Next: C..43 VWN3: Vosko-Wilk-Nusair (1980) Up: C. Density functional descriptions Previous: C..41 THGFL:


C..42 VSXC:

See reference [27] for more details.

\begin{dmath}
K=
F \left( x,z,p_{{3}},q_{{3}},r_{{3}},t_{{3}},u_{{3}},v_{{3}},\a...
...{2}},q
_{{2}},r_{{2}},t_{{2}},u_{{2}},v_{{2}},\alpha_{{2}} \right)
,\end{dmath} where \begin{dmath}
x= \left( \chi_{\alpha} \right) ^{2}+ \left( \chi_{\beta} \right) ^{2}
,\end{dmath} \begin{dmath}
{\it zs}={\frac {\tau_{s}}{ \left( \rho_{s} \right) ^{5/3}}}-{\it cf}
,\end{dmath} \begin{dmath}
z={\frac {\tau_{\alpha}}{ \left( \rho_{\alpha} \right) ^{5/3}}}+{\frac
{\tau_{\beta}}{ \left( \rho_{\beta} \right) ^{5/3}}}-2\,{\it cf}
,\end{dmath} \begin{dmath}
{\it ds}=1-{\frac { \left( \chi_{s} \right) ^{2}}{4\,{\it zs}+4\,{\it
cf}}}
,\end{dmath} \begin{dmath}
F \left( x,z,p,q,c,d,e,f,\alpha \right) ={\frac {p}{\lambda \left(...
...f{z}^{2}}{
\left( \lambda \left( x,z,\alpha \right) \right) ^{3}}}
,\end{dmath} \begin{dmath}
\lambda \left( x,z,\alpha \right) =1+\alpha\, \left( {x}^{2}+z \right)
,\end{dmath} \begin{dmath}
{\it cf}=3/5\,{3}^{2/3} \left( {\pi }^{2} \right) ^{2/3}
,\end{dmath} \begin{dmath}
\epsilon \left( \alpha,\beta \right) = \left( \alpha+\beta \right)...
...ht) \left( \zeta \left( \alpha,\beta \right) \right) ^{
4} \right)
,\end{dmath} \begin{dmath}
l \left( \alpha,\beta \right) =1/4\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{
\frac {1}{\pi \, \left( \alpha+\beta \right) }}}
,\end{dmath} \begin{dmath}
\zeta \left( \alpha,\beta \right) ={\frac {\alpha-\beta}{\alpha+\beta}}
,\end{dmath} \begin{dmath}
\omega \left( z \right) ={\frac { \left( 1+z \right) ^{4/3}+ \left( 1-z
\right) ^{4/3}-2}{2\,\sqrt [3]{2}-2}}
,\end{dmath} \begin{dmath}
e \left( r,t,u,v,w,x,y,p \right) =-2\,t \left( 1+ur \right) \ln
...
...}{t \left( v\sqrt {r}+wr+x{r}^{3/2}+y{r}^{p+1}
\right) }} \right)
,\end{dmath} \begin{dmath}
c= 1.709921
,\end{dmath} \begin{dmath}
p
=
[- 0.98, 0.3271, 0.7035]
,\end{dmath} \begin{dmath}
q
=
[- 0.003557,- 0.03229, 0.007695]
,\end{dmath} \begin{dmath}
r
=
[ 0.00625,- 0.02942, 0.05153]
,\end{dmath} \begin{dmath}
t
=
[- 0.00002354, 0.002134, 0.00003394]
,\end{dmath} \begin{dmath}
u
=
[- 0.0001283,- 0.005452,- 0.001269]
,\end{dmath} \begin{dmath}
v
=
[ 0.0003575, 0.01578, 0.001296]
,\end{dmath} \begin{dmath}
\alpha
=
[ 0.001867, 0.005151, 0.00305]
,\end{dmath} \begin{dmath}
T
=
[ 0.031091, 0.015545, 0.016887]
,\end{dmath} \begin{dmath}
U
=
[ 0.21370, 0.20548, 0.11125]
,\end{dmath} \begin{dmath}
V
=
[ 7.5957, 14.1189, 10.357]
,\end{dmath} \begin{dmath}
W
=
[ 3.5876, 6.1977, 3.6231]
,\end{dmath} \begin{dmath}
X
=
[ 1.6382, 3.3662, 0.88026]
,\end{dmath} \begin{dmath}
Y
=
[ 0.49294, 0.62517, 0.49671]
\end{dmath} and \begin{dmath}
P
=
[1,1,1]
.\end{dmath} To avoid singularities in the limit $\rho_{\bar{s}}\rightarrow 0$ \begin{dmath}
G=
\left( \rho_{s} \right) ^{4/3}F \left( \chi_{s},{\it zs},p_{{1...
...{2}},q
_{{2}},r_{{2}},t_{{2}},u_{{2}},v_{{2}},\alpha_{{2}} \right)
.\end{dmath}


molpro@molpro.net
Oct 10, 2007