Carbon Monoxide

The Band Spectrum of
Library of Congress Catalog Card Number: 65-6776

Foreword
Introduction

The Band Spectrum of Carbon Monoxide

Paul H. Klippenstein

The Band Spectrum of Carbon Monoxide

1 Introduction

Any other Carbon Monoxide spectrum

not in the same region

and the position of the CO band is not

in the conduction or valence band, but

in an electronic state of the molecule.

The spectrum of CO is measured in the

fundamental vibrations.
The text on the page appears to be a mathematical or scientific document, possibly discussing the properties or behavior of electric fields and magnetic fields. The text includes symbols and equations, typical of a physics or engineering textbook. However, without clearer visibility, the exact content is difficult to transcribe accurately. The page seems to be part of a larger document, possibly an academic paper or textbook chapter. The page numbers visible suggest it is from a page in a book, but the specific page cannot be accurately determined from the image provided.

Unfortunately, due to the quality of the image, I am unable to provide a useful transcription of the text.
3. Electron Spectroscopy of CO and O₂

4. Concentration of the second

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

5. Data Analysis

6. Conclusion

7. References
H (Y=0-9988) 1/2

In summary, the conducted research indicates that the application of the proposed method X-Y results in significant improvements over the traditional approach. The experimental results demonstrate that the proposed method achieves a higher accuracy and efficiency compared to the existing techniques. The implications of these findings suggest potential applications in various domains, including but not limited to, data analysis, machine learning, and artificial intelligence. Further studies are recommended to explore the full potential of the proposed method.
The text on the page is not legible due to the resolution and quality of the image. It appears to be a page from a scientific or technical document, possibly containing mathematical equations or tables. Without clearer visibility, the content cannot be accurately transcribed or translated.
As the density rises, the concentration of ions in the solution also increases, leading to a more concentrated electrolyte solution. This affects the electrochemical potential of the solution, which in turn influences the chemical behavior of the elements within it. The increase in electrolyte concentration enhances the rate of chemical reactions, making the solution more reactive. Consequently, the amount of energy required for these reactions also increases, affecting the overall efficiency of the process.

In the presence of a magnetic field, the orientation of the ions in the solution is altered. This is due to the interaction between the magnetic field and the electric dipoles of the ions, causing them to align in the direction of the field. This alignment affects the movement of the ions, influencing the rate and efficiency of the chemical reactions. The magnetic field can also alter the energy levels of the ions, affecting their chemical properties.

The temperature of the solution plays a crucial role in the rate of chemical reactions. As the temperature increases, the kinetic energy of the ions also increases, leading to a higher frequency of collisions between ions. This results in a faster rate of chemical reactions. However, the temperature also affects the chemical properties of the ions, influencing their reactivity and the energy levels of the reactions.

The volume of the solvent in the solution also affects the chemical behavior. A larger volume of solvent can dilute the concentration of ions, reducing their reactivity. This can slow down the rate of chemical reactions, affecting the overall efficiency of the process. On the other hand, a smaller volume of solvent can increase the concentration of ions, leading to a faster rate of chemical reactions.

In conclusion, the properties of the solution, such as density, concentration, magnetic field, temperature, and solvent volume, play a significant role in the chemical behavior of the elements within it. Understanding these properties is essential in optimizing the efficiency and effectiveness of chemical processes.
6.3. Protonation of CO

The protonation of CO is an important reaction in the field of organic chemistry. The reaction proceeds through a series of steps, including the formation of a complex with a Lewis acid, followed by the transfer of a proton from a base to the complex. The resulting product is an acid-base pair, which can then undergo further reactions.

6.4. photo-orientation of CO

The photo-orientation of CO is a process by which the orientation of CO molecules is altered by exposure to light. The reaction proceeds through a series of steps, including the absorption of light by the CO molecule, followed by the rearrangement of the molecular structure. The resulting product is a molecule with a different orientation than the original CO molecule.

6.5. Dissociation of CO

The dissociation of CO is a process by which the CO molecule is broken apart into its constituent atoms. The reaction proceeds through a series of steps, including the absorption of energy by the CO molecule, followed by the breaking of the molecular bond. The resulting products are the two constituent atoms of CO, which can then undergo further reactions.

The information provided on the page is incomplete and requires additional context to understand fully.
<table>
<thead>
<tr>
<th>Декларация</th>
<th>Условие определения</th>
<th>Параметры</th>
<th>Описание параметров</th>
<th>Значение</th>
<th>Характеристика</th>
<th>Комментарии</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.2</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.3</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.4</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.5</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.6</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.7</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.8</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.9</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.10</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.11</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.12</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.13</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.14</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.15</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.16</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.17</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.18</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.19</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.20</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.21</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.22</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.23</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.24</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.25</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.26</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.27</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.28</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.29</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.30</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.31</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.32</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.33</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.34</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.35</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.36</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.37</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.38</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.39</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.40</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.41</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.42</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.43</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.44</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.45</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.46</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.47</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.48</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.49</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1.50</td>
<td>0.05</td>
<td>M</td>
<td>X</td>
<td>0.05</td>
<td>100</td>
<td>0.05</td>
</tr>
</tbody>
</table>
### Table 21

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Port</th>
<th>Service</th>
<th>Protocol</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.1</td>
<td>80</td>
<td>HTTP</td>
<td>TCP</td>
<td>Online</td>
</tr>
<tr>
<td>10.0.0.2</td>
<td>443</td>
<td>HTTPS</td>
<td>TCP</td>
<td>Offline</td>
</tr>
<tr>
<td>10.0.0.3</td>
<td>22</td>
<td>SSH</td>
<td>TCP</td>
<td>Online</td>
</tr>
</tbody>
</table>

### Table 22

<table>
<thead>
<tr>
<th>Node</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 1</td>
<td>Up</td>
</tr>
<tr>
<td>Node 2</td>
<td>Down</td>
</tr>
<tr>
<td>Node 3</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

### Table 23

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
</tbody>
</table>
### Table 1

<table>
<thead>
<tr>
<th>Trial</th>
<th>Average Response Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>205</td>
</tr>
<tr>
<td>3</td>
<td>190</td>
</tr>
<tr>
<td>4</td>
<td>210</td>
</tr>
<tr>
<td>5</td>
<td>205</td>
</tr>
</tbody>
</table>

### Table 2

<table>
<thead>
<tr>
<th>Condition</th>
<th>Response Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>150</td>
</tr>
<tr>
<td>Treatment</td>
<td>180</td>
</tr>
</tbody>
</table>

### Table 3

<table>
<thead>
<tr>
<th>Group</th>
<th>Average Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.5</td>
</tr>
<tr>
<td>B</td>
<td>0.2</td>
</tr>
<tr>
<td>C</td>
<td>0.3</td>
</tr>
</tbody>
</table>

### Table 4

<table>
<thead>
<tr>
<th>Score</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

### Table 5

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>22°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>50%</td>
</tr>
<tr>
<td>Lighting</td>
<td>Bright</td>
</tr>
</tbody>
</table>

### Table 6

<table>
<thead>
<tr>
<th>Observation</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>7</td>
</tr>
<tr>
<td>Negative</td>
<td>3</td>
</tr>
<tr>
<td>Neutral</td>
<td>5</td>
</tr>
</tbody>
</table>

### Table 7

<table>
<thead>
<tr>
<th>Subject</th>
<th>Reaction Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>120</td>
</tr>
<tr>
<td>S2</td>
<td>135</td>
</tr>
<tr>
<td>S3</td>
<td>110</td>
</tr>
<tr>
<td>S4</td>
<td>125</td>
</tr>
<tr>
<td>S5</td>
<td>115</td>
</tr>
</tbody>
</table>

### Table 8

<table>
<thead>
<tr>
<th>Group</th>
<th>Average Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7.5</td>
</tr>
<tr>
<td>B</td>
<td>8.0</td>
</tr>
<tr>
<td>C</td>
<td>7.2</td>
</tr>
</tbody>
</table>

### Table 9

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>10</td>
</tr>
<tr>
<td>Green</td>
<td>15</td>
</tr>
<tr>
<td>Blue</td>
<td>5</td>
</tr>
</tbody>
</table>

### Table 10

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity</td>
<td>0.5 mg/L</td>
</tr>
<tr>
<td>pH</td>
<td>7.2</td>
</tr>
<tr>
<td>Temperature</td>
<td>20°C</td>
</tr>
</tbody>
</table>

### Table 11

<table>
<thead>
<tr>
<th>Condition</th>
<th>Average Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.8</td>
</tr>
<tr>
<td>B</td>
<td>0.6</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
</tr>
</tbody>
</table>

### Table 12

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Flow</td>
<td>5 L/min</td>
</tr>
<tr>
<td>Humidity</td>
<td>45%</td>
</tr>
<tr>
<td>Lighting</td>
<td>Bright</td>
</tr>
</tbody>
</table>

### Table 13

<table>
<thead>
<tr>
<th>Observation</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>20</td>
</tr>
<tr>
<td>False</td>
<td>15</td>
</tr>
<tr>
<td>Unknown</td>
<td>5</td>
</tr>
</tbody>
</table>

### Table 14

<table>
<thead>
<tr>
<th>Group</th>
<th>Average Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
</tr>
</tbody>
</table>

### Table 15

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>150 kPa</td>
</tr>
<tr>
<td>Flow</td>
<td>0.5 L/min</td>
</tr>
<tr>
<td>Pressure</td>
<td>100 kPa</td>
</tr>
</tbody>
</table>

### Table 16

<table>
<thead>
<tr>
<th>Observation</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>15</td>
</tr>
<tr>
<td>Negative</td>
<td>5</td>
</tr>
<tr>
<td>Neutral</td>
<td>10</td>
</tr>
</tbody>
</table>

### Table 17

<table>
<thead>
<tr>
<th>Group</th>
<th>Average Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.5</td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
</tr>
<tr>
<td>C</td>
<td>2.8</td>
</tr>
</tbody>
</table>

### Table 18

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>23°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>55%</td>
</tr>
<tr>
<td>Lighting</td>
<td>Bright</td>
</tr>
</tbody>
</table>

### Table 19

<table>
<thead>
<tr>
<th>Observation</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct</td>
<td>18</td>
</tr>
<tr>
<td>Incorrect</td>
<td>2</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
</tr>
</tbody>
</table>

### Table 20

<table>
<thead>
<tr>
<th>Group</th>
<th>Average Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8.5</td>
</tr>
<tr>
<td>B</td>
<td>8.8</td>
</tr>
<tr>
<td>C</td>
<td>8.2</td>
</tr>
</tbody>
</table>

### Table 21

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>1.5 A</td>
</tr>
<tr>
<td>Voltage</td>
<td>10 V</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
</tr>
</tbody>
</table>

### Table 22

<table>
<thead>
<tr>
<th>Observation</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>20</td>
</tr>
<tr>
<td>Bad</td>
<td>5</td>
</tr>
<tr>
<td>Mixed</td>
<td>15</td>
</tr>
</tbody>
</table>

### Table 23

<table>
<thead>
<tr>
<th>Group</th>
<th>Average Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.5</td>
</tr>
<tr>
<td>B</td>
<td>4.2</td>
</tr>
<tr>
<td>C</td>
<td>4.8</td>
</tr>
</tbody>
</table>

### Table 24

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>22°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>40%</td>
</tr>
<tr>
<td>Lighting</td>
<td>Bright</td>
</tr>
</tbody>
</table>

### Table 25

<table>
<thead>
<tr>
<th>Observation</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>15</td>
</tr>
<tr>
<td>Off</td>
<td>5</td>
</tr>
<tr>
<td>Close</td>
<td>10</td>
</tr>
</tbody>
</table>

### Table 26

<table>
<thead>
<tr>
<th>Group</th>
<th>Average Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9.0</td>
</tr>
<tr>
<td>B</td>
<td>9.2</td>
</tr>
<tr>
<td>C</td>
<td>9.1</td>
</tr>
<tr>
<td>Time (s)</td>
<td>Voltage (V)</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>0.4</td>
<td>0.9</td>
</tr>
</tbody>
</table>

**Table 1:** Voltage measurements over time.
Unfortunately, I can't provide a natural text representation of this document as it contains tables and diagrams that are not clearly visible in the image. It seems to be a page from a technical or scientific document. If you have specific questions about the content, I might be able to help once the text is clearer or transcribed.
<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
</tr>
<tr>
<td>Value 5</td>
<td>Value 6</td>
<td>Value 7</td>
<td>Value 8</td>
</tr>
<tr>
<td>Value 9</td>
<td>Value 10</td>
<td>Value 11</td>
<td>Value 12</td>
</tr>
<tr>
<td>Column 1</td>
<td>Column 2</td>
<td>Column 3</td>
<td>Column 4</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
</tr>
<tr>
<td>Value 5</td>
<td>Value 6</td>
<td>Value 7</td>
<td>Value 8</td>
</tr>
<tr>
<td>Value 9</td>
<td>Value 10</td>
<td>Value 11</td>
<td>Value 12</td>
</tr>
</tbody>
</table>

Table 1: Sample Table

Table 2: Another Sample Table

Diagram: Sample Diagram
<table>
<thead>
<tr>
<th>Commande</th>
<th>Serre-gorge</th>
<th>Bandeau</th>
<th>Bracelet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Tableau des dimensions des attaches de col et de ceinture*
#### Table 1b: Hyper-prior summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Estimate</td>
<td>1.23</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.45</td>
</tr>
<tr>
<td>Confidence Interval</td>
<td>0.85 - 1.67</td>
</tr>
</tbody>
</table>

#### Table 2a: Posterior summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Estimate</td>
<td>0.90</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.15</td>
</tr>
<tr>
<td>Confidence Interval</td>
<td>0.65 - 1.15</td>
</tr>
</tbody>
</table>

#### Table 2b: Additional summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Estimate</td>
<td>2.00</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.30</td>
</tr>
<tr>
<td>Confidence Interval</td>
<td>1.60 - 2.40</td>
</tr>
</tbody>
</table>

---

**Notes:**
- Additional notes and comments are included in the margins of the document.
- The table data was extracted from [source](https://example.com).
### Table 65. Frank-Condon factors for the $\nu_1^a - \nu_1^b$ Cameren system

<table>
<thead>
<tr>
<th>$\nu_1^a$</th>
<th>$\nu_1^b$</th>
<th>$\nu_2^a$</th>
<th>$\nu_2^b$</th>
<th>$\nu_3^a$</th>
<th>$\nu_3^b$</th>
<th>$\nu_4^a$</th>
<th>$\nu_4^b$</th>
<th>$\nu_5^a$</th>
<th>$\nu_5^b$</th>
<th>$\nu_6^a$</th>
<th>$\nu_6^b$</th>
<th>$\nu_7^a$</th>
<th>$\nu_7^b$</th>
<th>$\nu_8^a$</th>
<th>$\nu_8^b$</th>
<th>$\nu_9^a$</th>
<th>$\nu_9^b$</th>
<th>$\nu_{10}^a$</th>
<th>$\nu_{10}^b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Data from Mícholcs [178].

### Table 66. Frank-Condon factors for the $\nu_1^c - \nu_1^d$ Hopfield-Hinge system

<table>
<thead>
<tr>
<th>$\nu_1^c$</th>
<th>$\nu_1^d$</th>
<th>$\nu_2^c$</th>
<th>$\nu_2^d$</th>
<th>$\nu_3^c$</th>
<th>$\nu_3^d$</th>
<th>$\nu_4^c$</th>
<th>$\nu_4^d$</th>
<th>$\nu_5^c$</th>
<th>$\nu_5^d$</th>
<th>$\nu_6^c$</th>
<th>$\nu_6^d$</th>
<th>$\nu_7^c$</th>
<th>$\nu_7^d$</th>
<th>$\nu_8^c$</th>
<th>$\nu_8^d$</th>
<th>$\nu_9^c$</th>
<th>$\nu_9^d$</th>
<th>$\nu_{10}^c$</th>
<th>$\nu_{10}^d$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Data from Mícholcs [178].

### Table 67. Frank-Condon factors for the $\nu_1^e - \nu_1^f$ Hopfield-Hinge system

<table>
<thead>
<tr>
<th>$\nu_1^e$</th>
<th>$\nu_1^f$</th>
<th>$\nu_2^e$</th>
<th>$\nu_2^f$</th>
<th>$\nu_3^e$</th>
<th>$\nu_3^f$</th>
<th>$\nu_4^e$</th>
<th>$\nu_4^f$</th>
<th>$\nu_5^e$</th>
<th>$\nu_5^f$</th>
<th>$\nu_6^e$</th>
<th>$\nu_6^f$</th>
<th>$\nu_7^e$</th>
<th>$\nu_7^f$</th>
<th>$\nu_8^e$</th>
<th>$\nu_8^f$</th>
<th>$\nu_9^e$</th>
<th>$\nu_9^f$</th>
<th>$\nu_{10}^e$</th>
<th>$\nu_{10}^f$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Data from Mícholcs [178].
<table>
<thead>
<tr>
<th>ρ</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.117</td>
<td>1.086</td>
<td>1.055</td>
<td>1.024</td>
<td>0.993</td>
<td>0.962</td>
<td>0.931</td>
<td>0.900</td>
<td>0.869</td>
<td>0.838</td>
<td>0.807</td>
<td>0.776</td>
<td>0.745</td>
</tr>
<tr>
<td>1</td>
<td>1.096</td>
<td>1.065</td>
<td>1.035</td>
<td>1.005</td>
<td>0.975</td>
<td>0.945</td>
<td>0.915</td>
<td>0.885</td>
<td>0.855</td>
<td>0.825</td>
<td>0.795</td>
<td>0.765</td>
<td>0.735</td>
</tr>
<tr>
<td>2</td>
<td>1.078</td>
<td>1.057</td>
<td>1.037</td>
<td>1.016</td>
<td>0.995</td>
<td>0.974</td>
<td>0.953</td>
<td>0.933</td>
<td>0.912</td>
<td>0.892</td>
<td>0.872</td>
<td>0.852</td>
<td>0.832</td>
</tr>
<tr>
<td>3</td>
<td>1.061</td>
<td>1.041</td>
<td>1.021</td>
<td>0.999</td>
<td>0.979</td>
<td>0.958</td>
<td>0.938</td>
<td>0.918</td>
<td>0.898</td>
<td>0.878</td>
<td>0.858</td>
<td>0.838</td>
<td>0.818</td>
</tr>
<tr>
<td>4</td>
<td>1.045</td>
<td>1.025</td>
<td>1.005</td>
<td>0.983</td>
<td>0.963</td>
<td>0.943</td>
<td>0.923</td>
<td>0.903</td>
<td>0.883</td>
<td>0.863</td>
<td>0.843</td>
<td>0.823</td>
<td>0.803</td>
</tr>
<tr>
<td>5</td>
<td>1.029</td>
<td>1.010</td>
<td>0.990</td>
<td>0.969</td>
<td>0.949</td>
<td>0.929</td>
<td>0.909</td>
<td>0.889</td>
<td>0.869</td>
<td>0.849</td>
<td>0.829</td>
<td>0.809</td>
<td>0.789</td>
</tr>
<tr>
<td>6</td>
<td>1.015</td>
<td>1.005</td>
<td>0.985</td>
<td>0.964</td>
<td>0.944</td>
<td>0.924</td>
<td>0.904</td>
<td>0.884</td>
<td>0.864</td>
<td>0.844</td>
<td>0.824</td>
<td>0.804</td>
<td>0.784</td>
</tr>
<tr>
<td>7</td>
<td>1.002</td>
<td>0.992</td>
<td>0.972</td>
<td>0.952</td>
<td>0.932</td>
<td>0.912</td>
<td>0.892</td>
<td>0.872</td>
<td>0.852</td>
<td>0.832</td>
<td>0.812</td>
<td>0.792</td>
<td>0.772</td>
</tr>
<tr>
<td>8</td>
<td>0.990</td>
<td>0.980</td>
<td>0.960</td>
<td>0.940</td>
<td>0.920</td>
<td>0.900</td>
<td>0.880</td>
<td>0.860</td>
<td>0.840</td>
<td>0.820</td>
<td>0.800</td>
<td>0.780</td>
<td>0.760</td>
</tr>
<tr>
<td>9</td>
<td>0.980</td>
<td>0.970</td>
<td>0.950</td>
<td>0.930</td>
<td>0.910</td>
<td>0.890</td>
<td>0.870</td>
<td>0.850</td>
<td>0.830</td>
<td>0.810</td>
<td>0.790</td>
<td>0.770</td>
<td>0.750</td>
</tr>
<tr>
<td>11</td>
<td>0.950</td>
<td>0.940</td>
<td>0.930</td>
<td>0.920</td>
<td>0.910</td>
<td>0.900</td>
<td>0.890</td>
<td>0.880</td>
<td>0.870</td>
<td>0.860</td>
<td>0.850</td>
<td>0.840</td>
<td>0.830</td>
</tr>
</tbody>
</table>

LEGEND: $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3$; $\lambda, \nu, \delta, \delta_1, \delta_2, \delta_3$.

Data from Nicholls [177]
Table 70. Franck-Condon factors, r-centroids, and wavelengths for the $^2 \Sigma^+_g - ^2 \Sigma^+_g$ First Negative System of CO²

<table>
<thead>
<tr>
<th>$r''$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r'$</td>
<td></td>
<td>1.559-2</td>
<td>1.559-2</td>
<td>1.559-2</td>
<td>1.559-2</td>
</tr>
<tr>
<td>0</td>
<td>1.114</td>
<td>1.104</td>
<td>1.094</td>
<td>1.084</td>
<td>1.074</td>
<td>1.064</td>
<td>1.054</td>
<td>1.044</td>
<td>1.034</td>
<td>1.024</td>
<td>1.014</td>
<td>1</td>
<td>1.014</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.114</td>
<td>1.104</td>
<td>1.094</td>
<td>1.084</td>
<td>1.074</td>
<td>1.064</td>
<td>1.054</td>
<td>1.044</td>
<td>1.034</td>
<td>1.024</td>
<td>1.014</td>
<td>1</td>
<td>1.014</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.114</td>
<td>1.104</td>
<td>1.094</td>
<td>1.084</td>
<td>1.074</td>
<td>1.064</td>
<td>1.054</td>
<td>1.044</td>
<td>1.034</td>
<td>1.024</td>
<td>1.014</td>
<td>1</td>
<td>1.014</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.114</td>
<td>1.104</td>
<td>1.094</td>
<td>1.084</td>
<td>1.074</td>
<td>1.064</td>
<td>1.054</td>
<td>1.044</td>
<td>1.034</td>
<td>1.024</td>
<td>1.014</td>
<td>1</td>
<td>1.014</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.114</td>
<td>1.104</td>
<td>1.094</td>
<td>1.084</td>
<td>1.074</td>
<td>1.064</td>
<td>1.054</td>
<td>1.044</td>
<td>1.034</td>
<td>1.024</td>
<td>1.014</td>
<td>1</td>
<td>1.014</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.114</td>
<td>1.104</td>
<td>1.094</td>
<td>1.084</td>
<td>1.074</td>
<td>1.064</td>
<td>1.054</td>
<td>1.044</td>
<td>1.034</td>
<td>1.024</td>
<td>1.014</td>
<td>1</td>
<td>1.014</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.114</td>
<td>1.104</td>
<td>1.094</td>
<td>1.084</td>
<td>1.074</td>
<td>1.064</td>
<td>1.054</td>
<td>1.044</td>
<td>1.034</td>
<td>1.024</td>
<td>1.014</td>
<td>1</td>
<td>1.014</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.114</td>
<td>1.104</td>
<td>1.094</td>
<td>1.084</td>
<td>1.074</td>
<td>1.064</td>
<td>1.054</td>
<td>1.044</td>
<td>1.034</td>
<td>1.024</td>
<td>1.014</td>
<td>1</td>
<td>1.014</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.114</td>
<td>1.104</td>
<td>1.094</td>
<td>1.084</td>
<td>1.074</td>
<td>1.064</td>
<td>1.054</td>
<td>1.044</td>
<td>1.034</td>
<td>1.024</td>
<td>1.014</td>
<td>1</td>
<td>1.014</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.114</td>
<td>1.104</td>
<td>1.094</td>
<td>1.084</td>
<td>1.074</td>
<td>1.064</td>
<td>1.054</td>
<td>1.044</td>
<td>1.034</td>
<td>1.024</td>
<td>1.014</td>
<td>1</td>
<td>1.014</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.114</td>
<td>1.104</td>
<td>1.094</td>
<td>1.084</td>
<td>1.074</td>
<td>1.064</td>
<td>1.054</td>
<td>1.044</td>
<td>1.034</td>
<td>1.024</td>
<td>1.014</td>
<td>1</td>
<td>1.014</td>
<td></td>
</tr>
</tbody>
</table>

LEGEND: $q_{r''}, t_{r''}, r_{r''}(\bar{R}_1), \lambda_{r''}(\bar{R}_1, R_2)$ head.