
CTC2, exercises week 1, NWI-MOL176
Prof. Gerrit C. Groenenboom, 08-Apr-2025

Question 1: Chapter 1

The harmonic oscillator Hamiltonian for a particle with mass m and a harmonic potential with force
constant k is

Ĥ0 = − h̄2

2m

∂2

∂x2
+

1

2
kx2. (1)

1a. Find a coordinate transformation, x = αy, to rewrite the Hamiltonian as

Ĥ0 = A

(
−1

2

∂2

∂y2
+

1

2
y2
)

(2)

and determine A as a function of m and k. Note that y must be dimensionless (why?).

Answer: With x = αy we have
∂

∂x
=
∂y

∂x

∂

∂y
=

1

α

∂

∂y
(3)

and for the second derivative
∂2

∂x2
=

1

α2

∂2

∂y2
(4)

so the Hamiltonian becomes

Ĥ0 = − h̄2

2mα2

∂2

∂y2
+

1

2
kα2y2 (5)

To write this Hamiltonian in the form Eq. (2) we need to have

A =
h̄2

mα2
= kα2. (6)

We can solve this for α

α4 =
h̄2

mk
(7)

α2 =
h̄√
mk

(8)

(9)

so

A = kα2 = h̄

√
k

m
. (10)

For convenience, we define

ω ≡
√
k

m
(11)

so the Hamiltonian can be written as

Ĥ0 = h̄ω

(
−1

2

∂2

∂y2
+

1

2
y2
)
. (12)

1b. Show that Hamilton’s classical equations of motion for one particle in one dimension is equivalent
to Newton’s equation.

Answer: The classical Hamiltonian is

H =
p2

2m
+ V (x). (13)
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Hamilton’s equations of motion are

∂x

∂t
=
∂H(x, p)

∂p
=

p

m
(14)

∂p

∂t
= −∂H(x, p)

∂x
= −∂V (x)

∂x
. (15)

From the first equation we have

p = m
∂x

∂t
(16)

and from the second we find the force

F = −∂V (x)

∂x
=

∂

∂t
p = m

∂2x

∂t2
. (17)

With acceleration defined as a = ∂2x
∂t2 , we get Newton’s equation of motion

F = ma. (18)

Question 2: Chapter 4

2a. Use first order perturbation theory to show that the energy levels of a diatomic molecule can be
written as

Evl = εv +Bvl(l + 1), (19)

where v = 0, 1, 2, . . . is the vibrational quantum number and l = 0, 1, 2, . . . is the rotational quantum
number. Take the vibrational Schrödinger equation with l = 0 as the zeroth order problem, and
treat the centrifugal term as a perturbation. Assume that the solutions χv(r)/r of the zeroth-order
problem are known and give the expression for Bv.

Reminder first order perturbation theory: Assume the Hamiltonian can be written as

Ĥ = Ĥ0 + Ĥ1 (20)

and we want to find approximate solutions of

ĤΨn = EnΨn. (21)

We assume that the zeroth-order problem has been solved

Ĥ0φn = εnφn (22)

In first order perturbation theory, the energies En are given by

En = εn +
〈φn|Ĥ1|φn〉
〈φn|φn〉

. (23)

A Morse potential has the functional form

V (r) = De[1− e−α(r−re)]2. (24)

Answer: The Hamiltonian is given by

Ĥ = − h̄
2

2µ

1

r

∂2

∂r2
r +

l̂2

2µr2
+ V (r) (25)

We take as zeroth order Hamiltonian

Ĥ0 = − h̄
2

2µ

1

r

∂2

∂r2
r + V (r) (26)
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and we take the centrifugal term as perturbation

Ĥ1 =
l̂2

2µr2
. (27)

The l = 0 zeroth order vibrational wave function χv(r)/r is an eigenfunction of Ĥ0 with energy εv.
We assume this wave function to be normalized. As zeroth order wave function for rotational level
l we take

χ
(0)
v,l (r) =

χv(r)

r
Yl,m(θ, φ). (28)

Note that the rotational part is exact, and the vibrational part is an approximation when l > 0. The
first order energy perturbation is

ε(1)v = 〈vlm|Ĥ1|vlm〉 (29)

=

∫ ∞
0

∫ π

0

∫ 2π

0

χv(r)

r
Y ∗l,m(θ, φ)

l̂2

2µr2
χv(r)

r
Ylm(θ, φ) sin θ dθ dφ r2 dr (30)

= l(l + 1)

∫ ∞
0

h̄2

2µr2
|χv(r)|2 dr (31)

so

Bv ≈
h̄2

2µ

∫ ∞
0

|χv(r)|2

r2
dr. (32)

2b. Derive an expression for the vibrational energies εv, for given parameters De, re, and α, and assum-
ing the reduced mass of the diatom is µ. To simplify the problem, make an harmonic approximation
of the Morse potential, i.e., make a Taylor expansion up to second order around the minimum, and
use that as the potential.

Answer: For r = re the Morse potential is zero. Since the potential is non-negative, the minimum
must be at r = re. The second derivative of the potential in the minumum is

∂2

∂r2
V (r) =

∂2

∂r2
De[1− e−α(r−re)]2 (33)

= 2αDe
∂

∂r
[1− e−α(r−re)] (34)

= 2α2De (35)

so the Taylor expansion of the potential to second order is

V (r) ≈ 1

2
k(r − re)2, with k = 2α2De. (36)

In this approximation the vibrational energies are

εv = (v +
1

2
)h̄ω (37)

with

ω =

√
k

µ
= α

√
2De

µ
. (38)

so

εv = (v +
1

2
)h̄α

√
2De

µ
. (39)

2c. Give the expression for Bv in terms of the Morse parameters and the reduced mass using the
harmonic approximation.
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Answer:

B =
h̄2

2µr2e
(40)

2d. Show that the wave functions in Eq. (4.66) of the lecture notes are solutions to the Schrödinger
equation (4.54).

Answer:

ĤΨvlm =

[
− h̄

2

2µ

1

r

∂2

∂r2
r +

l̂2

2µr2
+ V (r)

]
χvl(r)

r
Ylm(θ, φ) (41)

First, we note that the spherical harmonic Ylm is an eigenfunction of the l̂2 with eigenvalue h̄2l(l+1),
so

ĤΨvlm(r, θ, φ) =

[
− h̄

2

2µ

1

r

∂2

∂r2
r +

h̄2l(l + 1)

2µr2
+ V (r)

]
χvl(r)

r
Ylm(θ, φ) (42)

=
1

r
Ylm(θ, φ)

[
− h̄

2

2µ

∂2

∂r2
+
h̄2l(l + 1)

2µr2
+ V (r)

]
χvl(r) (43)

=
1

r
Ylm(θ, φ)εvlχvl(r) (44)

= εvlΨvlm(r, θ, φ). (45)
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Question 3: Chapter 4: “left as an exercise” in lecture notes

When studying chapter 4 you will find some of the math “left as an exercise”. These exercises are collected
here. The answers will be put online, use this question if you want to give it a try yourself.

3a. Show that
εijkεij′k′ = δjj′δkk′ − δjk′δkj′ . (46)

Answer: On the left-hand-side (lhs) there is a summation over i, so the quation has to be checked
for all possible values of j, j′, k, and k′. One way is to tabulate the lhs and rhs for all 34 possible
sets of j, j′’, k, and k′. The alternative is a bit of reasoning:

(i) First, consider all cases with j = k. The lhs will be zero. The rhs will also be zero:

δjj′δjk′ − δjk′δjj′ = 0, (47)

(ii)Next, consider j 6= k. On the lhs if j′ 6= j and j′ 6= k, the result will be zero, since j′ must have
the only value of i for which εijk 6= 0. On the rhs, if j′ 6= j and j′ 6= k, then both terms on are zero.
Thus, we need to check the equation for either j′ = j or j′ = k (and j 6= k):

(iiia)Consider j′ = j. The lhs will only be nonzero if k′ = k. On the rhs, if j′ = j

δjjδkk′ − δjk′δjk = δkk′ − δjk′δjk. (48)

The second term is zero since we are considering j 6= k, so the result is δkk′ , just as on the lhs.

(iiib)Consider j′ = k. The lhs will only be nonzero if k′ = j, in which case the result is εijkεikj =
−1. On the rhs, if j′ = k we get (remember j 6= k)

δjkδkk′ − δjk′δkk = −δjk′ , (49)

which is also −1 when k′ = j.

3b. Show that
pr ≡ r̂ · p (50)

is the moment conjugate to the coordinate r = |r|.

Answer: The conjugate momentum is defined as

pr =
∂T

∂ṙ
, (51)

where

T =
1

2
µ|ṙ|2. (52)

The vector r in spherical polar coordinates is

r = r

cosφ sin θ
sinφ sin θ

cos θ

 = rr̂, (53)

so
ṙ = ṙr̂ + rφ̇rφ + rθ̇rθ (54)

where

rφ =
∂r̂

∂φ
=

− sinφ sin θ
cosφ sin θ

0

 (55)

and

rθ =
∂r̂

∂θ
=

cosφ cos θ
sinφ cos θ
− sin θ

 . (56)

Page 5 of 8



Quantum Dynamics

Note that r̂, rφ, and rθ are an orthogonal set of vectors, with

|r̂| = 1 (57)

|rφ| = sin θ (58)

|rθ| = 1 (59)

so

T =
1

2
µṙ · ṙ (60)

=
1

2
µ(ṙr̂ + rφ̇rφ + rθ̇rθ) · (ṙr̂ + rφ̇rφ + rθ̇rθ) (61)

=
1

2
µṙ2 + r2φ̇2 sin2 θ + r2θ̇2. (62)

So the momentum pr is

pr =
∂T

∂ṙ
= µṙ (63)

This is equal to Eq. (50), since
r̂ · p = µr̂ · ṙ = µṙ, (64)

where we used Eq. (54) in the last step.

This derivation can be simplified by noting that since the length of the vector |r̂| = 1, its time-
derivative must be perpendicular to it. So, we do not have to introduce the angles, but instead start
from

ṙ =
∂

∂t
rr̂ = ṙr̂ + r ˙̂r (65)

and use
ṙṙ = ṙ2 + r2| ˙̂r|2, (66)

where the second term does not depend on ṙ.

3c. Derive this commutation relation

[Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ. (67)

Answer: On the lhs we have
[Â, B̂Ĉ] = ÂB̂Ĉ − B̂ĈÂ. (68)

On the rhs of Eq. (67) we have

B̂[Â, Ĉ] + [Â, B̂]Ĉ = B̂ÂĈ − B̂ĈÂ+ ÂB̂Ĉ − B̂ÂĈ (69)

= ÂB̂Ĉ − B̂ĈÂ, (70)

q.e.d.

3d. Using Levi-Civita tensors, show that

[l̂i, l̂i′ ] = ih̄εii′j l̂j . (71)
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Answer:

[l̂i, l̂i′ ] = εijkεi′j′k′ [rj p̂k, rj′ p̂k′ ] (72)

= εijkεi′j′k′(rj [p̂k, rj′ ]p̂k′ + rj′ [rj , p̂k′ ]p̂k) (73)

= ih̄εijkεi′j′k′(−δkj′rj p̂k′ + δjk′rj′ p̂k) (74)

= ih̄(−εijkεi′kk′rj p̂k′ + εijkεi′j′jrj′ p̂k) (75)

= ih̄(−εijkεk′i′krj p̂k′ + εijkεj′ji′rj′ p̂k) (76)

= ih̄(−[δik′δji′ − δii′δjk′ ]rj p̂k′ + [δij′δki′ − δii′δj′k]rj′ p̂k) (77)

= ih̄(−δik′δji′rj p̂k′ + δij′δki′rj′ p̂k) (78)

= ih̄(−δikδji′rj p̂k + δijδki′rj p̂k) (79)

= ih̄(δijδi′k − δikδi′j)rj p̂k (80)

= ih̄εmii′εmjkrj p̂k (81)

= ih̄εii′m l̂m. (82)

In step Eq. (75-76) and in the last step we used that the Levi-Civita tensor is invariant under cyclic
permutations of the indices.

3e. Show that
l̂2 = r2p̂2 + h̄2(r ·∇)2 + h̄2r ·∇. (83)

Use the Levi-Civita tensor relation

εijkεij′k′ = δjjδkk − δjk′δj′k. (84)

Answer:

l̂2 = l · l (85)

= εijkεij′k′rj p̂krj′ p̂k′ (86)

= (δjj′δkk′ − δjk′δj′k)rj p̂krj′ p̂k′ (87)

= δjj′δkk′rj p̂krj′ p̂k′︸ ︷︷ ︸
A

− δjk′δj′krj p̂krj′ p̂k′︸ ︷︷ ︸
B

. (88)

The first term (A) gave r2p2 in the classical expression, but here we must change the order of p̂k
and rj′ to get this, so we use

p̂krj′ = rj′ p̂k + [p̂k, rj′ ]. (89)

The first term on the rhs will lead to the r2p2 classical contribution and we get a new contribution
from the commutator:

[p̂k, rj′ ] = −ih̄δkj′ . (90)

If we use this in A we get

−ih̄δjj′δkk′δkj′rj p̂k′ = −ih̄rj p̂j = −ih̄r · p̂. (91)

Taken together we get for A,
A = r2p̂2 − ih̄r · p̂, (92)

where p̂2 = p̂ · p̂. The second term in Eq. (88), B, gave r2(r̂ ·p)2 = (r ·p)2in the classical derivation,
but again, we have to change the order, and we will get extra terms from the commutators needed
to do that. Since momentum operators commute with eachother, we only have to commute rj′ and
p̂k′ , and also the order of p̂k and rj′ must be changed. Thus,

B = δjk′δj′krj p̂k(p̂k′rj′ + [rj′ , p̂k′ ]) (93)

= δjk′rj p̂k′δj′kp̂krj′ + ih̄δjk′δj′kδj′k′rj p̂k (94)

= (r · p)δj′k(rj′ p̂k + [p̂k, rj′ ]) + ih̄r · p̂ (95)

= (r · p)2 − ih̄(r · p̂)δj′kδkj′ + ih̄r · p̂ (96)
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In the second term we have

δj′kδkj′ = δ2j′k =

3∑
j′=1

3∑
k′=1

δj′k =

3∑
j′=1

1 = 3, (97)

so
B = (r · p̂)2 − 2ih̄r · p̂ (98)

and together with A,
l̂2 = A−B = r2p̂2 − (r · p̂)2 + ih̄r · p̂. (99)

With p̂ = −ih̄∇ we get the final result

l̂2 = r2p̂2 + h̄2(r ·∇)2 + h̄2r ·∇. (100)

3f. For the vector r, defined by spherical polar angles θ, φ, and length r, calculate the Jacobian,

J =

[
∂r

∂r

∂r

∂θ

∂r

∂φ

]
, (101)

show that the columns of J are orthogonal, and calculate their lengths.

Answer:

∂r

∂r
=

cosφ sin θ
sinφ sin θ

cos θ

 (102)

∂r

∂θ
= r

cosφ cos θ
sinφ cos θ
− sin θ

 (103)

∂r

∂φ
= r

− sinφ sin θ
cosφ sin θ

0

 . (104)

The scalar products:

∂r

∂r
· ∂r
∂r

= cos2 φ sin2 θ + sin2 φ sin2 θ + cos2 θ (105)

= (cos2 φ+ sin2 φ) sin2 θ + cos2 θ = sin2 θ + cos2 θ = 1 (106)

∂r

∂θ
· ∂r
∂θ

= r2(cos2 φ cos2 θ + sin2 φ cos2 θ + sin2 φ cos2 θ + sin2 φ) = r2(cos2 θ + sin2 θ) = r2 (107)

∂r

∂φ
· ∂r
∂φ

= r2(sin2 φ sin2 θ + cos2 φ sin2 θ) = r2 sin2 θ (108)

∂r

∂r
· ∂r
∂θ

= r(cos2 sin θ cos θ + sin2 φ sin θ cos θ − cos θ sin θ) = 0 (109)

∂r

∂r
· ∂r
∂φ

= r(− cosφ sinφ sin2 θ + sinφ cosφ sin2 θ) = 0 (110)

∂r

∂θ
· ∂r
∂φ

= r2(− cosφ sinφ cos θ sin θ + sinφ cosφ cos θ sin θ) = 0. (111)

So, the columns are orthogonal, and their lengths are 1, r, and r sin θ.

Page 8 of 8


