Next: C..41 THGFL: Up: C. Density functional descriptions Previous: C..39 THGFCO:


C..40 THGFC:

Density and gradient dependent first row exchange-correlation functional for closed shell systems. Total energies are improved by adding $DN$, where $N$ is the number of electrons and $D=0.1863$. See reference [26] for more details.

\begin{dmath}
K=
\sum _{i=1}^{n}\omega_{{i}}R_{{i}}X_{{i}}
,\end{dmath} where \begin{dmath}
n=12
,\end{dmath} \begin{dmath}
R_{{i}}= \left( \rho_{\alpha} \right) ^{t_{{i}}}+ \left( \rho_{\beta}
\right) ^{t_{{i}}}
,\end{dmath} \begin{dmath}
X_{{i}}=1/2\,{\frac { \left( \sqrt {\sigma_{\alpha \alpha}} \right...
...{\sigma_{\beta \beta}} \right) ^{v_{{i}}}}{{\rho}
^{4/3\,v_{{i}}}}}
,\end{dmath} \begin{dmath}
t
=
[7/6,4/3,3/2,5/3,4/3,3/2,5/3,{\frac {11}{6}},3/2,5/3,{\frac {11}{6}},2]
,\end{dmath} \begin{dmath}
v
=
[0,0,0,0,1,1,1,1,2,2,2,2]
\end{dmath} and \begin{dmath}
\omega
=
[- 0.864448, 0.565130,- 1.27306, 0.309681,- 0.287658, 0.5...
...0.252700, 0.0223563, 0.0140131,- 0.0826608, 0.0556080,- 0.00936227]
.\end{dmath} To avoid singularities in the limit $\rho_{\bar{s}}\rightarrow 0$ \begin{dmath}
G=
\sum _{i=1}^{n}1/2\,{\frac {\omega_{{i}} \left( \rho_{s} \right...
...t( \sqrt {\sigma_{ss}} \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}
}}}}
.\end{dmath}


molpro@molpro.net
Oct 10, 2007