **ntrip**.

Options: `<any positive integer>`

Default: ntrip=0

Example: for two triplet states give ntrip=2

**occ** Specifies the occupation of the Hartree–Fock determinant.

Options:

1. If this keyword is not given, the occupation is automatically determined in the SCF calculations.
2. For RHF calculations the occupation should be given in the following format:
   \[
   \text{occ} = < n_1 > , < n_2 > , \ldots , < n_{N_{ir}} >
   \]
   where $< n_i >$ is the number of occupied orbitals in irrep $i$, and $N_{ir}$ is the number of irreps.
3. For ROHF and UHF calculations the occupation should be given as
   \[
   \text{occ} = < n_1^\alpha > , \ldots , < n_{N_{ir}}^\alpha > / < n_1^\beta > , \ldots , < n_{N_{ir}}^\beta >
   \]
   where $< n_i^\sigma >$ is the number of occupied $\sigma$ spinorbitals in irrep $i$.

Default: occ is not specified, that is, the occupation is set by the SCF program.

Examples:

1. Water, RHF calculation:
   \[
   \text{occ}=3,1,1,0
   \]
2. Water, UHF calculation:
   \[
   \text{occ}=3,1,1,0/3,1,1,0
   \]
3. Carbon atom, ROHF or UHF calculation:
   \[
   \text{occ}=2,0,0,0,0,1,0,1/2,0,0,0,0,0,0,0
   \]

**optalg** Specifies the optimization algorithm used for geometry and basis set optimizations. For basis set optimization, at the moment, the downhill simplex method of Nelder and Mead [159] is the only available option. A geometry optimization can be carried out by either the Broyden–Fletcher–Goldfarb–Shanno (BFGS) or the simplex algorithm.
Options:

*simplex* the simplex method of Nelder and Mead.

*BFGS* the BFGS algorithm.

Default: optalg=simplex for basis set optimization, optalg=BFGS otherwise.

Example: To run a geometry optimization with the simplex algorithm set optalg=simplex

**optmaxit** Maximum number of iteration steps allowed in a geometry or basis set optimization. If the simplex algorithm is used, i.e., optalg=simplex, the maximum number of function evaluations is also controlled by the parameter optmaxit: it is set to 15\times optmaxit. If the optimization is terminated with a message “the maximum number of function evaluation is exceeded”, then you can increase the value of optmaxit appropriately.

Options: *any positive integer*

Default: optmaxit=50

Example: to allow 60 iteration steps set optmaxit=60

**optetol** Convergence threshold for geometry or basis set optimization. If the simplex algorithm is used, i.e., optalg=simplex, the optimization is terminated when the energy difference (in E\textsubscript{h}) becomes less then this value and the optstol criterion is also fulfilled. In addition to the criterion for the gradient (optgtol) and the step-size (optstol) the energy change between the cycles is also monitored. For a successful geometry optimization it is required that the optgtol criterion is satisfied and either the energy difference between the last two steps becomes less than this value (in E\textsubscript{h}) or the optstol criterion is met.

Options: *any positive real number*

Default: optetol=1e-6

Example: for a convergence threshold of 5 \cdot 10^{-6} E\textsubscript{h} set optetol=5e-6

**optgtol** Convergence threshold for geometry optimization, upper limit (in E\textsubscript{h}/bohr) for the maximum gradient component. For a successful geometry optimization this criterion must be fulfilled.

Options: *any positive real number*

Default: optgtol=1e-4
Example: for a convergence threshold of $3 \cdot 10^{-4} \text{E}_h/\text{bohr}$ set optgtol=3e-4

**optstol** Convergence threshold for geometry or basis set optimization. For the latter the optimization is terminated when the maximum change in the parameters becomes less than this value and the optetol criterion is also fulfilled, for the former this criterion is met when the maximum step-size from the previous step (in bohr) is lower than this value. The geometry optimization is terminated successfully if, in addition to the optgtol criterion obeyed, either this criterion is met or the energy difference between the last two steps becomes less than optetol.

Options: *any positive real number*

Default: optstol=1e-3 for a basis set optimization, optstol=1e-4 otherwise.

Example: to set a threshold of $10^{-5}$ bohr for a geometry optimization type optstol=1e-5

**orblocc** Specifies what type of orbital localization is performed for the core molecular orbitals.

Options: All the options introduced for keyword orbloco also work for orblocc, see the description of keyword orbloco for details.

Default: orblocc=orbloco if localcc=2013, or core=corr and localcc≠off; orblocc=off otherwise

Example: to localize of core orbitals with the Pipek–Mezey algorithm specify orblocc=on

**orblocguess** Initial guess for the orbital localization.

Options:

- **cholesky** Guess orbitals are calculated by the Cholesky decomposition of the one-particle density matrix [160].
- **restart** Guess orbitals for the localization are read from the MOCOEF.LOC file produced in a previous run where orbital localization was performed.
- **read** Orbitals are read from the MOCOEF.LOC file and directly employed at later steps of the calculation without any change. The locality of the orbitals is not checked and the orbital localization is skipped entirely.
Note: The combination of orblocguess=restart (or orblocguess=read) with scfiguess=off can be particularly useful if the result files of the converged SCF iteration and orbital localization steps are available and only the local correlation step should be repeated with different settings. See also the description of scfiguess=off for this option.

Default: orblocguess=cholesky

Example: to speed up the orbital localization by using the localized orbitals of a previous calculation as guess specify orblocguess=restart.

orbloco Specifies what type of orbital localization is performed for occupied molecular orbitals.

Options:
- off No orbital localization.
- boys Boys localization is performed [161].
- pm Pipek–Mezey localization is performed [162].
- IBO intrinsic bond orbitals of Knizia are constructed [163].
- cholesky localized orbitals are calculated by the Cholesky decomposition of the one-particle density matrix [160].

Default: orbloco=off in the general case, orbloco=boys for local correlation calculations

Example: to carry out Pipek–Mezey localization for the occupied orbitals type orbloco=pm

orblocv Specifies what type of orbital localization is performed for virtual molecular orbitals.

Options: All the options introduced for keyword orbloco excepting IBO also work for orblocv, see the description of keyword orbloco for details. In addition, for local correlation calculations there is one more option:
- pao Projected atomic orbitals.

Default: orblocv=off in the general case, orblocv=pao for local correlation calculations

Example: to carry out Boys localization for the virtual orbitals type orblocv=boys
osveps Threshold for the occupation numbers of orbital specific virtual orbitals (OSVs) used at the evaluation of pair correlation energies in local MP2 and dRPA calculations. See the description of keyword wpairtol for more details.

Options:
- off OSVs are not constructed and not dropped
- \(<any\ real\ number\ in\ the\ [0,1]\ interval>\) Orbitals with occupation numbers smaller than this number will be dropped.

Default: osveps=1e-3 for localcc=2015, osveps=off for localcc=2016 or 2018

Example: to set a threshold of $10^{-4}$ type osveps=1e-4

ovirt This keyword controls the cost reduction approaches based on natural orbital (NO) or optimized virtual orbitals (OVOs) techniques. For a ground-state correlation calculation, if this keyword is set, the virtual MOs will be transformed to MP2 NOs or OVOs [164]. Subsequently the virtual space will be truncated on the basis of the populations of the orbitals, which can be controlled by keywords eps and ovosnorb. See Ref. 19 for more details.

Options:
- off The virtual MOs are not changed.
- MP2 MP2 NOs will be used.
- OVOs Optimized virtual orbitals will be used.

Default: ovirt=off

Example: to use MP2 NOs for a ground-state CC calculation give ovirt=MP2

ovltol Tolerance for the eigenvalues of the AO overlap matrix. Eigenvectors corresponding to the eigenvalues lower that ovltol will be removed to cure the linear dependence of the AO basis set.

Options:
- \(<any\ positive\ real\ number\ or\ zero>\) This number will be used as the threshold for the eigenvalues of the overlap matrix.

Default: ovltol=1e-7

Example: to keep all the basis functions set ovltol=0.0
ovosnorb Specifies the retained percentage of virtual orbitals in an optimized virtual orbitals (OVOs) calculations. ovosnorb % of virtual orbitals will be retained.

Options: <any number between 0 and 100>
Default: ovosnorb=80.0
Example: to retain only 70 % of the virtuals give ovosnorb=70.0

popul This keyword controls the wave function analysis.

Options:
   off No wave function analysis is performed.
   Mulli A population analysis is also performed, and Mulliken and Löwdin atomic charges as well as Mayer bond orders are computed [165, 166].
   IAO In addition to the above parameters, intrinsic atomic orbitals (IAOs) are constructed and IAO partial charges are calculated [163].

Default: popul=Mulli if dens ≠ 0, popul=off otherwise
Example: to calculate IAO charges set popul=IAO

pressure The pressure in Pa at which the thermodynamic properties are evaluated (see also keyword freq).

Options: <any positive integer>
Default: pressure=100000
Example: for 1 atm set pressure=101325

ptfreq Frequency of the perturbation for frequency-dependent properties in atomic units (available only with Cfour). See Refs. 9 and 11 for more details.

Options: <any real number>
Default: ptfreq=0.0
Example: to set a frequency of 0.1 a.u. give ptfreq=0.1

qmmm This keyword tells MRCC that a QM/MM calculation is performed and the point charges included in the input file must be processed. This keyword is automatically added to the MINP file by the MM program conducting the QM/MM calculations, and you do need to bother with it. Use this keyword in the only case if you want to add point charges manually.
Options:

off QM/MM calculation is not performed and no point charges are added.

Amber Currently this is the only option, the Amber MD code will be used for the QM/MM calculation or point charges will be added.

Note: Point charges can be manually added to the end of the input file in the following format:

pointcharges
<number of point charges>
<x_1> <y_1> <z_1> <q_1>
<x_2> <y_2> <z_2> <q_2>

... where $x_i$, $y_i$, and $z_i$ are the Cartesian coordinates and $q_i$ is the charge for point charge $i$. The charge must be given in a.u., while for the coordinates the same unit must be used as for the specification of the molecular geometry.

Default: qmmm=off

Example: to add two point charges with coordinates (0, 0, 1) and (0, 1, 0) a.u. (provided that the geometry is also given in bohr) and charges of 0.5 and -0.5 a.u. qmmm=Amber should be set anywhere in the MINP file, and the following lines should be added to the end the file:

pointcharges
2
0.0 0.0 1.0 0.5
0.0 1.0 0.0 -0.5

qscf Use this option to carry out quadratic SCF calculations. One can use either Newton or trust region iterations with optional line search.

Options:

off No quadratic SCF, conventional SCF algorithm will be executed.

Newton Simple Newton iteration.

NewtonL Simple Newton iteration with line search.

AugHess Trust region method with augmented Hessian algorithm without line search. The trust radius is updated according to the scheme described in Ref. 167.
AugHessM  Trust region method with augmented Hessian algorithm using line search. The trust radius update scheme is similar to the above one but uses different coefficients.

AugHessL  Trust region method with augmented Hessian algorithm using line search. The trust radius is updated as described in Ref. 167, but this method takes into account the step length found by the line search.

AugHessG  Trust region method with augmented Hessian algorithm using line search. The trust radius update scheme takes into account the change of the gradient in the consecutive iterations.

Note: The simple Newton iteration schemes are only efficient in the vicinity of a minimum and not recommended in the general case. We recommend the use of the AugHessG or AugHessL options in difficult cases.

Default: qscf=off

Example: UKS calculation with the B3LYP functional using the AugHessG algorithm:

calc=B3LYP
scftype=UHF
qscf=AugHessG

redcost_exc  This keyword controls the cost reduction approaches based on natural orbital (NO) and natural auxiliary function (NAF) techniques for excited states. For a CIS(D∞), ADC(2), and CC2 calculation, if redcost_exc=off, the reduced-cost approach of Refs. 31 and 33 is invoked, and truncated state-averaged MP2/CIS(D) NOs as well as NAFs will be used. The lnoepso, lnoepsv, naf_cor, and naftyp keywords will be automatically set depending on the selected option for redcost_exc. For CIS, TD-HF, TDA, TD-DFT calculations the NAF approximation will be invoked if redcost_exc=8.

Options:

off  The cost reductions techniques will not be used.

on  Reduced-cost calculation will be executed with default settings (see also Table 4).

cust  Reduced-cost calculation will be executed with customized truncation thresholds. The threshold for the complete MO space NAFs (CS-NAFs), CIS coefficients, orbital energies, and linear dependency must be specified in the subsequent line,
respectively, as
\[ <\text{threshold 1}> <\text{threshold 2}> <\text{threshold 3}> <\text{threshold 4}> \]
The default values of these thresholds are 0.1 a.u., 0.35, 0.15 a.u., \(10^{-7}\), respectively. These are used with if any other option is chosen. See Ref. 33 for the detailed description of these parameters.

<positive integers from 1 to 10> See Table 4.

Default: \texttt{redcost\_exc=off}

Examples:

1. Reduced-cost ADC(2) calculation for the lowest singlet excited state with the default settings proposed in Ref. 33:
   \[
   \text{calc=ADC(2)} \\
   \text{nsing=2} \\
   \text{redcost\_exc=on}
   \]

2. Reduced-cost TD-DFT calculation with the PBE0 functional for the lowest 3 singlet excited states of a molecule:
   \[
   \text{calc=PBE0} \\
   \text{redcost\_exc=8} \\
   \text{nstate=4}
   \]
refdet  The reference determinant (Fermi-vacuum) for CI/CC calculations can be specified using this keyword. By default the reference determinant is identical to the HF determinant, but sometimes it is necessary to change this.

Options:

none  The reference determinant is identical to the HF determinant.

serialno  Using this option one can define the occupation of the correlated orbitals in the reference determinant specifying their serial numbers. This option requires three more lines. In the first line the serial numbers of the doubly-occupied orbitals must be given, while in the second and third lines those orbitals should be specified which are singly-occupied by an alpha or a beta electron, respectively. For the format of these lines see the description of the serialno option of the active keyword. For relativistic calculations the occupation of the spinors (i.e., not that of the Kramers-pairs) should be given. For technical reasons all electrons are treated as alpha electrons and the serial numbers of the occupied spinors must be given in the second line, the first and third lines must be left blank.

vector  Using this option one can set the occupation numbers for each correlated orbital. In the subsequent line an integer vector should be supplied with as many elements as the number of correlated orbitals (correlated spinors for relativistic calculations, not Kramers-pairs!). The integers must be separated by spaces. In the case of non-relativistic calculations type 2 for doubly-occupied orbitals, 1 for open-shell orbitals with alpha electron, -1 for open-shell orbitals with beta electron, 0 otherwise. In the case of relativistic calculations type 1 for each occupied spinor, 0 otherwise.
Notes:

1. Frozen orbitals must not be considered here in any case.

2. If the MO integrals are taken over from another program, the numbering of orbitals may be different from that of the parent program. Here the order of MOs: doubly occupied, open shell, virtual; and in each of this blocks the MOs are reordered according to the orbital energies (natural orbital occupations in the case of MCSCF orbitals).

3. If the MO integrals are taken over from another program, and this line is omitted, the program will fill the orbitals with electrons from the bottom automatically. In this manner we do not need this line for closed shells or a doublet ref. det., but e.g. for high spin states the Fermi vacuum must be defined here.

4. For relativistic calculations (DIRAC interface) this line is always required. The spinors are symmetry-blocked according to the Fermion irreps of the corresponding double group. Complex conjugate irreps follow each other. Within each irrep the spinors are numbered according to orbital energies. Please note that this line is automatically printed by the dirac mointegral export program, and you do not have to do it by hand. However, for technical reasons, always a closed-shell occupation is generated, and you may need to remove or add some electrons.

Default: refdet=none, that is, the reference determinant is identical to the HF determinant.

Examples:

1. We have 20 correlated orbitals, 10 electrons, and we are interested in a high-spin triplet state. Suppose that orbitals 1 to 4 are doubly-occupied while orbitals 5 and 6 are singly occupied by alpha electrons. Using the serialno option the input should include the following four lines (note the blank line at the end):

   refdet=serialno
   1-4
   5,6

2. The same using the vector option:

   refdet=vector

109
We perform a relativistic calculation for the Be atom with 20 correlated spinors. We have 6, 6, 4, and 4 spinors in the four Fermion irreps, $E_{1/2g}$, $E_{-1/2g}$, $E_{1/2u}$, and $E_{-1/2u}$ of the $C_{2h}^{n}$ double group, respectively, and two occupied spinors in both of the gerade irreps. Thus using the vector option the occupation vector should be given as:

```
refdet=vector
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
```

4. The same using the serialno option (note the blank lines):

```
refdet=serialno
1,2,7,8
```

**rest** Use this keyword to restart canonical (i.e., not local) CI and CC calculations from previously calculated wave function parameters (cluster amplitudes, CI coefficients, $\lambda$ amplitudes, etc.) if $ccprog=mrcc$. For restarting local correlation calculations see keyword lccrest.

Options:

1. The program restarts from the previously calculated parameters.

2. The program executes automatically the lower-level calculations of the same type consecutively (e.g., CCSD, CCSDT, and CCSDTQ if CCSDTQ is requested) and restarts each calculation from the previous one (this is only available for energy calculations).

3. Same as rest=1, however, only selected roots from the previous calculation will be used as initial guess. The serial number of the roots must be specified in the subsequent line as

\[<n_1><n_2><n_3>\ldots\]

where $<n_i>$ is the serial number of the states. The number of states given here must be equal to $nstate$ or $nsing + ntrip$. Please note that the ground state solution is not automatically selected, it should also be given here if needed. It is recommended to use root following ($diag=follow$) together with this option.

4. Same as rest=2 but the initial vectors are selected as in the case of rest=3.
Notes: use the restart option, e.g.,

1. after system crash.

2. if the iteration procedure did not converge in the given number of steps.

3. for geometry optimization.

4. for potential curve calculations.

5. if you are interested in high-order CC/CI energies. Then it is worth restarting the calculations with higher excitations using the converged vectors of the same method including lower excitations, e.g., CCSDT using the converged CCSD amplitudes, CCSDTQ using the CCSDT amplitudes, and so on. With this trick 1-3 iteration steps can be saved usually, but more ones in the case of strong static correlation (i.e., large cluster amplitudes). Use exclusively \texttt{rest=2} for this purpose (that is, not \texttt{rest=1})!

6. if you are interested in calculating the energies for all methods in a hierarchy (e.g., executing all CC methods up to CCSDTQP). Use exclusively \texttt{rest=2} for this purpose (that is, not \texttt{rest=1})!

7. to generate brute-force initial guess for excited-state calculations (\texttt{rest=3} or \texttt{4}). That is, if you do not want to bother with the initial guess for excited states, but you know approximately the energy of the excited states, then execute a low-level method for many roots. Use LR-CCS (\texttt{calc=CCS}) and CIS (\texttt{calc=CIS}), respectively, for higher-order LR-CC and CI calculations. Select the desired roots on the basis of their energies, and use them as initial guess in high-level calculations. (For other options for the initial guess for excited-state calculations see keyword \texttt{ciguess}.)

8. Please note that the program always needs the file fort.16 from the previous calculation for the restart and also fort.17, if more than one root is sought or for geometry optimization.

Default: \texttt{rest=0}

Examples:

1. to restart a CC calculation after power failure set \texttt{rest=1}

2. to restart a LR-CCSD calculation using the first, third, and fifth roots of a previous LR-CCS calculation the input should include the following two lines:
rgrid Specifies the radial integration grid for DFT calculations. For the
details of the grid construction see the description of keyword agrid.
See also the description of keyword grtol.

Options:
- Log3 the Log3 quadrature of Mura and Knowles [168]
- GS Gauss–Chebyshev quadrature. A modified version of the mapping
function of Ref. 48 is employed: the function is scaled
by the atomic scaling parameters of Becke [46].
- EM Euler–Maclaurin quadrature [47]

Note: the number of grid points is calculated by the max\{20,5*(3*grtol/2+i-
8)} formula with i as the number of the row in the periodic table
where the atom is located [48]. To change the number of radial
integration points set the value of grtol.

Default: rgrid=Log3

Examples:
1. to use the Euler–Maclaurin scheme set rgrid=EM
2. to use the default Log3 grid with more points set grtol=12

rohftype Specifies the type of the ROHF orbitals. See also the description
of keyword scftype.

Options:
- standard Standard ROHF orbitals obtained by diagonalizing the
ROHF Fock-matrix.
- semicanonical Semicanonical ROHF orbitals obtained by sepa-
reately diagonalizing the alpha and beta UHF Fock-matrices
constructed using the converged ROHF orbitals.

Notes:
1. rohftype=semicanonical is required for perturbative CC meth-
ods if ROHF orbitals are used, otherwise the expressions for
the perturbative corrections are not correct. Iterative CC and
CI methods are invariant to the choice of ROHF orbitals (if
all electrons are correlated).
2. It is very important to give this keyword if MRCC is used to-
gether with another code and ROHF orbitals are used since
this keyword tells Mrcc what type of ROHF orbitals are
taken over from the other code.

Default: `rohftype=standard` for iterative CC and CI methods,
`rohftype=semicanonical` for perturbative methods.

Example: to use semicanonical ROHF orbitals for iterative CC meth-
ods give `rohftype=semicanonical`

**scfalg** Specifies what type of SCF algorithm is to be used.

Options:

- **disk** Conventional SCF algorithm, two-electron integrals are stored
  on disk.
- **direct** Direct SCF algorithm, two-electron integrals are recalcu-
  lated in each iteration step.
- **auto** Based on the size and geometry of the molecule the program
  will automatically select the more efficient one from the above
  options.

Default: `scfalg=auto`

Example: to run direct SCF add `scfalg=direct`

**scfdamp** Specifies whether damping of the SCF density matrices is per-
formed.

Options:

- **off** No damping.
- `<any real number in the [0,1] interval>` In each SCF iteration cy-
  cycle the new and old SCF density matrices are mixed by factors
  `(1-scfdamp)` and `scfdamp`, respectively.
- **on** Equivalent to `scfdamp=0.7`

Default: `scfdamp=off`

Example: to use a damping factor of 0.8 type `scfdamp=0.8`

**scfdiis** Specifies if DIIS convergence acceleration is used in the SCF calcu-
lations.

Options: **on** or **off**

Default: `scfdiis=on`

Example: to turn off DIIS convergence accelerator add `scfdiis=off`
**scfdiis_end** Specifies the last iteration step in which the DIIS convergence acceleration is applied.

Options: `<any positive integer>`
Default: `scfdiis_end=scfmaxit`, that is, the DIIS procedure is not turned off.

Example: to turn off the DIIS convergence accelerator after iteration step 20 give `scfdiis_end=20`

**scfdiis_start** Specifies the first iteration step in which the DIIS convergence acceleration is applied.

Options: `<any positive integer>`
Default: `scfdiis_start=1`, that is, the DIIS procedure is active from the first iteration.

Example: to turn on the DIIS convergence accelerator in iteration step 5 give `scfdiis_start=5`

**scfdiis_step** Specifies the frequency of DIIS extrapolations. The extrapolation will be carried out in every `scfdiis_step`th iteration cycle.

Options: `<any positive integer>`
Default: `scfdiis_step=1`, that is, the DIIS extrapolation is performed in each iteration step.

Example: to carry out DIIS extrapolation only in every second iteration step give `scfdiis_step=2`

**scfdtol** Convergence threshold for the density matrix in SCF calculations. The RMS change in the density matrix will be smaller than $10^{-\text{scfdtol}}$.

Options: `<any integer>`
Default: `scfdtol=scftol+2` for frequency calculations, otherwise `scfdtol=scftol+1` for correlation calculations, `scfdtol=scftol` for SCF calculations

Example: for an accuracy of $10^{-8}$ one must give `scfdtol=8`

**scfext** Specifies the number of Fock-matrices used for the DIIS extrapolation in SCF calculations.

Options: `<any positive integer>`
Default: `scfext=10`
Example: to increase the number of DIIS vectors to 15 give `scfext=15`.

**scfiguess** Initial guess for the SCF calculation.

**Options:**

- **sad** Superpositions of atomic densities. For each atom a density-fitting UHF calculation is performed, and the initial one-particle density matrix is constructed from the averaged alpha and beta atomic densities.

- **ao** Atomic density initial guess. The initial one-particle density matrix is constructed from diagonal atomic densities derived from the occupation of the atoms. It is efficient for Dunning’s basis sets.

- **core** Core Hamiltonian initial guess. The initial MOs are obtained by diagonalizing the one-electron integral matrix.

- **mo** The SCF calculation will use the MO coefficients obtained in a previous calculation and stored in the `MOCOEF` file. The calculation can only be restarted from the MOs computed with the same basis set.

- **restart** The SCF calculation will use the density matrices obtained in a previous calculation and stored in the `SCFDENSITIES` file. If the calculation is restarted from the densities obtained with another basis set, the `VARS` file is also required.

- **off** No SCF calculation will be performed, but the Fock-matrix and the MO coefficients obtained in a previous calculation will be used in the correlation calculations. This requires the `FOCK`, `MOCOEF`, and `VARS` files from the previous calculation.

- **min** A density fitting SCF calculation will be performed using the `cc-pVTZ-min` minimal basis set (see the description of keyword `basis`), and the resulting density will be used as initial guess. In the minimal-basis SCF calculation the AO basis set is used as the auxiliary basis, and loose convergence thresholds are employed, consequently, the energy is unreliable and should not be used for any purpose.

- **small** A density fitting SCF calculation will be performed using a smaller basis set which must be specified by keyword `basis_sm` (see the description of keyword `basis_sm`), and the resulting density will be used as initial guess.

**Notes:**

115
1. Restarting from densities obtained with a bigger basis set is not allowed.

2. To restart SCF runs from the results of DFT embedding calculations with the Huzinaga-equation- or projector-based approaches use MO coefficients, i.e., \texttt{scfiguess=mo}, since only the subsystem densities are stored at the end of the embedding calculation but the MOs are available for the entire system.

Default: \texttt{scfiguess=sad}

Examples:

1. For a core Hamiltonian initial guess set \texttt{scfiguess=core}

2. For restarting the SCF calculation from the results of a calculation performed with the same basis set type \texttt{scfiguess=restart}. Note that you need the \texttt{SCFDENSITIES} file from the previous run.

3. You would like to generate a good initial guess for an aug-cc-pVTZ SCF calculation. First, run a calculation with the cc-pVTZ basis set (cc-pVTZ-min is also a good option), that is, your input file should contain the \texttt{basis=cc-pVTZ} line. Then, restart your aug-cc-pVTZ calculation from the cc-pVTZ density matrix. To that end the \texttt{MINP} file should include the following lines:

   \begin{verbatim}
   basis=aug-cc-pVTZ
   scfiguess=restart
   \end{verbatim}

   Note that the \texttt{SCFDENSITIES} and the \texttt{VARS} files from the cc-pVTZ run must be copied to the directory where the aug-cc-pVTZ calculation is executed.

4. The calculations in the previous example can be run more simply, in one step using the \texttt{small} option and the \texttt{basis_sm} keyword as

   \begin{verbatim}
   basis=aug-cc-pVTZ
   basis_sm=cc-pVTZ
   scfiguess=small
   \end{verbatim}

\texttt{scflshift} Level shift parameter for the SCF calculation.

Options:

\begin{itemize}
  \item \texttt{off} No level shifting.
  \item \texttt{<any real positive number>} The value of the level shift parameter in a.u.
\end{itemize}
scfflshift Maximum number of iteration steps in SCF calculations.

Options: \(<\text{any positive integer}>\)
Default: \(\text{scfflshift}=50\)
Example: to increase the maximum number of SCF iterations to 200 give \(\text{scfflshift}=200\)

scftol Convergence threshold for the energy in SCF calculations. The energy will be accurate to \(10^{-\text{scftol}} \, \text{E}_h\).

Options: \(<\text{any integer}>\)
Default: \(\text{scftol}=\max(8, \text{cctol})\) for property calculations, \(\text{scftol}=\max(6, \text{cctol})\) otherwise
Example: for an accuracy of \(10^{-8} \, \text{E}_h\) one must give \(\text{scftol}=8\)

scftype Specifies the type of the Hartree–Fock/Kohn–Sham SCF procedure, or the type of the molecular orbitals if the MO integrals are computed by other programs. See also the description of keyword rohftype.

Options: \(\text{RHF}, \text{ROHF}, \text{UHF},\) or \(\text{MCSCF}\)

Notes:

1. \(\text{scftype=MCSCF}\) is only available if Mrcc is used together with COLUMBUS or MOLPRO. In that case the MCSCF calculation is performed by the aforementioned codes and the transformed MO integrals are passed over to Mrcc.

2. It is very important to give this keyword if Mrcc is used together with another code and ROHF or MCSCF orbitals are used since this keyword tells Mrcc that the orbitals are not canonical HF orbitals. Please also set keyword rohftype in this case.

3. If a HF-SCF calculation is run, the type of the SCF wave function can also be controlled by keyword \(\text{calc}\). See the description of \(\text{calc}\).

4. For DFT calculations only the \(\text{RHF}\) and \(\text{UHF}\) options can be used, which, in that case, instruct the code to run RKS or UKS calculations, respectively.
Default: `scftype=RHF` for closed-shell systems, `scftype=UHF` for open shells.

Example: to use ROHF for open-shell systems type `scftype=ROHF`

**scsps** Scaling factor for the antiparallel-spin component of the correlation energy in spin-component scaled MP2 (SCS-MP2) calculations [80].

Options:

\(<any\ real\ number>\) the antiparallel-spin component of the correlation energy will be scaled by this number.

Default: `scsps=6/5`

Example: to set a scaling factor of 1.5 type `scsps=1.5`

**scspt** Scaling factor for the parallel-spin component of the correlation energy in spin-component scaled MP2 (SCS-MP2) calculations [80].

Options:

\(<any\ real\ number>\) the parallel-spin component of the correlation energy will be scaled by this number.

Default: `scspt=1/3`

Example: to set a scaling factor of 0.5 type `scspt=0.5`

**spairtol** Threshold for the selection of strong pairs in local MP2, dRPA, and CC methods. For each orbital pair an estimate of the pair correlation energy is calculated (see the description of keyword `wpairtol`). An orbital pair will be considered as strong pair if the absolute value of the pair correlation energy estimate is greater than `spairtol`. In the subsequent calculations strong pairs will be treated at a higher level, while for the other pairs (weak and distant) the corresponding pair correlation energy estimates will be added to the correlation energy. See also Refs. 27 and 35 for more details.

Options:

- **off** the local MP2 or dRPA pair correlation energy estimate is not calculated, an orbital pair will be considered as strong pair in this case if the absolute value of the available pair correlation energy estimate is greater than `wpairtol`. See also the description of keyword `wpairtol` and Ref. 28.

\(<any\ positive\ real\ number>\) Orbital pairs with pair correlation energy estimates greater than this number (in Eₜₜ) will be considered as strong pairs.
Default: \(\text{spairtol}=1e^{-4}\) for localcc=2015, \(\text{spairtol}=\text{off}\) for localcc=2016 and localcc=2018

Example: to set a threshold of \(10^{-5}\) \(E_h\) type \(\text{spairtol}=1e^{-5}\)

**symm** Spatial symmetry (irreducible representation) of the state. See Sect. 13 for the implemented point groups, conventions for irreps, etc.

Options:

0 No symmetry adaptation, that is, all calculations will use the \(C_1\) point group

off Equivalent to \(\text{symm}=0\)

1, 2, \ldots, 8 Serial number of the irrep (see Sect. 13).

<\text{irrep label}> Label for the irrep (see Sect. 13).

Note: Irreps can only be specified by their serial numbers if MRCC is used with another program. In that case please check the manual or output of the other program system for the numbering of irreps.

Default: by default the state symmetry is determined on the basis of the occupation of the HF determinant.

Examples:

1. for the second irrep of the point group type \(\text{symm}=2\)

2. for the \(B_{1u}\) irrep of the \(D_{2h}\) point group type \(\text{symm}=B_{1u}\)

**talg** Specifies the algorithm for the calculation of the \((T)\) correction in the case of the CCSD(T) method.

Options:

\text{occ} The outmost loops run over the occupied indices of the triples amplitudes.

\text{virt} The outmost loops run over the virtual indices of the triples amplitudes.

\text{lapl} Laplace transformed \((T)\) energy expression for localcc=2016 or 2018 according to Ref. 32. See also the \text{laptol} keyword to set the accuracy of the numerical Laplace transform.

\text{topr} The \(T_0'\) semi-canonical approximation of the local \((T)\) expression according to Ref. 32.

Default: \(\text{talg}=\text{occ}\) for conventional CCSD(T) calculations, \(\text{talg}=\text{lapl}\) for the local CCSD(T) scheme of localcc=2016 or 2018, and \(\text{talg}=\text{virt}\) for local CCSD(T) with localcc=2015 or 2013.

Notes:
1. For algorithmic reasons in the case of previous local CCSD(T) schemes (localcc=2015 or 2013) talg=virt is the only option. For localcc=2016 or 2018, the default is talg=lapl, and talg=virt is used if lcorthr=0 is set.

2. For conventional CCSD(T) calculations talg=occ is recommended since the algorithm is somewhat faster than the other one. In turn, its memory requirement is higher. The program checks automatically if the available memory is sufficient for the first algorithm (i.e., talg=occ). If this is not the case, talg will be automatically set to virt.

3. In the case of localcc=2016 or 2018 the talg=topr algorithm is approximately three times faster than the talg=lapl with its default settings, but considerably less accurate. For quick exploratory calculations the talg=lapl algorithm is recommended in combination with laptol=0.1.

Example: to change the default for a conventional CCSD(T) calculation set talg=virt

**temp** The temperature in K at which the thermodynamic properties are evaluated (see also keyword freq).

Options: <any positive real number>
Default: temp=298.15
Example: for 300 K set temp=300.0

**test** A keyword for testing Mrcc. If an energy value is specified using this keyword, it will be compared to the energy calculated last time [e.g., the CCSD(T) energy and not the CCSD or HF energy if calc=CCSD(T)] in the Mrcc run. An error message will be displayed and the program exits with an error code if the test energy and the calculated energy differ. This keyword is mainly used by the developers of the program to create test jobs to check the correctness of the computed energies. (See Sect. 8 for the further details.)

Options:
- off No testing.
- <any real number> The energy to be tested.
Default: test=off
Example: to set a test energy of -40.38235315 E_h type test=-40.38235315
tprint Controls the printing of converged cluster amplitudes/CI coefficients if ccprog=mrcc.

Options:
  off No printing.
  <any real number> Cluster amplitudes/CI coefficients whose absolute value is greater than this number will be printed.

Note: The value of the cluster amplitude/CI coefficient and the corresponding spin-orbital labels (serial number of the orbital + a or b for alpha or beta spin orbitals, respectively) will be printed. The numbering of the orbitals corresponds to increasing orbital energy order. Note that orbital energies are printed at the end of the SCF run if verbosity $\geq 3$. You can also identify the orbitals using MOLDEN (see Sect. 14.1).

Default: tprint=off
Example: to set a threshold of 0.01 give tprint=0.01

uncontract Uncontract contracted basis sets.

Options: on or off
Default: uncontract=off
Example: to uncontract the basis set add uncontract=on

unit Specifies the units used for molecular geometries.

Options:
  angs Ångströms will be used
  bohr Atomic units will be used
Default: unit=angs
Example: to use bohrs rather than ångströms the user should set unit=bohr

verbosity Controls the verbosity of the output.

Options: 0, 1, 2, 3. The verbosity of the output increases gradually with increasing value of the option. Error messages are not suppressed at any level.
Default: verbosity=2
Example: to increase the amount of information printed out give verbosity=3
**wpairtol** Threshold for the selection of weak pairs in local MP2, RPA, and CC methods. For each orbital pair the estimate of the pair correlation energy is calculated with a multipole approximation [28, 157, 169]. An orbital pair will be considered as distant pair if the absolute value of the multipole-based pair correlation energy estimate is smaller than \( wpairtol \). For the distant pairs the corresponding multipole-based pair correlation energy estimates will be added to the correlation energy, and distant pairs will be neglected in the subsequent calculations.

In the case of localcc=2015, for the remaining pairs a more accurate pair correlation energy estimate will be calculated using orbital specific virtuals (OSVs) controlled by keyword \texttt{osveps}, and these pairs will be further classified as weak and strong pairs controlled by keyword \texttt{spairtol}, see the description of keyword \texttt{spairtol}. The extended domain of an occupied orbital will include those orbitals for which the latter accurate pair correlation energy estimate is greater than \texttt{spairtol}. See also Ref. 27 for more details.

In the case of localcc=2016 or 2018, \texttt{spairtol=off} is set as default, and the extended domain of an occupied orbital will include those orbitals for which the multipole-based pair correlation energy is greater than \( wpairtol \). See also Refs. 28 and 35 for more details.

Note that for local CC methods if \texttt{spairtol\neq off} is specified as a non-default option in the case of localcc=2016 or 2018, accurate MP2 pair energies are computed in the extended domains for the remaining non-distant pairs. Then the non-distant pairs are further divided into weak and strong categories according to the value of \texttt{spairtol}, as discussed above. In this case the MP2 pair energies of the weak pairs are added to the correlation energy, and new, somewhat smaller extended domains are constructed to proceed with the higher-level computation as above using solely the strong pair list. See also Ref. 35 for more details.

Options:

\<any positive real number\> Orbital pairs with multipole-based pair correlation energy estimates smaller than this number (in E\(_h\)) will be considered as distant pairs.

Default: \( wpairtol=1e-5 \) for local MP2 and CC if localcc=2018, \( wpairtol=\min(1e-6, 0.01*\texttt{spairtol}) \) for localcc=2015

Note: For defaults with other than the above settings, see the description of \texttt{lcorthr}

Example: to set a threshold of \( 5 \cdot 10^{-6} \) E\(_h\) type \texttt{wpairtol=5e-6}
13 Symmetry

The MRCC program can handle Abelian point group symmetry. The handling of symmetry can be controlled by keywords `cmpgrp` (see page 53) and `symm` (see page 119). In the following we give the character tables used by the program. The symmetry of electronic states can be specified by keyword `symm` using either the serial number of the irrep or its symbol. The serial number of an irrep is given by its position in the below tables as appropriate. To specify the state symmetry by the symbol of the irrep replace the superscripts in the irrep symbol by lowercase letters, e.g., give $B^2g$ for $B_2g$. For the $A'$ and $A''$ irreps of $C_s$ group use $A'$ and $A''$, respectively (apostrophe and quotation mark).

Character table for the $C_1$ point group

<table>
<thead>
<tr>
<th></th>
<th>$E$</th>
<th>$x, y, z, R_x, R_y, R_z, x^2, y^2, z^2, xy, xz, yz$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A$</td>
<td>1</td>
<td>$x, y, z, R_x, R_y, R_z, x^2, y^2, z^2, xy, xz, yz$</td>
</tr>
</tbody>
</table>

Character table for the $C_i$ point group

<table>
<thead>
<tr>
<th></th>
<th>$E$</th>
<th>$i$</th>
<th>$R_x, R_y, R_z, x^2, y^2, z^2, xy, xz, yz$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{1g}$</td>
<td>1</td>
<td>1</td>
<td>$x, y, z$</td>
</tr>
<tr>
<td>$A_{1u}$</td>
<td>1</td>
<td>-1</td>
<td>$x, y, z$</td>
</tr>
</tbody>
</table>

Character table for the $C_s$ point group

<table>
<thead>
<tr>
<th></th>
<th>$E$</th>
<th>$\sigma_h$</th>
<th>$x, y, R_z, x^2, y^2, z^2, xy$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A'$</td>
<td>1</td>
<td>1</td>
<td>$x, y, R_z, x^2, y^2, z^2, xy$</td>
</tr>
<tr>
<td>$A''$</td>
<td>1</td>
<td>-1</td>
<td>$z, R_x, R_y, yz, xz$</td>
</tr>
</tbody>
</table>

Character table for the $C_2$ point group

<table>
<thead>
<tr>
<th></th>
<th>$E$</th>
<th>$C_2$</th>
<th>$z, R_z, x^2, y^2, z^2, xy$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A$</td>
<td>1</td>
<td>1</td>
<td>$x, y, R_z, R_y, yz, xz$</td>
</tr>
<tr>
<td>$B$</td>
<td>1</td>
<td>-1</td>
<td>$x, y, R_z, R_y, yz, xz$</td>
</tr>
</tbody>
</table>

Character table for the $C_{2v}$ point group

<table>
<thead>
<tr>
<th></th>
<th>$E$</th>
<th>$C_2$</th>
<th>$\sigma_h$</th>
<th>$\sigma_v$</th>
<th>$z, x^2, y^2, z^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$y, R_x, yz$</td>
</tr>
<tr>
<td>$B_1$</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>$y, R_x, yz$</td>
</tr>
<tr>
<td>$B_2$</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>$x, R_y, xz$</td>
</tr>
<tr>
<td>$A_2$</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>$R_z, xy$</td>
</tr>
</tbody>
</table>
### Character table for the $C_{2h}$ point group

<table>
<thead>
<tr>
<th></th>
<th>$E$</th>
<th>$C_2(z)$</th>
<th>$i$</th>
<th>$\sigma_h$</th>
<th>$R_z, x^2, y^2, z^2, xy$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_g$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$R_z, x^2, y^2, z^2, xy$</td>
</tr>
<tr>
<td>$B_g$</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>$R_x, R_y, xz, yz$</td>
</tr>
<tr>
<td>$A_u$</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>$z$</td>
</tr>
<tr>
<td>$B_u$</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>$x, y$</td>
</tr>
</tbody>
</table>

### Character table for the $D_2$ point group

<table>
<thead>
<tr>
<th></th>
<th>$E$</th>
<th>$C_2(z)$</th>
<th>$C_2(y)$</th>
<th>$C_2(x)$</th>
<th>$x^2, y^2, z^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$B_1$</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>$z, R_z, xy$</td>
</tr>
<tr>
<td>$B_2$</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>$y, R_y, xz$</td>
</tr>
<tr>
<td>$B_3$</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>$x, R_x, yz$</td>
</tr>
</tbody>
</table>

### Character table for the $D_{2h}$ point group

<table>
<thead>
<tr>
<th></th>
<th>$E$</th>
<th>$C_2(z)$</th>
<th>$C_2(y)$</th>
<th>$C_2(x)$</th>
<th>$i$</th>
<th>$\sigma_{xy}$</th>
<th>$\sigma_{xz}$</th>
<th>$\sigma_{yz}$</th>
<th>$x^2, y^2, z^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_g$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$B_{1g}$</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>$R_z, xy$</td>
</tr>
<tr>
<td>$B_{2g}$</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>$R_y, xz$</td>
</tr>
<tr>
<td>$B_{3g}$</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>$R_x, yz$</td>
</tr>
<tr>
<td>$A_u$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>$z$</td>
</tr>
<tr>
<td>$B_{1u}$</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$y$</td>
</tr>
<tr>
<td>$B_{2u}$</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>$x$</td>
</tr>
<tr>
<td>$B_{3u}$</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

### 14 Interface to molecular visualization software

#### 14.1 Molden

For the visualization of molecular structures, molecular orbitals, electron densities, geometry optimization steps, normal modes, and IR spectra an interface has been developed to the Molden program [170]. Cartesian coordinates, basis function information, MO coefficients, etc. are saved to file MOLDEN using Molden format. After the termination of Mrcc, Molden should be started by typing `molden MOLDEN` . The Molden interface can be controlled by the `molden` keyword (see page 95 for the description of the keyword).

If the MOs are localized, the MOLDEN file containing the canonical HF orbitals is saved under the name MOLDEN.CAN, and the canonical MOs are
replaced by the localized ones in the MOLDEN file. You can use both files to visualize the MOs that you are interested in.

Please note that MOLDEN can also be used for the generation of input molecular structures in Z-matrix or xyz format (see the description of the geom keyword on page 81).

14.2 xyz-file

Cartesian coordinates are also written to file COORD.xyz in xyz (XMol) format, which can be processed by many molecular visualization programs. This interface can also be controlled by the molden keyword (see page 95 for the description of the keyword).

15 Acknowledgments

The authors of the Mrcc program are very grateful to

- Professor Jürgen Gauss (Universität Mainz) for continuous support and discussions, development and maintenance of the CFOUR interface, and for the permission to use the basis set format of CFOUR.

- Dr. Michael Harding (TU Karlsruhe) for continuous support and for his help in the parallelization of the code.

- Professor Hans-Joachim Werner (Universität Stuttgart), Professor Peter J. Knowles (Cardiff University), and Dr. Andy May (Cardiff University) for the development and maintenance of the MOLPRO interface, and many useful suggestions.

- Professor Péter G. Szalay (Eötvös University, Budapest) for his continuous support and for the development of the COLUMBUS interface.

- Professor Lucas Visscher (VU University Amsterdam) for the development and maintenance of the DIRAC interface, and for the permission to distribute the interface code.

- Dr. Andreas Götz (University of California San Diego) for the development and maintenance of the AMBER interface,

- Professor Péter R. Surján (Eötvös University, Budapest) for his support at the early stages of the code development.

- János Brátán (TU Budapest) for continuous technical support.
Financial support to the development of the MRCC suite has been provided by the

- Hungarian Scientific Research Fund (OTKA), Grant Agreement Nos. T023052, T035094, T047182, T49718, D048583, NF72194, K108752, and PD108451.
- National Research, Development, and Innovation Office (NKFIH), Grant Agreement No. KKP126451.
- European Research Council (ERC) under the European Community’s Seventh Framework Programme (FP7/2007-2013), ERC Grant Agreement No. 200639.
- Bolyai Research Scholarship of the Hungarian Academy of Sciences, Grant Agreement Nos. BO/00593/07 and BO/00199/14.
- New Hungary Development Plan, project ID: TÁMOP-4.2.1/B-09/1/-KMR-2010-0002.
- Lendület Program of the Hungarian Academy of Sciences.

References


[116] Y. Zhao and D. G. Truhlar: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc. 120, 215 (2006).


[135] Functionals were obtained from the Density Functional Repository as developed and distributed by the Quantum Chemistry Group, CCLRC Daresbury Laboratory, Daresbury, Cheshire, WA4 4AD United Kingdom. Contact Huub van Dam (h.j.j.vandam@dl.ac.uk) or Paul Sherwood for further information.


