Next: C..31 PW91X: Perdew-Wang 1991 Up: C. Density functional descriptions Previous: C..29 PW86:


C..30 PW91C: Perdew-Wang 1991 GGA Correlation Functional

See reference [5] for more details.

\begin{dmath}
K=
\rho\, \left( \epsilon \left( \rho_{\alpha},\rho_{\beta} \right) +H
\left( d,\rho_{\alpha},\rho_{\beta} \right) \right)
,\end{dmath} where \begin{dmath}
d=1/12\,{\frac {\sqrt {\sigma}{3}^{5/6}}{u \left( \rho_{\alpha},
\rho_{\beta} \right) \sqrt [6]{{\pi }^{-1}}{\rho}^{7/6}}}
,\end{dmath} \begin{dmath}
u \left( \alpha,\beta \right) =1/2\, \left( 1+\zeta \left( \alpha,...
...3}+1/2\, \left( 1-\zeta \left( \alpha,\beta
\right) \right) ^{2/3}
,\end{dmath} \begin{dmath}
H \left( d,\alpha,\beta \right) =L \left( d,\alpha,\beta \right) +J
\left( d,\alpha,\beta \right)
,\end{dmath} \begin{dmath}
L \left( d,\alpha,\beta \right) =1/2\, \left( u \left( \rho_{\alph...
...,\beta \right) \right) ^{2}{d}^{4} \right) }} \right) {
\iota}^{-1}
,\end{dmath} \begin{dmath}
J \left( d,\alpha,\beta \right) =\nu\, \left( \phi \left( r \left(...
...ight)
\right) ^{4}{3}^{2/3}{d}^{2}}{\sqrt [3]{{\pi }^{5}\rho}}}}}
,\end{dmath} \begin{dmath}
A \left( \alpha,\beta \right) =2\,\iota{\lambda}^{-1} \left( {e^{-...
...\rho_{\beta} \right) \right) ^{3}{\lambda}^{2}}}}}-1
\right) ^{-1}
,\end{dmath} \begin{dmath}
\iota= 0.09
,\end{dmath} \begin{dmath}
\lambda=\nu\,\kappa
,\end{dmath} \begin{dmath}
\nu=16\,{\frac {\sqrt [3]{3}\sqrt [3]{{\pi }^{2}}}{\pi }}
,\end{dmath} \begin{dmath}
\kappa= 0.004235
,\end{dmath} \begin{dmath}
Z=- 0.001667
,\end{dmath} \begin{dmath}
\phi \left( r \right) =\theta \left( r \right) -Z
,\end{dmath} \begin{dmath}
\theta \left( r \right) ={\frac {1}{1000}}\,{\frac { 2.568+\Xi\,r+\Phi
\,{r}^{2}}{1+\Lambda\,r+\Upsilon\,{r}^{2}+10\,\Phi\,{r}^{3}}}
,\end{dmath} \begin{dmath}
\Xi= 23.266
,\end{dmath} \begin{dmath}
\Phi= 0.007389
,\end{dmath} \begin{dmath}
\Lambda= 8.723
,\end{dmath} \begin{dmath}
\Upsilon= 0.472
,\end{dmath} \begin{dmath}
\epsilon \left( \alpha,\beta \right) =e \left( r \left( \alpha,\be...
...ght) \right) \left( \zeta
\left( \alpha,\beta \right) \right) ^{4}
,\end{dmath} \begin{dmath}
r \left( \alpha,\beta \right) =1/4\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{
\frac {1}{\pi \, \left( \alpha+\beta \right) }}}
,\end{dmath} \begin{dmath}
\zeta \left( \alpha,\beta \right) ={\frac {\alpha-\beta}{\alpha+\beta}}
,\end{dmath} \begin{dmath}
\omega \left( z \right) ={\frac { \left( 1+z \right) ^{4/3}+ \left( 1-z
\right) ^{4/3}-2}{2\,\sqrt [3]{2}-2}}
,\end{dmath} \begin{dmath}
e \left( r,t,u,v,w,x,y,p \right) =-2\,t \left( 1+ur \right) \ln
...
...}{t \left( v\sqrt {r}+wr+x{r}^{3/2}+y{r}^{p+1}
\right) }} \right)
,\end{dmath} \begin{dmath}
c= 1.709921
,\end{dmath} \begin{dmath}
C \left( d,\alpha,\beta \right) =K \left( Q,\alpha,\beta \right) +M
\left( Q,\alpha,\beta \right)
,\end{dmath} \begin{dmath}
M \left( d,\alpha,\beta \right) = 0.5\,\nu\, \left( \phi \left( r
...
...35.9789467\,{\frac {{3}^{2/3}{d}^{2}}{\sqrt [3]{{\pi }^{5}\rho}}}}}
,\end{dmath} \begin{dmath}
K \left( d,\alpha,\beta \right) = 0.2500000000\,{\lambda}^{2}\ln
...
...,\beta \right) \right) ^{2}{d}
^{4} \right) }} \right) {\iota}^{-1}
,\end{dmath} \begin{dmath}
N \left( \alpha,\beta \right) =2\,\iota{\lambda}^{-1} \left( {e^{-...
...on \left( \alpha,\beta \right) }{{\lambda}^{2}}}}}-
1 \right) ^{-1}
,\end{dmath} \begin{dmath}
Q=1/12\,{\frac {\sqrt {\sigma_{ss}}\sqrt [3]{2}{3}^{5/6}}{\sqrt [6]{{
\pi }^{-1}}{\rho}^{7/6}}}
,\end{dmath} \begin{dmath}
T
=
[ 0.031091, 0.015545, 0.016887]
,\end{dmath} \begin{dmath}
U
=
[ 0.21370, 0.20548, 0.11125]
,\end{dmath} \begin{dmath}
V
=
[ 7.5957, 14.1189, 10.357]
,\end{dmath} \begin{dmath}
W
=
[ 3.5876, 6.1977, 3.6231]
,\end{dmath} \begin{dmath}
X
=
[ 1.6382, 3.3662, 0.88026]
,\end{dmath} \begin{dmath}
Y
=
[ 0.49294, 0.62517, 0.49671]
\end{dmath} and \begin{dmath}
P
=
[1,1,1]
.\end{dmath} To avoid singularities in the limit $\rho_{\bar{s}}\rightarrow 0$ \begin{dmath}
G=
\rho\, \left( \epsilon \left( \rho_{s},0 \right) +C \left( Q,\rho_{s},0
\right) \right)
.\end{dmath}


molpro@molpro.net
Oct 10, 2007