
CTC2, NWI-MOL176, exercises week 3
Gerrit C. Groenenboom, 26-April-2023

Question 1: Questions chapter 5 (II)

1a. In the derivation in Chapter 5.8 we used

(n× r) ·∇ = n · (r ×∇)

Derive this equation using the Levi-Civita tensor.

Answer: On the lhs we have
(n× r) ·∇ = εijknjrk∇i. (1)

On the rhs we havve
n · (r ×∇) = εijknirj∇k (2)

The Levi-Civita tensor is invariant under cyclic permutations, so εijk = εkij, and we have

n · (r ×∇) = εkjinirj∇k = εijknjrk∇i = (n× r) ·∇. (3)

where we swapped the summation indices k and i in the second step.

1b. Compute the matrix elements of the rotation operator

〈lm|R̂(ez, α)|lm′〉.

Answer:

〈lm|R̂(ez, α)|lm′〉 = 〈lm|e− i
h̄αl̂z |lm′〉 = e−imαδmm′ . (4)

1c. Compute the Wigner D-matrix elements

d
(l)
mk(β) = 〈lm|e− i

h̄βl̂y |lk〉

for l = 1/2.

Answer: If we keep the order of the basis functions in the same order as in the previous question,
we need to compute

e−
i
h̄βLy = e

1
2βA (5)

with

A =

(
0 1
−1 0

)
. (6)

First, we calculate the eigenvalues of the matrix from

det(A− λI) = det

(
−λ 1
−1 −λ

)
= λ2 + 1 = 0, (7)

so λ± = ±i. Note that the eigenvalues are imaginary, since the matrix A is anti-Hermitian. For
λ+ = i, we find the eigenvector from

(A− iI)c = 0 (8)

i.e. (
−i 1
−1 −i

)(
c1
c2

)
=

(
0
0

)
. (9)

so (
c1
c2

)
=

(
1
i

)
. (10)

For the eigenvalue λ− = −i we find the eigenvector from(
i 1
−1 i

)(
d1
d2

)
=

(
0
0

)
. (11)
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so (
d1
d2

)
=

(
i
1

)
. (12)

Note that the eigenvectors are orthogonal, since

c†d = (1− i)
(
i
1

)
= i− i = 0. (13)

We now construct a unitary matrix U from the normalized eigenvectors

U =
1√
2

[c d] =
1√
2

(
1 i
i 1

)
(14)

so we can write the spectral decomposion of A as

A = UΛU † (15)

where

Λ =

(
i 0
0 −i

)
. (16)

We can now compute the l = 1/2 Wigner d-matrix from

Ue
1
2βΛU † =

1

2

(
1 i
i 1

)(
e

1
2βi 0

0 e−
1
2βi

)(
1 −i
−i 1

)
(17)

=
1

2

(
1 i
i 1

)(
e

1
2βi −ie 1

2βi

−ie− 1
2βi e−

1
2βi

)
=

1

2

(
ei
β
2 + e−i

β
2 −iei

β
2 + ie−i

β
2

iei
β
2 − ie−i

β
2 ei

β
2 + e−i

β
2

)
(18)

=

(
cos β2 sin β

2

− sin β
2 cos β2

)
. (19)

Note that since the matrix representations of the ladder operators are real, so the Ly-matrix is
purely imaginary, the Wigner-d matrix is always real.

1d. Show that the Wigner-D matrices satisfy the matrix representation property

D(l)(R̂1R̂2) = D(l)(R̂1)D(l)(R̂2), (20)

starting from the defining equation of the D-matrices.

Answer: The defining equation is

R̂i|lm〉 =
∑
k

|lk〉D(l)
km(R̂i) (21)

so
(R̂1R̂2)|lm〉 =

∑
k

|lk〉D(l)
km(R̂1R̂2). (22)

but also

R̂1R̂2|lm〉 = R̂1

∑
k′

|lk′〉D(l)
k′m(R̂2) (23)

=
∑
k

∑
k′

|lk〉D(l)
kk′(R̂1)D

(l)
k′m(R̂2) (24)

=
∑
k

|lk〉[D(l)(R̂1)D(l)(R̂2)]km. (25)

Comparing Eqs. (22) and (25) we find

D
(l)
km(R̂1R̂2) = [D(l)(R̂1)D(l)(R̂2)]km, (26)
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for k,m = −l,−l + 1, . . . , l, which proves Eq. (20).

Question 2: Questions chapter 7

For Jacobi vectors r and R the corresponding angular momentum operators are defined by

ĵ = r × p̂r (27)

l̂ = R× p̂R (28)

where p̂r and p̂R are the momentum operators for r and R, respectively. The total angular momentum
operator is defined by

Ĵ = ĵ + l̂. (29)

2a. Derive the following commutation relations, for i = x, y, z,

[Ĵi, r
2] = 0 (30)

[Ĵi, R
2] = 0 (31)

[Ĵi, r ·R] = 0 (32)

2b. For two Hermitian matrices A and B that commute, [A,B] = 0, show that

eA+B = eAeB

2c. Show that the previous result also holds if the matrices are not Hermitian (but still commute).

2d. Use the method described in chapter 7.5 to find the coupled angular momentum state |(jl)JM〉
with j = 2, l = 3, J = 5, M = 4.

2e. Use the method described in chapter 7.5 to find the coupled angular momentum state |(jl)JM〉
with j = 2, l = 3, J = 4, M = 4.
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