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Question 1: Numerical solution of quantum harmonic oscillator

The harmonic oscillator Hamiltonian Ĥ0 is given by

Ĥ0 = − h̄
2

2µ

d2

dx2
+ V (x), (1)

with V (x) = 1
2kx

2 and h̄ = 1 in atomic units. For µ = 1 and k = 1, solve numerically the harmonic
oscillator time independent Schrödinger equation,

Ĥ0φn(x) = εnφ(x). (2)

on a grid,
xi = x0 + i∆, for i = 1, 2, . . . , n. (3)

The potential energy is represented by a diagonal matrix with matrix elements

Vij = V (xi)δij . (4)

1a. Use the second order finite difference approximation of d2/dx2 to set up a kinetic energy
matrix.

1b. Find a grid such that the error in the lowest 4 eigenvalues is less than 0.01. Remember that
you must find a grid spacing that is small enough to properly represent the kinetic energy,
but at the same time have a range that is sufficiently large.

1c. Tabulate the eigenvalues and make a plot of the corresponding eigenvectors on the grid.

For arbitrary k and µ, the exact energies are

εn = (n+ 1/2)h̄ω (5)

with

ω =

√
k

µ
. (6)

1d. Check this expression numerically for k = 8 and µ = 2. How do you adapt the grid of question
1b so it works in this case without trial and error?
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Question 2: Morse potential for HF

The harmonic oscillator is a simple model to describe vibrations of a diatomic molecule. The Morse
potential allows for a more accurate desciption:

V (r) = Ve +De[1− e−α(r−re)]2. (7)

The parameters in this model are the equilibrium distance re, the dissociation energy De, and the
value of the potential at the equilibrium distance Ve = V (re), which we set to zero here. Near the
equilibrium the potential can be approximated as a harmonic oscillator. These are the spectroscopic
constants of HF and conversion factors for atomic units:

ωe = 4138 cm−1 1 cm−1 = 1/219 474.63 Eh (hartree)

ωexe = 90 cm−1 1 Å = 1.889 7261 a0 (bohr)

De = 47 633 cm−1 1 a.m.u. = 1822.8885 me (electron mass)

re = 0.91680 Å.

The force constant k (see question 1) is the second derivative of the potential in the minimum and
it depends on De and the exponent α.

2a. Using the given constants, find the exponent α and plot the Morse potential together with
the harmonic approximation of the potential.

2b. Use the finite difference method to compute the first six vibrational energy levels for the
Morse potential.

2c. Compute the energies of the rotational states for angular momentum quantum number J =
0, 1, 2, 3, 4 for the v = 0 vibrational ground state.

Rotation-vibration energy levels Ev,J of diatomic molecules are often reported in this form

Ev,J = E0 +G(v) + Fv(J) (8)

G(v) = ωe(v +
1

2
)− ωexe(v +

1

2
)2 (9)

Fv(J) = BvJ(J + 1)−DvJ
2(J + 1)2, (10)

where ωe, ωexe, Bv, and Dv are spectrocopic constants.

2d. For J = 0 find the constants E0, ωe, and ωexe from a linear fit to your results for question
2b.

2e. For v = 0 find the spectroscopic constants Bv and Dv from a linear fit to your results of
question 2c.

The rotational constant Bv for v = 0 can be computed by perturbation theory as the expectation
value

B0 = 〈v = 0, J = 0| h̄
2

2µr2
|v = 0, J = 0〉. (11)

2f. Compute B0 by perturbation theory for the v = 0, J = 0 wave function of question 2b.
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