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I. ROTATIONS
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Angular momentum theory is the theory of rotations. We discuss the rotation of vectors in R3, wave functions, and
linear operators. These objects are elements of linear spaces. In angular momentum theory it is sufficient to consider

finite dimensional spaces only.

e Rotations R are linear operators acting on an n—dimensional linear space V, i.e.,

R(Z+ 1) = RE+ Rij, R\ = ART forall Z,j € V.



We introduce an orthonormal basis {€}, €3, ..., €, } so that we have
(&,6)) =0ij, T= @, z;=(6,7). (2)
i
We define the column vector x = (1, 22, ...,7,)7, so that
j=RZ y; =) Rix;, Rij=(¢,Re), y=Rx. (3)
J

Unless otherwise specified we will work in the standard basis {e;}. The multiplication of linear operators is
associative, thus for three rotations we have (R R2)R3s = R1(R2R3).

e Rotations form a group:

— The product of two rotations is again a rotation, Ry Ry = Rs.
— There is one identity element R = I.
— For every rotation R there is an inverse R~! such that RR™! = R™'R = I.

e The rotation group is a three (real) parameter continuous group. This means that every element can be labeled
by three parameters = (w1, ws,ws). Furthermore, if

R(w1) = R(wz) R(ws) (4)

we can express the parameters w; as analytic functions of we and ws. This means that we are allowed to take
derivatives with respect to the parameters, which is the mathematical way of saying that there is such a thing
as a “small rotation”. The choice of parameters is not unique for a given group.

e Rotations are unitary operators
(Rx, Ry) = (x,y), for all x and y. (5)
The adjoint or Hermitian conjugate A" of a linear operator A is defined by
(Ax,y) = (x, Aly), for all x and y. (6)
For the matrix elements of AT we have
(A1), = 45, (7)
Hence, for a rotation matrix we have
(Rx,Ry) = (x, R'Ry) = (x,¥), (8)
ie., RFR =1, and Rf = R~!. For the determinant we find
det(RTR) = det(R)* det(R) = det(I) = 1, |det(R)| = 1. (9)
By definition rotations have a determinant of +1.

e In R? there is exactly one such group with the above properties and it is called SO(3), the special (determinant
is +1) orthogonal group of R3. In C? (two-dimensional complex space) there is also such a group called SU(2),
the special (again since the determinant is +1) unitary group of C2. There is a 2:1 mapping between SU(2)
and SO(3). The group SU(2) is required to treat half-integer spin.

A. Small rotations in SO(3)

By convention let the parameters of the identity element be zero. Consider changing one of the parameters (¢ € R).
Since R(0) = I we can always write

R(e) =1+ eN. (10)



Since RTR = I we have

(I+eN)(I+eN)=TI+¢NT+N)+eNIN=1, (11)
thus, for small €
N+ N=0, Nt =—N. (12)
The matrix N is said to be antihermitian, N7; = —Nj;. In R? we may write
0 —n3 ng
N=| ng 0 —-ng|. (13)

—ng M 0
The signs of the parameters are of course arbitrary, but with the above choice we have
NoT3 — N3To
Nx= | n3xi —nir3 | =n x x. (14)
N1To — NoT1
For small rotations we thus have
x' = R(n,e)x =x +en X x. (15)
Clearly, the vector n is invariant under this rotation
R(n,e)n =n+en xn=n. (16)

For the product of two small rotations around the same vector n we have

R(n,el)R(n, 62) = (I+€1N)(I+€2N) (17)
= I+ (e1 + )N +e1eaN? (18)
~ R(n,e; + €). (19)

We now define non-infinitesimal rotations by requiring for arbitrary ¢; and ¢o that
R(n, ¢1)R(n, ¢2) = R(n, ¢1 + ¢2). (20)

We may now proceed in two ways to obtain an explicit formula for R(n, ¢). First, we may observe that “many small
rotations give a big one”:

R(n,¢) = R(n,¢/k)". (21)
By taking the limit for & — oo and using the explicit expression for an infinitesimal rotation we get (see also Appendix

A)

R(n,¢) = lim (I +-N)* = i (pN)* = eV (22)

Note that a function of a matrix is defined by its series expansion.
Alternatively we may start from eq. (20) and take the derivative with respect to ¢1 at ¢1 = 0 to obtain the
differential equation

d d d
dThR(n’ 1)|p=0R(n, ¢2) = dTMR(n’ $1+ 02)]p—0 = deQR(nv $2), (23)
with d%j)lR(n, ¢1) = N this gives
d

Solving this equation with the initial condition R(n,0) = I again gives R(n,$) = e?V.



B. Computing e®V

This problem is similar to solving the time-dependent Schrodinger equation, but it involves an antihermitian, rather
than an Hermitian matrix. Therefore, we define the matrix L, = ¢V, which is easily verified to be Hermitian

Lt = (iN)! = —i(-N) = L. (25)
Thus, we have
R(n, ¢) = e L, (26)

The general procedure for computing functions of Hermitian matrices starts with computing the eigenvalues and
eigenvectors

Lui = /\iui. (27)
This may be written in matrix notation
LU = []/\7 U= [U.ll,IQ “e un], Aij = >\i6ij- (28)

For Hermitian matrices the eigenvalues are real and the eigenvectors may be orthonormalized so that U is unitary
and we have

L=UAUT. (29)

If a function f is defined by its series expansion
= fra* (30)
k

we have

= fil*= ka UAUT) kaUA’CUT kaAk Ut=Uf(A)U" (31)
k

For the diagonal matrix A we simply have
()] = Y fu(idiy)* Z FiAFOl = F(Ni)bi. (32)

Thus after computing the eigenvectors u; and eigenvalues \; of L we have

R(n, ¢)x = e Lx = Ue ¥AUTx = Z e 1PNy, (ug, X). (33)
k

Note that the eigenvalues of R(n, ¢) are e~***+. Since the \;’s are real, these (three) eigenvalues lie on the unit circle
in the complex plane. Clearly, this must hold for any unitary matrix, since for any eigenvector u of some unitary
matrix U with eigenvalue A\ we have

(Uu,Uu) = (Au, Au) = A*A(u,u) = (u,u), ie., |A]=1. (34)

Note that R(n, ¢)n = n. This does not yet prove that any R can be generated by an infinitesimal rotation. Since R
is real for every complex eigenvalue A\ there must be an eigenvalue A*. The three eigenvalues lie on the unit circle in
the complex plane and their product is equal to the determinant (+1), therefore R must have at least one eigenvalue
equal to 1. In this way, one can prove that any rotation is a rotation around some axis n.

C. Adding the series expansion

As an alternative approach we may start from

=3 M) (3)
k=0



From Eq. (27) it follows that
Nuk = —i)\kuk = o Uug. (36)

For the present discussion we will not actually need the eigenvectors and eigenvalues, we will only use the fact that
they exist. We define the matrix A(N)

A(N) = (N — a1 I)(N — aoI)(N — asl). (37)
It is easily verified that for any eigenvector u; we have
A(N)uy, = 0. (38)

Since any vector may be written as a linear combination of the eigenvectors u; we actually know that A(N) = 033,
the zero matrix in R3. Thus, the polynomial A(N) is referred to as a annihilating polynomial. Expanding A(N) gives

A(N) = N® 4+ ;N2 4+ ¢\ N + ¢l =0, (39)

where the coefficients ¢; can easily be expressed as functions of the eigenvalues aj. We now observe that N3 may be
expressed as a linear combination of lower powers of N:

N3 = —c3N? —¢;N — ol (40)

From this equation we may directly compute the coefficients c;, without knowing the eigenvalues ay. By direct
multiplication we construct the matrices N* k = 2,3. By putting the matrix elements of these matrices in column
vectors of length 3 x 3 =9 we can turn the matrix equation into a set of 9 equations with 3 unknowns ¢,k = 0,1, 2.
It may be of interest to know that this procedure is quite general: for a completely arbitrary n x n matrix A in C™
there exist an annihilating polynomial of degree n. It can always be found be plugging the matrix A back into the
characteristic polynomial P(A) = det(A — AI). In this case we have (see Appendix A)

N3 =_—N. (41)
so that

NZFL — (Z1)*N for k>0 (42)
N2+2 — (Z1)*N? for k > 1. (43)

As a consequence, the infinite sum simplifies to

6N _ - 1 ek _ . _ 2

e fIJer'(,zSN =TI +singN + (1 —cosp)N=. (44)

k=1 "

D. Basis transformations of vectors and operators

We will refer to the basis {e;} used so far as the space fired basis. We now introduce a new orthonormal basis
{b} which we will refer to as the body fized basis. These names are chosen with a typical application in a quantum
mechanical problem in mind. If the body fixed coordinates are indicated with a prime we have

Zekxk = Zbkm%, x = Bx'. (45)
k k

Let a linear operator A be represented by the matrix A in the space fixed basis. We now define a transformed or
rotated operator A’, which is represented by the matrix A’ in space fixed coordinates, by the requirement that it is
represented by the matrix A when expressed in body fixed coordinates:

(b;, A'b;) = A;;, BTA'B= A, (46)
Using the unitarity of B we get
A’ = BABT. (47)



Using this definition we may also transform any function of A defined by its series expansion

f(A) = Bf(A)B" = B()_ frd")BT =>" fu(BA*BY) =Y " fi(A)" = f(A"). (48)
k k k

As an example we consider the transformation of a rotation operator
R = BR(n,¢)B' = Be?N Bt = ¢#BNB', (49)
We work out the exponent by considering
BNB'x = B(n x B'x) (50)

For an arbitrary unitary transformation of a cross product we have the rule (see Appendix A)

Ux x Uy =det(U)U(x X y) (51)
so that we have
B(n x B'x) = (Bn) x (BB'x) = (Bn) x x = Nppx (52)
Thus, with the notation N, = N,
BN,B' = Ng, (53)
and for the transformed rotation
BR(n,¢)B' = ¢*BN=B" — R(Bn, ¢). (54)

E. Vector operators

Define the three matrices IV; = Ne,. The matrix /N can now be expressed as a linear combination of these matrices

0 —n3 no 00 O 0 01 0-10

N = n3 0 —ny|=n1[00 =11 +ns 0 00]+4+n3|1 0 O (55)
—ng M 0 01 O -1 00 0 0 O

= NNy +naNg +n3Ns =n- N, (56)

where we introduced the vector operator N. The components of the vector operator transform as

BN;B' = BNe,B' = Npe, = Ny, =b; - N = Y N;B;;. (57)
We also define the Hermitian vector operator L = i/N for which we also have
BL;B' = " L;B; (58)

—i¢n-L

Since B is an arbitrary orthonormal matrix we may take B = R(n,¢) = e which gives

e_i¢n£Ljei¢n£ = Z LZR” <n7 (b) (59)

For two operators A and B we have a relation which is sometimes referred to as the Baker-Campbell-Hausdorff
form (appendix A)

~ 1
e"Bet=>" 1[4 Bl (60)



where the repeated commutator [A, B]y is defined by

[AaB}O =B
[A,B], = [A,B]=AB - BA (61)
[A,Bly = [A,[A, Bly_1]. (62)

The importance of this relation is that the (repeated) commutation relations fully define the exponential form. Hence,
from Eq. (59) we find for arbitrary angular momentum operators

R(n,$)jR'(n,¢) = R (n, ¢);. (63)

The commutation relations of two arbitrary antihermitian matrices N, and Ny, follow from a property of the cross
product (see appendix A)

x(yxz)+yx(zxx)+zx(xxy)=0. (64)
Using the property x x y = —y x x we find
X(bxx)—bx(axx)—(axb)xx=0. (65)
In matrix notation this gives
NaNpx — NpNax — Naxpx = 0. (66)
Since this holds for any x we obtain the commutation relation
[Na, Nb] = Naxb. (67)

The cross product of two basis vectors in an orthonormal basis may be written using the Levi-Civita tensor (e123 = 1,
it changes sign when two indices are permuted),

e; X e; = Zeijkek, (68)
k

so that we can write the commutation relations for the components of the vector operator N as

NuN Zez]ka (69)

From this equation we immediately find the commutation relations for the Hermitian operators L; as

(L, L] Z ieijn L. (70)

These commutation relations, together with Eq. (60) allow us to write the left hand side of Eq. (59) as a linear
combination of the operators L;. The right hand side is also a linear combination of the operators L;. Thus, we can
immediately solve for the matrix elements R;;(n, ¢), whenever the operators L; are linearly independent (i.e., when
Zk arLy = 0= a; = 0).

One other example of Hermitian operators satisfying the commutation relations Eq. (70) are the generators of

SU(2),
1101 110 — 11 0
0'1:2|:1 O:|70'2:2|:Z- O:|7U3:2|:0 _1:| (71)

Note that e~ #(¢+2m)ok — =% This is in agreement with the 2 : 1 mapping between SU(2) and SO(3) mentioned
earlier.



F. Euler parameters

So far we have used the (n,¢) parameterization of SO(3). Since Euler parameters are used widely we describe
them here. A linear operator in R?3 is defined by its action on the three basis vectors. Let us assume that a rotation
operator R maps the basis vector e3 onto e;. We can then write the matrix R as

R= R(eg’n’}/)Rla (72)

where R; may be any rotation for which e = Rjes. If the polar angles of €5 are (8, a) we can take

R, = R(es,a)R(eq, B). (73)
Thus, any rotation R can be written as
R(a,,7) = R(Ries,7)R1 = RiR(es,7)R|Ri. (74)
so that and
R(e, B,7) = R(es, a)R(e2, B)R(e3,7) (75)

From this derivation we see that the ranges of the parameters required to span SO(3) are
0<a<2m 0<p<m 0<y<2T. (76)
For the inverse we have
R(a, 8,7)" = R(es, —7)R(ez, —f)R(es, —a). (77)

We may bring —f back into the range [0, 7] by inserting R(es,7)R(es, —m) at both sides of R(eq, —f)twice and by
using the relation

R(es, —m)R(ez, —B)R(es, m) = R(—e2, =) = R(ez, B), (78)
which gives
R(a, B,7)"' = R(es, —y + 7)R(e2, B)R(e3, —a — ). (79)
We may also define a volume element for integration
dr = da sin 8dp d, (80)

which has the important property that for any function f(«,3,v) the integral is invariant under rotation of the
function f. The definition of a “rotated function” is given in the next section.

G. Rotating wave functions

We may extend the definition of rotations in R? to the rotation of one particle wave functions (¥(x)) by Wigner’s
convention

(RU)(x) = U(R'x). (81)

Usually, ¥ will be an element of some Hilbert space. For our purposes it is sufficient to think of ¥ as an element of
some finite dimensional linear space V. Of course, we must assume that RV is also an element of V', whenever ¥ € V.
We use the hat (7) to distinguish the operators on V from the corresponding operators in R3.

The inverse in the definition is important since it gives

Ri(Ro¥) = (R R,)U. (82)
This is readily verified:
[R1(Ra®)](x) = (Ro W) (Ry'x) = W(Ry Ry 'x) = U[(Ry Ro)™'x] = [(Ry R2) W] (x). (83)



Note that Wigner’s convention is consistent with Dirac notation
U(x) = (x|V), (x|R¥) = (R'x|¥) = (R 'x|¥). (84)

For small rotations we have

R(n,e)¥(x) = ¥(x — en X x). (85)

To first order in € we have in general
0
ot ey) = J(x) 4+ e I (x) = [(x) + ey - VI (), (86)
k

so that we may write
f(x—enxx)=[1-¢€nxx)-V]f(x). (87)

Using n X x -V = ¢;xn;xjVy = n-x x V we find

Rne)=1—en-xxV=1—ien-L, (88)

where we defined
p = —iV (89)
L = xxp. (90)

Using integration by parts, and assuming that the surface term vanishes, it is easy to show that the operators Vj, are
antihermitian, i.e. (Vi f, g) = (f,—Vig). The multiplicative operators x) are Hermitian and it is also straightforward
to evaluate the commutator [V;,z;] = d;;. It is left as an exercise for the reader to verify that the operators Ly are
Hermitian and that they satisfy the commutation relations

[Li, L] = izeijkﬁk~ (91)
K

We may now follow the same procedure as before to find the expression for a non-infinitesimal rotation

R(n,¢) = eionL (92)

If we choose a n dimensional (orthonormal) basis {|i),i = 1,...,n} in the space V we may represent the operators R
and Ly by n dimensional matrices. For rotations we will denote these matrices as D(R). By definition

Dyj(R) = (il Rlj). (93)

We also use the notation D(n, ¢) = D[R(n, $)]. The unitary matrices D(R) are a representation of SO(3), since
R(ny, ¢1)R(n2, ¢2) = R(n3, ¢3) (94)
implies
D(ni1, ¢1)D(n2, ¢2) = D(ns, ¢3). (95)

This representation may be reducible. That is, it may be possible to find a unitary transformation of the basis that
will simultaneously block diagonalize the matrices D(R) for all R.

II. TRREDUCIBLE REPRESENTATIONS

Suppose we can divide the space V into a subspace S and its orthogonal complement 7, i.e. S@® T =V, such that
for all ¥ € S and for all R(n, ¢) we have R¥ € S. In this case S is called an invariant subspace. Since the operators
]EE are unitary 7" must also be an invariant subspace. If not, we could find some f € T and g € S such that for some
R we would have (g, Rf) # 0. However, that would mean that (R~'g, f) # 0, which is in contradiction with S being
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an invariant subspace. Thus, if we construct a basis {|é),i = 1,...,n} where the first m vectors {|i),i = 1,...,m}
span the space S and the vectors {]i),i = m+1,...,n} span the space T we find that all matrices D(R) have a block
structure. . )

Suppose some Hermitian operator A commutes with all operators R(n, ¢)

[4, R(n,¢)] = 0. (96)
Let Sy be the space spanned by all eigenvectors f; with eigenvalue A
Afi = M. (97)
For each each f € Sy we find that g = Rf also has eigenvalue A
Ag=ARf = RAf = \g, (98)

i.e., g € Sy, which shows that Sy is an invariant subspace. In order to find an operator A that commutes with each
R 1t is sufficient to find an operator that commutes with Ll, Lg, and L3
From the commutation relations of L we can show that the Hermitian operator

LP=13+ 13+ 12 (99)

commutes with ﬁl,ﬁg, and Ls. It turns out that the commutation relations also allow us to derive the possible
eigenvalues of L? and the dimensions of the subspaces. Furthermore, within each eigenspace of L? we can construct
a basis of eigenfunctions of the Ls operator and we can even derive the matrix elements of all operators Ly in this
basis. We summarize this general result: R

A linear (or Hilbert) space V which is invariant under the Hermitian operators j;,¢ = 1,2,3 that satisfy the
commutation relations

]13.7] Zzemk]k (100)

decomposes into invariant subspaces V7 of j2 = 512 + 33 + jg The spaces V7 are spanned by orthonormal kets

‘j7m>7 m:_j7"‘7j7 (101)

with
Plivm) = §@G+1)lj,m), (102)

with
jr = jitij (105)
Ci(jom) = Vij(j+1) —m(m=£1). (106)

The j’i are the so called step up/down operators.
The proof of the existence of basis (101) is well-known. Briefly, the main arguments are:

e As [j2, 3] = 0, we can find a common eigenvector |a, b) of 52 and j3 with 72|a, b) = a?|a,b) and js|a,b) = bla, b).
Since it is easy to show that j2 has only non-negative real eigenvalues, we write its eigenvalue as a squared
number.

e Considering the commutation relations [J3,j+] = +j+ and [j2,j+] = 0, we find, that j2j|a, b) = a®j, |a,b) and
Jsj+la,b) = (b+1)ji|a,b). Hence ji|a,b) = |a,b+1)

o If we apply j4 now k + 1 times we obtain, using ji = j_, the ket |a,b + k + 1) with norm
(a,b+k|j_jila, b+ k) = [a® — (b+ k)(b+k + 1)){a, b+ kla, b+ k). (107)

Thus, if we let k£ increase, there comes a point that the norm on the left hand side would have to be negative
(or zero), while the norm on the right hand side would still be positive. A negative norm is in contradiction
with the fact that the ket belongs to a Hilbert space. Hence there must exist a value of the integer k, such that
the ket |a,b+ k) # 0, while |a,b+k + 1) = 0. Also a®> = (b+ k)(b+ k + 1) for that value of k.
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e Similarly [+ 1 times application of j_ gives a zero ket |a,b—1 —1) with |a,b—1) # 0 and a®> = (b—1)(b—1—1).

e From the fact that a®> = (b+k)(b+k+1) = (b—1)(b—1—1) follows 2b = [ — k, so that b is integer or half-integer.
This quantum number is traditionally designated by m. The maximum value of m will be designated by j.
Hence a? = j(j + 1).

e Requiring that |j,m) and j1|j, m) are normalized and fixing phases, we obtain the well-known formula (105).

Summarizing, in V we have the basis {|j,m),j =0,3,1,...;m = —j,...,j}. Not all values of j need to occur in a
given space V. The angular momentum operators are diagonal in j, and their matrix elements are

Gm'17215m) = (5 + 1)omrm (108)

G jalgm) = 3 (CGrm)m i + C ()] (109)

G Jaljm) = i3 [CGm)w s = C— (G, 1) ] (110)

<Jm/|§3|3m> = Mbm/m. (111)

A. Rotation matrices

The rotation operators in V are, by definition

R(n,¢) = e~™i, (112)
The matrix representation D(R) is block diagonal in j. The matrix elements of the diagonal blocks D7 are

D ,,(0,6) = (jk|R(n,¢)|jm). (113)

Thus, for a rotated vector we have
R|jm) =Y |ik) (kI Rljm) = |jk) D], (R). (114)
k k

The matrix elements of the rotation operator themselves can act as functions on which we may define the action of a
rotation operator according to Wigner’s convention:

RiD? (Ry) =D’ (R{'Ry) ZD YD!, (Ry). (115)

Here we used the general property of representations that D(RyRy) = D(R;)D(R,). When we compare this result

with Eq. (114) we find that the function Dj (R) almost behaves as a ket [jm), except that the inverse of Ry appears.
This can be remedied by starting with the complex conjugate of a D-matrix element:

RiDG () = Y D (REDD(Re) = D Dl () Dy (Ra). (116)

m/’ m/’

where we used another property of representations: D(R~1) = D(R)™!.

Many properties of D-matrices are independent of the parameterization that we choose. However, if we do need a
parameterization, the Euler parameters are very useful, since they allow us to factorize any D-matrix in D-matrices
depending on a single parameter:

D[R(a, $,7)] = D[R(es, )] D[R(ez, ) D[R(es,7)] = D(es, ) D(ez, ) D(es, 7)- (117)

With the procedure for exponentiating an operator described in Section 1B it is straightforward to derive
Di.,(€3.7) = (Gkle™ P |jm) = e~ 5. (118)
To find D(ey, 3) we must exponentiate —i37; 390, where jéj ) is the matrix representation of j» in V. Note that this
matrix is real. Usually it is denoted by d’(3) = D7(ea, 3) so that we have

Dl (. B,7) = e ™med) , (B)e . (119)
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For j =0, 1 5,1 it is not too difficult to carry out the exponentiation. For m = j,j —1,...,—j, i.e., the dj element in
the upper left corner we find
@(8) = 1 (120)
B i B
1 coss —sing
dz = 2 121
(8) ( siné cos g ) (121)
l4cosg _ sinf 1—cosf
'25 V2 ; B
5 S1n
d'B) = | UF cosf -T2 | (122)
1—cos B sin B8 14cos 3
2 V2 2

There is also a general formula:
(_1)k7m+s(cos B)Zjer k—2s (sm B)k m—+2s

(GH+m—s)sl(k—m+s)(j —k—s)!

dl,.(8) =[G+ B — KIG +m)( —m)]2 > (123)

S

)

where s takes all integer values that do not lead to a negative factorial.
Several symmetry relations can be derived for D matrices. From the Euler angles of the inverse of a rotation Eq.
(79) we have

D(—v,-B,—a)=D(—y +m,8,—a —m). (124)
For a =« = 0 this gives
A (=) = 7 Td] (B)e™T = (=)™ ] (). (125)
Note that m — k must be integer, hence (—1)~™** = (—=1)™~k. Since &’ is real
@ (=) = d] (B) = (~1)" "], (B). (126)
From the explicit formula for the d’ matrix we see
&, (8) =, _(B). (127)

From the last two equation we derive

D (R) = (-1)F D7, _ (R). (128)

—k,—m
If j and ;7' are both either integer or half integer, the D matrices satisfy the following orthogonality relations
27 2 87('2
/ dOé/ sin ﬁdﬁ/ d’y D]7 ) /k’( B ’y) mémm/(skkléjjl. (129)
J

This follows from a generalization of the great orthogonality theorem for irreducible representations in finite groups.
The integrals can also be evaluated without knowledge of group theory. Here, we just point out that the §,,,, and
Orxs follows directly from integration over the angles a and 7.

From Eq. (116) we know that D’} (o, ) transforms as |jm). For k = 0 (and thus, necessarily j = [ is integer) we
define

Cim (0, 6) = Dy (9,6, 0), (130)
which are spherical harmonics in Racah normalization. From Eq. (129) we find

47

27 T
|6 [ sinddoCi (0.0)Cu(0.0) = G (131)

Thus, the relation with spherical harmonics in the standard normalization is

lem(ea(b) - \/ 2l4+ !

(0, 0). (132)
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Also setting m to zero gives us Legendre polynomials
Pi(cos ) = diy(0) = Cio(8, b). (133)
We also define the regular harmonics,
Rim(r) = r'Chpn(7), (134)

where v = (2,9, 2) = r(cos ¢sin 6, sin ¢sin 6, cos ), and # = (0, ¢). From the explicit formulas for D° and D! we find

RO,O r 1 135

1
= ——(x+1y)=rn 136

V2

(r) (135)
Ry(r) (136)
Rip(r) = z=r9 (137)

(r) (138)

)

r

1 .
Ri_1(r) = T(m—zy)zr,l. 138

2

The ry1,7r9, and r_; are the so called spherical components of the vector r. They are related to the Cartesian
components via the unitary transformation

T4 1 -1 - 0 x
F=|ro|=4/5]0 0 V21| |y| =5 (139)
r_ 1 —2 0 z

We put in the transpose so that for row vectors we get ¥/ = r’S. We now compare the rotation of the Cartesian and
the spherical components of a vector. In Cartesian coordinates we define

r=R(n,¢)r', =17 =rTR(n,¢) (140)
and for the spherical components we find

R(1,¢) Rim(r) = Rim[R(1,6) " 'r] = Ripn (t') = Y Ri(r) D}, (1, ). (141)
k

For [ = 1 this gives ¥'7 = 7 D!(n, ¢), so that
¥ =vTS =r"RS =r"SD", (142)
which gives
R =SD's". (143)

We recall that the components of an angular momentum operator transform as the Cartesian components of a row
vector [see Eq. (59)]. Thus, if we define Jl(tl) = >, JiSiy, with p = +1,0, -1, i.e.,

JU = —\/g(j1 +is) (144)

P = s (145)

JO = \/g(j1—ij2) (146)
we obtain

R(n,¢)J P R(n,¢)t =3 JV D}, (n, ¢). (147)
k
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III. VECTOR COUPLING

In quantum chemistry one usually writes a two electron wave function as, e.g., ¥, (r1)¥s(r2) — 1o (r2)¥s(r1). When-
ever convenient, we will use tensor product notation where, by definition, we keep the order of the arguments fixed,
so that we can drop them, and we write ¥, ® ¥p — Y ® 1,. For two linear spaces V; and Vs with dimensions ni, ns,
the tensor product space Vi ® Vs is a ny X ny dimensional linear space which contains the tensor products f ® g, with
f €V and g € V5. For a complete definition me must point out when two elements of V; ® V5 are the same:

Afleg = fe(g)=XNf®g) (148)
(f+9)®@h = feh+g®h (149)
felg+h) = fog+ feh (150)

For linear operators A and B defined on V; and Vs, respectively, we define
(A® B)(f ® 9) = (Af) ® (Bg). (151)

Thus, (V4 + V) f(2)g(y) written in tensor notation becomes (VR I+I®V)f ®g.
The scalar product in the tensor product space is defined in terms of the scalar products on V; and Vs by

(f1 ® g1, fa ® g2) = (f1, f2)(91, 92)- (152)

If we have an orthonormal basis {e;,i = 1,...,n;} on V; and an orthonormal basis {f;,7 = 1,...,n2} then
e, ®f;,i=1,...,n1;5=1,...,n9} forms an orthonormal basis for V1 ® V5. Clearly, we have

(ei X fj, e fj/) = (ei, ei/)(fj, fj/) = 6%:(53'3»/. (153)

If the matrix elements A;; = (e;, Ae;) and By; = (f;, Bf;) are known, we can easily compute the matrix elements of
the tensor product A ® B in the tensor product basis

(e; @ fj,[A® Bley @) = (e; @ f;, Aey © Bfj) = (i, Aey)(f;, Bfjr) = Ay Bjjr. (154)
Let Af; = \;f; and ng = [1jg;, then
(A l+10B)(fi®g)=Afi®lg+1fi©Bg;=X\fi®g;+puf; ®g9; = N+ 1) fi @ g5, (155)
i.e., the functions f; ® g; are eigenfunctions of the operator (A® I+ I ® B) with eigenvalues (\; + i)
From the Taylor expansion of an exponential one can prove that, for scalars, e®t? = e%?. Since functions of

operators are defined by the series expansion this relation also holds for operators that commute. It is readily verified
that the commutator

[Aol,I® B =0 (156)
and so we have

ARIHIEE _ (A g 0B (157)

A. An irreducible basis for the tensor product space

Let us assume that V7 and V72 are spaces spanned by the bases {|ji,m1),m1 = —j1,...,51} and {|ja, ma), mo =
—J2,...,J2}, respectively. All that we need to construct an irreducible basis for the tensor product space is a set of
three Hermitian operators that satisfy the angular momentum commutation relations. It is not hard to verify that
the operators

Ji=hol+lie, i=1,2,3 (158)

satisfy these conditions. Since we have explicit expressions for the matrix elements of 31 in the bases of V7t and V72
we can easily calculate the matrix elements of the operators J; in the so called uncoupled basis

ljimajame) = [jima) @ |jame), mi = —j1,...,J1; M2 = —Ja,..., Ja. (159)
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We could then proceed by (e.g., numerically) diagonalizing the operator J? = j1 + j2 + jg to find the (2J +1)
dimensional eigenspaces S; of J*. J2. Within each space S it should be possible to find an eigenfunction of Js with
eigenvalue M = J. With the step down operator J = J1 — sz we could then find the other eigenfunctions of J3
We denote these simultaneous functions of J2 and Js by |(jij2)JM), M = —J,...,J, where the (jijo) indicate that
it is a vector in the tensor product space.

We may expand these functions in the uncoupled basis

|(j12)J M) Z Z |J1majamz) mlmg(]LjQ) (160)

mi1=—j1 ma=—/j2

With the proper phase conventions the expansion coefficients are real and they are known as Clebsch-Gordan (CG)
coefficients. In Dirac notation they can be written as a scalar product (jimqjama|(j1j2)J M) which is usually simplified
to <31m1]2m2|JM> A

It may not come as a surprise that we do not need a numeric diagonalization to find the eigenvalues of J 2 and
the CG coefficients. First we point out that the uncoupled basis functions are already eigenfunctions of J3, with
eigenvalues M = mj + mo. The largest eigenvalue that occurs is M = j; + jo, corresponding to the eigenvector
|7171J272). Thus, there must be an invariant subspace S; with J = j; 4+ j2. This must be the largest possible value
of J, since otherwise a larger eigenvalue of Js would occur. For M = J — 1 there is a two-dimensional space of
eigenfunctions of J3, spanned by the functions |j1j1j2j2 — 1) and |j1j1 — 1j272). We know that the space S; contains
precisely one eigenfunction |(j1j2)JJ — 1), so the other component of the two-dimensional space must necessarily be
an element of S;_;. If we carefully continue this procedure we find that each space S; must occur exactly once and
that J = j1 + jo, 1 + J2 — 1,...,|j1 — j2|- It is left as an exercise for the reader to verify that if we add up the
dimensions of the spaces S; we get (2j; + 1)(2j2 + 1), i.e., the dimension of V7t @ V72, Thus, the coupled basis for
V71 @ V2 consists of the functions

|(Jjrje) M), J = |j1 — ja|, - 1 +Jo, M=—J,...,J. (161)

The CG coefficients are the matrix elements of the orthogonal matrix that transforms between the uncoupled and the
coupled basis, thus we have the following orthogonality relations

> (IMjimajoma) (jimajama| J'M') = 855 6nnr (162)

ml,m2
> " (imagamal JM)(JM|jimijamb) = G, Smam, (163)

I M

and we may invert Eq. (160)
Jjitj2
[imajama) = Y Z (J142) JM){J M |j1myjams). (164)
J=|j1—j2| M=

Recursion relations for the CG coefficients can be obtained by applying the step up/down operators to Eq. (160).
On the left hand side we get

Ji|(jij2) IM) = |(jrj2) M £1)CTy, (165)
= Z [jima)|jama) (jima jama| JM £ 1)C, (166)
mima
and on the right hand side

Z Ji|jima)|jama) (jima jama| T M) (167)

mima
= Z [ljima £ 1) [jama)C5 L+ [jima) [jama £ 1)CEE, ] (jima jama| JM) (168)

mimsa

= Z ljima)ljama) [C5 51 (ima F Ljamal JM) + C, -y (imagama F 11JM)] . (169)

mimsa
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In the last step we used
D lima EDCT L, = D lma)CF s (170)
mi mi

which is correct, assuming the range of summation is alway chosen to include all allowed m; values. Combining Eqs.
166 and 169 we obtain the recursion relations

Coyhmujoma| JM £1) = CF | (jima F Ljamo| JM) + C5,, . (jimajams F 1[JM). (171)
For the upper sign with M = J we get
0= C;Zm171<j1m1 — ljgmg‘JJ> + C;-Zm271<j1m1j2m2 — 1|JJ> (172)

By convention we take (j1,j1,j2,J — j1|J, J) real and positive. After normalization according to Eq. (162) this fixes
(j1mijama|JJ). The other values |JM) elements are obtained by using the lower sign. For J = M = 0 this procedure
gives
o (<1
<]1m1]2m2|00> = W(sﬁjzémh*mr

It is straightforward to construct an irreducible basis in a higher dimensional tensor product space. E.g., in
Vit @ V2 @ Vs

(173)

[(J12)J3] T M) = Z |jima)|jama)|jzms) (jima jamealjama) (jamagsms|JM). (174)

m1m2imsmaq

transforms like |JM). For |JM) = |00) and substituting Eq. (173) we construct a so called invariant function

. X . . . . (_1)j3+m3
lirma)|jama)ljsms) (j1ma jama|js—ms) ~—sm—e" (175)
This motivates the definition of the 3jm—symbol
] j i —1)r1—g2—ms ' .
<Tjnl1 Tjnzz 7?3 ) = ()2]'3+1<]1m1]2m2|]3 —mg). (176)

The phase convention makes the symmetry properties of the 3j symbol particularly simple: permuting two columns
or changing all the m; to —m; gives an extra factor (—1)71*72%33_ Thus, cyclic permutations of the columns leave the
3j unchanged.

( J1 o J2 33 ) — (—1)itiztis ( Ji J2 I3 ) — (—1)JrHiatis ( J2 J1 3 ) (177)

myp mz M3 —mip —m2 —ms mz my ms

etc. From the inverse relation

<j1m1j2m2|j3m3>=(—1)jl‘”+m3\/2j3+1(31 2 ) (178)

mp mgz —m3

one can find how awkward the corresponding symmetry relations for CG coefficients are. Of course, a rigorous
derivation of these symmetry relations must start from the recursion relations of the CG coefficients.

B. The rotation operator in the tensor product space

The rotation operator in V7t ® V72 is given by

R(n,¢) = e~iond (179)
and when operating on the coupled basis functions it gives
R|(jij2) I M) = Z |(j12) TK) Dfepr (R) (180)
K
= Z lj1k1)]j2kz) Z<j1k1j2k2\JK>D}](M(}?)- (181)

kiko K



17

Using the rules for manipulating tensor products of operators derived above we find

e—i¢n~i _ e—i¢n'571 ® e—i(ﬁn'jj, (182)
which we may write symbolically as R = R @ R. Thus, the uncoupled basis functions rotate as

(R® R)|jyma)|jama) = Y |jrk1)|jaka) D1, (R)DE, (). (183)
kiko

Together with Eq. (164) this gives

D}, (R)DP, (R)= Z (jrk1jake| JK) (jimy jama| T M) Dicp (R). (184)
JKM

This is a remarkable useful equation. E.g., it allows us to verify the orthogonality relations Eq. (129) and to find

27 T 27 2
. " 8
/ da / sin 8 / dy Dl B, D o (0, B.7)D% (0, B.7) = o (fymajamal TM)jr ks jokal TC).
0 0 0

2J +1
(185)
If we take the complex conjugate, set K = k1 = ko = 0, and eliminate the integral over the third Euler angle, we find
2 A7
/ d¢/ sin 9d90LM(¢7 )Cllml( ¢)Cl2m2( ¢) 2L <llm112m2|LM> <110120|L0> (186)

We also may derive the recursion relation for Legendre polynomials from the explicit expressions for &’ with z = cos 3

Py(z) =1 (187)
Pi(z) = 2. (188)

From Eq. (184) with m = k =0 and j; = 1 and j» = [ we derive a recursion relation for the Legendre polynomials

Pi(2)Pi(z) = Y _(100|L0)*Py(2) (189)
L
= (1010|114 1,0)2 Py 1(2) + (1010l — 1,0)*P,_1(2) (190)
[+1
= 51 1+1(2) + 2H_1Pl 1(2), (191)
ie.,
22l +1)P(2) — 1P (2)
P, = 192
1+1(2) 1 (192)
2
—1
Pyz) = OZ — (193)
Suppose the angular part of a wave function is given by
0 ¢) = Z almclm(oa ¢) (194)
lm
and we are interested in the spatial distribution
P0.0) =190, 0D = Y f;m,AlamsCFyn, (0,0)Clam, (60, 6). (195)
l1m1l2m2
First, from Eqgs. (128) and (130) we find
Cim(0,0) = (=1)"Ci,—m (0, ¢). (196)

From Eq. (184) we have

(—1>m1011,m1 (f)Clzmz (9, ¢) = (_1)m Z<l1, —mi, lg, m2|LM> <110l20|L0>0L]w(9, (b) (197)
LM
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thus,

P(0,9) = Z af Oy mo (1) (l1, =, I, ma | LM ) (110120| LO) Cr s (0, ¢). (198)

lilomimo LM

For a pure state, ¥(0, ¢) = Cin (6, @)

P(,¢) = Z|alm\2(—1)m<l,—m,l,m\LM)(lOlO|L0)C’LM(9,¢) (199)
LM

= Z @i |?(=1)™(1, —m, 1, m|L0)(1010| LO) Pf,(cos 6). (200)
L

It follows from the triangular conditions for (I0I0|L0) that L runs from 0 to 2I. Furthermore, a CG coefficient is zero
if all the m’s are zero and the sum of the I’s is odd (prove this using Eq. (176) and the symmetry properties of 3jm
symbols) so L must be even.

C. Application to photo-absorption and photo-dissociation

The transition amplitude in a one-photon electric dipole transition between two states is proportional to the matrix
elements of the operator T' = e - i, where e is the polarization vector of the photon and pu is the dipole operator. A
scalar product can be written in spherical coordinates

e =Y (1)) uD = —v33" e Wb (1-m1m|00) (201)

The spherical components of the dipole operator for a one-particle system are
PN (1) = qRipm (r) = qrCim (7). (202)

The matrix elements of 7" in the basis Ui (v) = fri(r)Cin () are
ot FWtans) = Y07 [ 0G0, ()Cun (0 Chams4) [ 170870, e fra() (208)

= (=1)"emAn, 1,1y (lyma Im|lama) (1,010]150). (204)

m

For simplicity we assume that one component of e is 1, and the others 0. Since we want to focus on the angular part
of the problem, we drop the n quantum numbers and also we absorb the factor (1;010|l20) into A;,;,, so that we get

<llm1"f|l2m2> = Al1l2 <llm11m|l2m2>. (205)

Thus, we can write the (angular part of) the operator 1" as

T = Z Ap 1, [lima) (lama | (limg Im|lams). (206)

llmll27rl2

D. Density matrix formalism

A quantum mechanical system can be completely described by its density operator
p=> W)W, (207)
i

where the p; are the probabilities of the system being in the state |¥;). To every observable some Hermitian operator
A corresponds and the mean result of a measurement of this quantity is given by

(A) = Tr(pA) = 3 _(1Wa)pilWilAlj) = > pil Wil Alj) i) = 3 pid Wil A ws). (208)

Jji Ji
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For example, measuring an angular probability distribution, as in the example above, corresponds to taking A= |7) (7],
which gives

= piW|#) (P W5) szl‘l’ (209)

A photoabsorption experiment is described by A = 3 f T|W ) (U ;|T which gives

A=Y pl Wil Y TN (gD =D pal (W4T W5) . (210)
f if
To determine an angular distribution after photo-excitation we take
A(F) = TP|#)(P|PT with P =" |[W;) (], (211)
f
which gives
szl‘I’f VP |T0)i . (212)

Thus, in any case we need to evaluate Tr(pA) = Tr(pf A), since  is Hermitian.

E. The space of linear operators
Let |i) be an orthonormal basis in V, i.e., (i|j) = 0;;. In Dirac notation, any linear operator can be written as
A=Ayl ). (213)
j
Indeed, for the matrix elements we get

(kIAJl) = MZ&AJU Ay (214)

Thus we may think of

Ti; = i)l (215)
as a “basis function” for the space of linear of operators and of the matrix element A;; as an expansion coefficient.
We define the “scalar product” between operators A and B as the trace of ATB, since that gives

Tr(ATB) = > (i1 ATi)ilBl7) ZA o (216)

completely analogous to (x,y) = Y,z y;. We also have

Aj; = Te(T}]A) (217)
and
Te(T]Tory) = Giir8j5r- (218)
Furthermore
Tr(ATB) = Tr(BTA)*. (219)
and
T} = [j)il = Tys. (220)
A basis transformation [i) = R|i) gives
T} = i)' (j| = RT,; R (221)

One can easily verify that if Ris a unitary transformation on V, then Ti’j is again an orthonormal basis, i.e.,

Tr(T’UTZ’,J,) = 0;;0;/». Note that one may also think of T” as an element of V ® V*.
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IV. ROTATING IN THE DUAL SPACE

The dual space V* associated with the vector space V is the linear space of linear functionals on V. A linear
functional is a linear mapping of V onto R or C. Every linear functional can be defined as “taking the scalar product
with some vector”. The dimension of V* is the same as the dimension of V and the dual of V* is V. In other words,
the dual space is simply the space where the Dirac bra’s live. If we have a basis {|jm),m = —j,...,j} in V, then
{{m|,m = —j,...,j} is a basis in V*, which we call the dual basis. Hermitian conjugation takes us back and forth
between V and V*, |im)T = (jm/|, (jim1|j2ma) = 8, ,0mym,, hence (|jm>c)Jr = (jm|c*.

Rotating the basis functions in V gives

ljm) = R|jm Z jk)D! (R (222)

By taking the Hermitian conjugate we find for the transformation of the dual basis

"(jm| = (jm|RT ="k DL (R) = > (k|I(-1)FmDY, (R (223)

k k

where we used Eq. (128). We notice two things. First, if we rotate the basis in V with R then the dual basis rotates

with Rt. Second, the complex conjugate of the D matrix appears. We now try to find an alternative basis in the dual
space that we can rotate with the D-matrix, instead of its complex conjugate. First we by multiply both sides of the
equation with (—1)7T™

(=17 (Gm|RY =Y (=1)** (k| DT, (R) (224)
k
and then we change the signs of m and k
(=177, —m|RT =Y (=1 " (j—k| D}, (R). (225)
k

The reason that we multiply with (—1)7»~™ rather than simply (—1)™ is that the former is also well defined if j is
half integer (for (71)% one could take ¢ as well as —i). In any case, we can now define an alternative basis for the
dual space

(Gl = (<1, ~ml (226)
that rotates as
(jmIRY = (jk| D], (R). (227)
k
We also introduce
jm) = (=1)7~"™(j, —m), (228)

which is a function in V that rotates like |jm)
Rljm) = |jk)Di,, (R). (229)

We may use the m notation whenever convenient, e.g.
(imjammal JM) = (=1)727"2(j1,my, ja, —ma|TM). (230)
We note that the so called time reversal operator O is defined as
O|jm) = |jm). (231)
We will not use this operator, but we just point out that it is defined to be anti linear

OA|T) = \*O| D). (232)
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A. Tensor operators

We recall Eq. (180), where we inserted the resolution of identity,

(R R) Y lima)ljama) (imajoma| M) = Y |jiky)lj2k2) DI, (R)D2, | (R)(jymajama| M) (233)
mimsa mimakika

= | D] lik)ldzke) ik jakal JK) | Diepr(R). (234)
K k1ko

This suggest the definition of the operator

Ton(ge) = Y, ljima) (joma|(jima joma| TM), (235)

mimsa

which rotates exactly like a |JM). Completely analogous to Eq. (233) we find

T7 (jrj2) = RIyn(jrijo) R (236)
= Z R|jima) (jamo| RY (jimajama| JM) (237)
= Y ik (Gaka| D, (R)DE . (R)(jimyjame| JM) (238)
m1m2k}1k2
= > lirka) (joka| (1 krjakal JK) Diepr (R) (239)
K kiks
= ZTJK(j1j2)D}]<M(R)' (240)
K

The operators |jim;){j2ms| constitute an orthonormal operator basis since

([ v ) (Goma )" [ ma) (F5m072]) = 6516254 0mams Sz (241)

and from the orthogonality relations of the CG coefficients we find

(T (o) T (7135) = Y (vmajoma| JM) (Gimjama| J' M) = 6,150 0n0065, 518, (242)

mima

Thus, if we expand the operators A and B as

A= " Ay Tra(Grje) (243)
JMjij2
B = Y Byu(ij2)Trm(jije) (244)
JMjij2
we find for the scalar product
Tr(ATB) = > Af5(jria) By (jija). (245)
JMj1j2

This is our main result. The outcome of any experiment can be written as
Tr(p'T) = Z P (G12) T (J1g2) (246)
JMj1j2

Since the components of T' are known for a given experiment, this equation shows immediately what information
about the system, i.e., the density matrix p we can obtain.
Any operator that can be written as

Ay = ZajleTJM(jlj2) (247)

J1jz2
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is called an irreducible tensor operator. It rotates like

RA;mRY = Z Ay D3 (R) (248)
K

and its matrix elements are

<jm|AJM|jm’>—ajj/wwﬂ)(—l)jm(j J j') (249)

-m M m

This result is known as the Wigner-Eckart theorem. The coefficient a;;/ is called the reduced matrix element and it

is often written as (j||A|[5').
Gerrit C. Groenenboom, Nijmegen, November 1999

Appendix A: exercises

1. Derive the second equality sign in Eq. (22).
. Show that N3 = —N (Eq. 41).

. Do the summation in Eq. (44).

= W N

. Show that e~%?|z), is an eigenfunction of 2, using only the definition #|z) = z|z) and the assumption that &
and p are Hermitian operators with the commutation relation [#, p] = 4. What is the eigenvalue?

5. Derive the following relations for the Levi-Civita tensor (Eq. 68)

eijk’eij'k/ = (;jj/(sk.k/ 75]]6'5]6]/ (250)
€ijkeijk = 20k (251)
eijkeijk = 0, (252)

where we used Einstein summation convention: summation over repeated indices is implicit.

6. Show that
x x (y x z) = (x,2)y — (x,¥)z. (253)

7. Using the last equation verify Eq. (64).

8. Derive Eq. (51). Hint: work out det(U[xyz]) in two ways, or use the Levi-Civita tensor.

9. Show that
B(t) = e Be™ 4 (254)
satisfies the equation
B(0) = B, %B(t) = [A, B(t)] (255)
and therefore
B(t)=B+ /Ot dr[A, B(7)]. (256)

Solve the last equation by iteration to derive Eq. (60)

10. Show that Z.j]:\gifmmj +1) = (21 + 1)(2j2 + 1). Hint: draw a grid of points (mq, mg) with m; = —j; ... j;.

11. Compute the dz (3) matrix [Eq. (121)].



